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Abstract—The aim of this paper is to achieve seamless image stitching without producing visual artifact caused by severe intensity

discrepancy and structure misalignment, given that the input images are roughly aligned or globally registered. Our new approach is

based on structure deformation and propagation for achieving the overall consistency in image structure and intensity. The new stitching

algorithm, which has found applications in image compositing, image blending, and intensity correction, consists of the following main

processes. Depending on the compatibility and distinctiveness of the 2D features detected in the image plane, single or double optimal

partitions are computed subject to the constraints of intensity coherence and structure continuity. Afterwards, specific 1D features are

detected along the computed optimal partitions from which a set of sparse deformation vectors is derived to encode 1D feature matching

between the partitions. These sparse deformation cues are robustly propagated into the input images by solving the associated

minimization problem in gradient domain, thus providing a uniform framework for the simultaneous alignment of image structure and

intensity. We present results in general image compositing and blending in order to show the effectiveness of our method in producing

seamless stitching results from complex input images.

Index Terms—Image stitching, structure deformation, image alignment.

Ç

1 INTRODUCTION

TECHNIQUES in image stitching or blending have been
widely applied to generating a natural image composite

given a set of globally registered images with limited
overlapped region [22], [36]. For image mosaicing applica-
tions, global registration is performed based on a variety of
predefined camera motion models [33]. For applications
aiming to create special effect by engrafting image objects [1],
[6], input images are initially registered by manual dragging
or assuming static camera configuration. In all these situa-
tions, even a small misalignment may cause local intensity or
structure inconsistency and produce visual artifacts.

In order to obtain satisfactory results in image stitching, a

natural transition from one image to another is required,

where both structure and intensity should be aligned or

matched within, or possibly beyond, the overlapped area.

In this paper, we address the general problem of image

stitching in the presence of severe structure and intensity

discrepancy and propose a novel technique to simulta-

neously and globally eliminate misalignment in structure

and intensity between the overlapped images.
Previous techniques in image stitching [6], [22], [36]

optimize a blending function that minimizes the intensity

difference in the vicinity of the overlapped area. There is,

however, no guarantee that, after intensity alignment, image

features or structures will also be aligned. Structure mis-

alignment causes image ghosting or blurring artifact, where a

salient edge fades out as it enters the overlapped area and
fades in just a few pixels away but in a shifted position. To
align image features, nonparametric and patch-based tech-
niques have been recently proposed in texture synthesis
based on texture deformation [13], [37]. To synthesize a
natural texture image, the detected features are matched and
deformed inside the overlapped texture samples. Therefore,
local structure across patch boundaries can be maintained
after synthesis. However, these techniques fail to handle
input images with significant color or intensity inconsistency.
Moreover, complex global structures and detailed patterns
typical of natural images will significantly increase the
ambiguity in their 2D patch matching process.

In our experiments, we observe that a successful image-
stitching algorithm should not only create a smooth transition
within the overlapped region but also preserve the following
properties, which are in general agreement with our visual
perception:

. Structure preservation. The stitched image should
not break existing or create new salient structures. A
counterexample is shown in Fig. 1a, where the edge of
the tower is broken in the overlapped region due to
structure misalignment, causing obvious ghosting
artifact.

. Intensity alignment. Human eyes are sensitive to
large intensity change. Unbalanced contrast beyond
the overlapped area of a stitched image can be
perceptually magnified. An example is shown in
Fig. 1b. Although the structure is well aligned and
color transition is smooth within the overlapped area,
the unnatural color transition from left to right reveals
the unmatched intensities inherent in the input
images.

. Image context consideration. Last but not the least,
the context information of objects in the input
images should be taken into account during the
stitching process. For instance, in Fig. 1c, when the
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images are stitched in a way shown at the bottom,
because of the horizontal shift of the second input
image, the windows that straddle the overlapped
area are widened. Fig. 1d shows the ground truth
where the windows are of uniform size.

To address the above issues, we propose a general
approach in image stitching based on structure alignment
and deformation propagation in natural images. Unlike the
previous deformation techniques aiming to align medical
images [3] or textures [13], in this paper, our method does not
assume camera motion or deformation models. Instead,
colors and structures may vary significantly across the images
that are problematic to many conventional methods. In our
approach, we reduce the ambiguity of deriving structure
matching from 2D to 1D, where salient feature detection and
matching can be more robustly performed. This is achieved
by computing one or two optimal partitions between each
pair of the overlapped images, along which structure
deformation is performed. In order to achieve smooth and
natural deformation, we represent the structure alignment by
using feature deformation vectors and propagate them from
the optimal partitions toward other pixels in the input images.
Such structure deformation propagation is performed in the
gradient domain, which globally reduces intensity discre-
pancy among images.

The rest of our paper is organized as follows: Section 2
reviews related work. Then, in Section 3, we present our
algorithms in computing one or two optimal partitions,
depending on the compatibility of the detected image
features The preliminary version of our algorithm [18]
computes one partition that satisfies the smoothness and
alignment constraints. This paper generalizes the notion to
searching for two matchable partitions to make the
deformation produce more reasonable and meaningful
results. In Section 4, the main results from different

applications using our method are shown. The comparisons
with previous methods are also given. Finally, we discuss
our method and conclude our paper in Section 5.

2 RELATED WORK

Our image stitching aligns not only image intensity but also
image structure while preserving the inherent object
context. In this section, we review related work in image
stitching and structure deformation.

2.1 Image Stitching

Many image registration methods have been developed in
recent years. In the presence of significant intensity differ-
ence, color blending with the use of a weighting mask over the
overlapped area is commonly adopted for generating a
smooth intensity transition. For instance, the video mosaics
algorithm proposed in [32] estimates the homography matrix
for aligning two overlapped images. To reduce visible artifact
and local misalignment, the overlapped regions are blended
using a bilinear weighting function. In [36], a feather-based
algorithm is proposed, which uses averaging and interpola-
tion functions to reduce intensity difference. Unnatural
transition, however, is still inevitable since only local
operations inside the overlapped regions are performed.
Burt and Adelson [6] use a multiresolution spline to perform
blending. All these methods only locally blend images in the
overlapped areas to transit the images from one lighting
environment to another. The local alignment method
proposed in [34] performs deghosting, which works well in
many situations. However, it requires the recovery of the true
3D ray directions, making it difficult to handle occlusions.
Color or intensity difference among images may also make
the method susceptible to local minimum. A general review
of image alignment and stitching can be found in [33].

Recently, methods in distinctive feature detection and
matching have undergone rapid development. Representa-
tive methods include Harris corner detector [15], scale
invariant SIFT [23], and affine invariant feature detectors
[25]. By employing robust feature matching, automatic
panorama recognition based on RANSAC is proposed in
[4], where multiband blending is introduced to reduce the
blurring effect by assigning blending weights to different
frequency band. Sand and Teller [30] match video frames
using detected features. One of their goals is to find the best
matching frames in different videos. The video matching
algorithm cannot be directly applied to general image
stitching.

Methods using optimal seam are proposed to composite
natural or texture images [1], [11], [20]. These methods first
compute the color difference in the overlapped area between
the two input images. Then, dynamic programming [11] or
Graph Cuts [20] is used to compute an optimal partition that
produces the least color difference between the two textures/
images. In [9], partitions among different motions are also
computed. Optimal seam methods do not explicitly consider
image features. An ideal partition that does not intersect
salient structures may not be found. Another problem of
optimal seam is the possible ambiguity associated with the
placement of the seam, as shown in Fig. 1c. The stitched
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Fig. 1. Typical visual artifact in image stitching. The top row shows the
input images to be stitched, whereas the bottom shows the stitching
results. (a) One example where the structures of the input images are
not correctly aligned. The ghosting artifact is apparent. (b) Color
inconsistency in the stitching result. Although the color transition is
smooth within the overlapped region, unbalanced intensities are still
visible. (c) Object context in image stitching. Given the two input images
in the top, the result shown in the bottom is considered visually
satisfactory from the point of view of color and structure consistency.
However, the windows have the wrong size in the overlapped region.
(d) Ground truth, showing that image context, in this case, the uniformity
of the window size, should be considered in the stitching process.



image may not be faithful to the original scene in terms of

image context.
The two methods described in [16], [17] combine image

registration and intensity correction in a single optimization

framework. The method in [16] requires that the internal

camera parameters be known before the optimization. The

tensor voting method described in [17], [19] computes

intensity alignment and corrects color globally at all image

pixels without any prior knowledge on the camera.

However, the structure misalignment is still a problem

since structures or features are not explicitly considered in

these methods.
Levin et al. [22] propose an image stitching algorithm

that operates in the gradient domain and introduce an

optimization method based on the gradient strength in the

overlapped regions. This method produces good results in

the presence of local or global intensity difference between

the two input images. However, large structure misalign-

ment cannot be handled.

2.2 Structure Deformation

Structure deformation and alignment are topics of particular

interest in medical image registration, especially in nonrigid

transformation for registering medical images of different

modalities. Bajcsy and Kovacic [3] first propose to use the

forces of external stretching and internal smoothness to

register medical images. A multiscale technique using a

pyramidal representation is applied. In [8], a two-step

approach is proposed for nonlinear registration of brain

images. In the first step, a one-to-one mapping between

corresponding boundaries is established. The second step

deforms these boundaries subject to certain criteria. This

method requires corresponding boundaries be homothetical

to each other, that is, they are related by uniform scaling and

length-preserving bending. Elastic registrations [3], [14], [28]

are proposed to register medical images, but it is difficult for

these methods to handle detailed local features and large

luminance changes typical of natural images.
Fluid registration [21], [26] uses the nonrigid method

called viscous fluid registration to align medical images.

Unlike the elastic models where the desirable deformation

may not be obtained because of the internal strain in the

elastic continuum, these methods can achieve a desirable

deformation since internal forces will disappear over time.

However, they may easily introduce blurring and produce

nonnegligible distortion.

Recently, feature-matching methods in texture synthesis
are proposed in [13], [37]. In [37], binary feature maps are
first produced by using a two-pass Canny edge filter. Then,
a 2D feature-matching process is applied. This method
detects features in the overlapped area in multiple scales.
However, the binary feature representation is unsuitable for
feature matching in the presence of various feature types,
which is common in natural images. These complications
may lead to an incorrect warping function. Moreover, since
[37] is designed for texture synthesis, there is no provision
for correcting intensity misalignment. In [13], a deformation
function is introduced to simultaneously maximize color
matches while minimizing deformation distortion over the
overlapped area. However, the result may be affected by
intensity inconsistency between input images.

Our method does not attempt to refine homography
estimation in image alignment. Rather, our method deals
with intensity inconsistency by considering structure
deformation in the gradient domain and by smoothly
propagating a set of sparse deformation vectors in the
input images. We align the images subject to continuity in
not only intensities but also salient structures.

3 OUR IMAGE STITCHING ALGORITHM

For clarity, in this paper, we consider the basic case of
stitching two roughly aligned images IS and IT with the
overlapped area �. Our technique can be readily generalized
to more input images. In the following, r represents the
gradient operator ½ @@x ; @@y�, where ri, i 2 fx; yg, denotes the
gradient component.

The essence of our general image stitching approach is to
solve the following three subproblems consecutively, which
will be described in detail in the following sections. The
overview of our method is shown in Fig. 2, where each step
is highlighted using a shaded box.

. Optimal partition computation. Complex structures
in the overlapped regions of the two images make the
general image matching and deformation difficult. To
address this problem, a subset of salient 1D structures
is detected first along the computed optimal partitions
between the input images. This step, which will be
further divided into more specific ones, is abstracted
by the dark yellow box in the top in Fig. 2.

. One-dimensional feature matching and deforma-
tion. The 1D features detected along the optimal
partitions in the overlapped area are matched by
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Fig. 2. Overview of our image-stitching algorithm.



minimizing an energy function. We associate each
matched 1D feature pair with a corresponding
deformation vector and produce a sparse matching
set in the image plane.

. Deformation propagation. The computed deforma-
tion vectors are propagated from the detected
1D features toward all other pixels in the target image
to produce a smooth transition in structure and
intensity. A deformed gradient map is computed,
followed by the reconstruction of the color image
result.

Fig. 3 shows a simple illustration where two objects, with

color and structure discrepancy, as shown in Figs. 3a and 3b,

are to be stitched. Fig. 3c shows the result using our approach

in the color image space. Even without considering color

blending, our structure deformation can already align the

overlapped elliptical structures. Fig. 3d shows that when our

method is applied in the gradient domain, after image

reconstruction, structures are smoothly aligned while color

difference between the input images is reduced. Here, we also

show the results obtained using other methods. More

comparisons on natural images are given in Section 4.

Fig. 3e shows the result using the optimal seam method

[11]. Because of the salient structure misalignment, no matter

how the seam is constructed, the edge break-up cannot be

avoided. Fig. 3f shows the feathering result, which still

contains evident structure and color misalignment. Fig. 3g

demonstrates the stitching result generated from the optimal

seam in the gradient domain. Without the explicit feature

alignment, visual artifacts due to edge discontinuity and

color inconsistency are apparent. Fig. 3h is the result

produced by our implementation of the texture deformation

method [37], which is designed for synthesizing texture

images. Without the consideration of intensity dissimilarity,

the result is unsatisfactory.
In the following, we describe in detail each computation

step overviewed in Fig. 2.

3.1 Optimal Partition Computation

In image stitching, directly matching and aligning all pixels
within the overlapped region implies a quadratic search
space in the total number of pixels. The large search space
causes ambiguities in the matching process and makes the
general alignment process difficult.

In image registration or morphing [14], [29], a sparse set of
matched points or lines is either manually drawn by the user
or computed from the images. Afterward, interpolation or
approximation using, for example, thin-plate splines or radial
basis functions, is applied to all other pixels to smoothly
propagate the matching. This approach is limited in deform-
ing general images, because the underlying transformation
may not be coincident with the adapted model or function.
For instance, if the unknown distortion within the overlapped
regions is nonlinear, there may not exist any registration
model that adequately describes the transformation. This
leads to the problem that even if a large set of points is
correctly matched, it is still difficult to appropriately
propagate the matching information to all other nondistinc-
tive features such as edges and uniform textures. Fig. 4 shows
one simple example in which the feature (corner) points are
correctly registered (highlighted using the black crosses in the
two input images on the left), there still exists an apparent
structure misalignment in the stitching result (shown in the
rightmost image), simply because the transformation model
does not match the unknown local geometry between the
edges of the two input images.

In this section, we shall describe our approach in
computing an optimal partition, or two matchable partitions,
to robustly align selected 1D features along them. In our
method, even if the transformation model between the
images is unknown, we are still able to compute robust
matching for all the necessary pixels in order to produce
seamless image stitching. Either one of the techniques,
referred to as a single optimal partition (SOP) or a double optimal
partition (DOP), is employed, depending on the compatibility
and distinctiveness of the feature points detected in the
overlapped regions of the two images.

Single Optimal Partition (SOP). There are two situations
where an SOP will be applied to minimize structure
misalignment. One case is that the overlapped area � between
the input images only contains textureless regions, where no
sufficient distinctive 2D features can be reliably matched. The
other situation is that the input images capture different
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Fig. 3. Toy example. (a) and (b) are two input images. The overlapped
regions are indicated by the dashed box. Color and structure
misalignment between the images are present. (c) Our result from
image space stitching. The edges are aligned. (d) Our result from
gradient space stitching, where the structures are properly connected
and the color inconsistency is globally corrected. (e) Result using the
optimal seam method in [11]. The structure misalignment is inevitable.
(f) Result obtained using feathering. (g) Result obtained using the
optimal seam operated in the gradient domain. (h) Result from the
method in [37]. The warping method cannot produce smooth transition in
the presence of significant intensity differences.

Fig. 4. Image matching using distinctive features. The two images on the
left are to be stitched. The correctly matched feature (corner) point pairs
are marked in the two images using “þ” within the overlapped area. The
rightmost image shows the registration result. Although the feature
points are aligned well, the edges delimited by the matched feature
points are misaligned because of the noticeable difference in local
geometry inadequately handled by, for instance, thin-plate spline
registration. Without the exact knowledge of the image transformation,
2D deformation is problematic even in this simple example.



scenes and inherently contain no matchable features. The
latter situation happens in unconventional image composit-
ing, for which we shall show examples in Section 4.

Here, we formulate the partitioning problem as one of
the labeling and adopt the Graph Cuts method to find an
optimal solution. We define the gradient alignment cost
Sðp; qÞ between any adjacent pixels p and q as the sum of the
computed values in the red, green, blue (rgb) color channels:

Sðp; qÞ ¼
X
r;g;b

ðð1� �ÞSm þ �SdÞ; ð1Þ

where Sm and Sd are two costs measuring the gradient
smoothness and similarity between the neighboring pixels,
which will be defined shortly.� is a weight used to balance the
relative influence of the two costs, which is set to 0.3 in our
experiments. Before the above computation, we assume that
both images have already been smoothed by Gaussian
filtering. Sm is defined as

Smðp; qÞ ¼ krISðpÞk þ krISðqÞk þ krIT ðpÞk þ krIT ðqÞk;

where kr � k denotes the norm of the gradient for each pixel.
IS and IT are the input images with the overlapped area �.
Thus, Sm takes gradient smoothness into account, which
effectively avoids the partition from breaking object edges in
both input images. Sd is defined as

Sdðp; qÞ ¼krxISðpÞ � rxIT ðpÞk þ krxISðqÞ � rxIT ðqÞkþ
kryISðpÞ � ryIT ðpÞk þ kryISðqÞ � ryIT ðqÞk;

ð2Þ

where each term above represents the gradient-level
similarity at the same pixel location in the overlapped area.
Sd penalizes pixel dissimilarity in the gradient domain.
Sðp; qÞ, combining Sm and Sd, enables the Graph Cuts

method to produce a good initial partition with maximum
continuity in the gradient domain. Fig. 5 illustrates that the
cut divides � into �s and �t, which generates two new
regions Is and It (colored in gray and dark green, respec-
tively) to be stitched. The set of pixels along the optimal cut in
images IS and IT define the optimal partitions, denoted by@I 0s
and @I 0t, respectively. @I 0s and @I 0t exactly overlap. The set of
boundary pixels of It excluding @I 0t is denoted by @It � @I 0t.
@I 0t and @It � @I 0t are, respectively, indicated using orange
and blue curves, shown in Fig. 5b.

Comparing to the optimal seam methods proposed in [11],
[20], our new cost function takes into account both gradient
smoothness and gradient similarity. Our partition favors
smooth area in both images, which effectively reduces
structure complexity along the partition and in turn reduces
the matching ambiguity in the subsequent steps. Comparison
of our stitching results with those produced by other optimal
seam methods is presented in Section 4.

Double optimal partitions (DOP) with feature analysis.

If there are sufficient distinctive 2D features in the over-
lapped area � and the two images are matchable, we
employ the features as context constraint in computing
optimal partitions. The corresponding partitions in the two
images may not exactly overlap due to geometric distortion
or transformation.

We propose to compute respectively two distinctive and
matchable partitions in the two input images. Without
assuming known distortion among the images, we first
compute the optimal partition @I 0s in image IS . Then, a set of
constraints with respect to image color, feature, and
structure are employed in generating a matchable @I 0t in
image IT . Our unified framework consists of several steps.
They are listed in Table 1 and will be further motivated and
described in the following sections. Later, we will show in
Fig. 9 a running example with the intermediate results
produced in different steps. Similar to computing SOP, the
input images IS and IT are assumed to have been smoothed
by Gaussian filtering.

3.1.1 Computing Partition @I 0s
The color deviation along the optimal partition @I 0s should
be small in order to make the following matching and
deformation between the two partitions simple and robust.
Accordingly, in the computation, we minimize the color
differences of pixels along the partition. Denoting these
pixels fIsð0Þ; Isð1Þ; . . . ; Isðn� 1Þg in sequence order, where
IsðiÞ 2 NðIsðiþ 1ÞÞ, n is the total number of the pixels, and
Nð�Þ is the set of the four nearest neighbors, we propose to
minimize the following objective function:

fs ¼
X

0�i<n�1

k�ði; sÞk2; ð3Þ

where

�ði; sÞ ¼ 0 kIsðiÞ � Isðiþ 1Þk < �
IsðiÞ � Isðiþ 1Þ kIsðiÞ � Isðiþ 1Þk � �:

�
ð4Þ

� is a predefined threshold to suppress the small intensity
change along the partition and to encourage the partition to
pass through smooth regions. This minimization problem can
be solved using dynamic programming by traversing all
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Fig. 5. Single optimal partition (SOP). (a) Images IS and IT are
overlapped. The SOP divides the overlapped region into �s and �t.
(b) The partitioned images are Is and It. The partition boundary @I 0s and
@I 0t (shown in orange) exactly overlap. They are respectively formed by
the pixels in IS and IT along the cut. The blue boundary of It is @It � @I 0t.

TABLE 1
Double Optimal Partitioning: Steps



possible positions for Isð0Þ and Isðn� 1Þ, which is similarly
employed in [11].

3.1.2 Two-Dimensional Feature Detection, Matching,

and Triangulation

Since the two input images are assumed to be matchable, we
detect and match distinctive 2D features in the input images
in order to constrain the respective positions of the partitions.

Many feature detectors and descriptors have been pro-
posed. In our method, we first detect the corners using the
Harris-Laplacian detector [24] followed by nonmaximal
suppression to reduce congregate features. To make the
estimation robust, we only compute the most salient features
in two images. This can be achieved by computing and
comparing the “corner strength” [5] for all features. Then, we
represent the features by the local image descriptors
proposed by Lowe [23] and match them accordingly. Suppose
that fF 1

s ; � � � ; Fm
s g and fF 1

t ; � � � ; Fn
t g are the descriptors for the

detected features in the two images within the overlapped
regions, the features fFi

s; F
j
t g are matched if the following

criteria are satisfied:

kFi
s � F

j
t k < " and jP ðFi

sÞ � P ðF
j
t Þj < K; ð5Þ

where " is a small threshold, P ðF Þ is the pixel position for
feature F in the respective images, and K represents the
window size. jP ðFi

sÞ � P ðF
j
t Þj < K requires the distance of

the matched 2D feature points should not be far away in
the image plane, since the images are already roughly
aligned. Thus, in our method, only a few most similar
2D feature points are detected and matched. Fig. 6
illustrates one scenario of the matching process. The final
matched features are represented as Fs ¼ fFm1

s ; � � � ; Fmk
s g

and Ft ¼ fFn1
t ; � � � ; Fnk

t g, respectively, where k is the total
number of matched features.

With the matched Fs and Ft, one naive method to generate
the partitions is directly connecting part of the matched
2D feature points in Fs and Ft, which unfortunately produces
undesirable results. This is because feature points represent
corners connected to image edges. Connecting the
2D features makes the partition cross unmatched edges, thus
conflicting the smoothness constraint described in the

previous section and, consequently, increase the difficulties
in the following processes of partition matching and
deformation. Fig. 7 compares two cases where Fig. 7c shows
the partition connecting a set of 2D feature points. This
partition intersects quite a number of unmatched edges,
making the shape of the pixel intensity curve complex along
it, as shown in Fig. 7e. A partition passing through smooth
regions does not cross these 2D feature points, as shown in
Fig. 7d, where the corresponding intensity curve shown in
Fig. 7f has less fluctuation compared to that in Fig. 7e.

Thus, in our approach, we do not directly connect the
2D feature points in constructing DOP. Instead, we triangu-
late them to constrain the generation of optimal partition @I 0t.
The benefit is twofold. First, by knowing which segments
(triangles) that @I 0s passes through, we can compute @I 0t with
similar coverage. Second, within the corresponding triangles
intersected by @I 0s, we can estimate the relative distance ratios
defined by the partitioning points and the closest features.
The corresponding ratios defined by the matchable @I 0t and
the closest features should be similar.

Now, given the matched features, our goal is to compute
two topologically equivalent triangulations for the two input
images. In particular, iffFi

s ; F
j
t gandfFiþ1

s ; F jþ1
t gare matched

feature points, and Fi
s and Fiþ1

s are connected by a triangle
edge in Is, then Fj

t and Fjþ1
t are also connected by a triangle

edge in IT . These topologically equivalent triangulations are
said to be compatible [35] if there is no edge crossing or triangle

622 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 4, APRIL 2008

Fig. 6. Robust feature matching. (a) Detected features in the two images
are shown in orange and blue, respectively. (b) In the matching process,
only the features within a defined window are considered matchable.
(c) Magnified regions of (b). By taking into consideration the window size
K and the feature descriptors, matching ambiguities among all features
are largely reduced.

Fig. 7. Two examples of partition computation, respectively, constrained
by the detected features. (a) Input image. (b) Using the method
described, detected distinctive 2D features are detected and labeled by
a red “þ.” (c) Partition connecting several feature points inevitably
crosses image edges. (d) Partition passing through smoother regions
does not cross the 2D features. (e) Intensity curve along the partition in
(c) shows complex fluctuation. (f) The intensity curve along the partition
in (d) is relatively smoother, making more robust the subsequent
partition matching and deformation processes because of its simpler
structure.



fold over. One example of triangulation (in)compatibility is

shown in Fig. 8. Unfortunately, the problem of determining

whether two point sets are compatible is believed to be NP-

hard [2]. In [31], it shows that if Steiner points (extra points)

are allowed, any two sets of N points may be made

compatible by adding OðN2Þ points.

In our method, it is not possible to add more points since

our working set consists of the most similar features, which

are already computed and matched. Fortunately, it is

possible to remove some of them to achieve compatibility.

In the following, we define the triangulation in IS as

T S ¼ T ðVS; ESÞ, where VS ¼ fFm1

S ; � � � ; Fmk

S g, and ES is an

edge subset of connected vertex pairs fFi
S; F

j
Sg, and propose

an algorithm shown in Table 2 to compute compatible

triangulations.
In essence, we compute two compatible triangulations by

incrementally removing problematic points. We use Delau-

nay triangulation [12] because it maximizes the minimum

angle and makes triangles shape more uniform. This is

important in partition computation and distance ratio

measurement. In practice, our triangulation algorithm

converges rapidly, thanks to the initial rough alignment of

the images. The matched features are not far away in the

overlapped regions. In all our experiments, the number of

iterations is always less than 8. We show in Figs. 9d and 9e

the computed compatible triangulations given the input

images shown in Figs. 9a and 9b.
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Fig. 8. Triangulation compatibility. (a) Input triangulation. (b) Incompa-

tible triangulation with (a) since some edges cross each other. (c) A

compatible triangulation with (a).

Fig. 9. A running example for demonstrating the computation of DOPs. (a) and (b) are IS and IT , respectively. (c) is the initial blending showing

structure misalignment. (d) and (e) are the compatible triangulations, respectively, computed in the overlapped area of IS and IT . (f) and (g) show the

optimal partitions, respectively, computed in the two input images, which are highlighted in green. They pass between the detected 2D features.

(h) and (i) show the detected 1D features along the partitions using red crosses. By feature matching, deformation propagation, and image

reconstruction, we produce seamless stitching result shown in (j).



3.1.3 One-Dimensional Feature Detection along the

Partitions

In the image plane, 2D distinctive feature points represent
corners or edge joints. Similarly, along 1D partitions, there
also exist features indicating abrupt change in intensity, as
shown in Fig. 10 using red crosses. These 1D features are most
noticeable, if they are not well aligned during the partition
matching process. In this section, we propose an algorithm to
detect 1D features along @I 0s. A similar algorithm will be used
to compute matchable 1D features along @I 0t in later sections.

We propose a 1D feature detection algorithm to robustly
estimate the strongest gradient along the partitions. The
detailed steps are described in Table 3. In the last step, we
assign each detected 1D feature point a direction (polarity)

to represent the gradient projected onto the partition,

which takes a value either negative or positive, as

illustrated in Fig. 11.
The 1D features fks detected along @I 0s are ordered. We

show in Fig. 9h, the running example, the 1D detected

features along the partition @I 0s using red crosses given the

input image IS in Fig. 9a.

3.1.4 Computing Partition @I 0t
Taking the output from all the previous steps, we have

obtained a set of constraints to characterize the partition @I 0t.

We summarize these constraints as follows:

. Smoothness constraint. We have computed the
partition in IS by minimizing fs ¼

P
0�i<n k�ði; sÞk

2.
Likewise, a matchable @I 0t should also satisfy the
smoothness constraint.

. Triangulation constraint. We have triangulated the

overlapped regions in the two images into T s and

T t, which satisfy the compatibility requirement, and

obtained a subset of triangles in T s intersected by

@I 0s. The triangulation constraint favors a matchable
@I 0t that intersects the corresponding triangles in T t.
One example is shown in Fig. 12, where @I 0s and @I 0t,

respectively, intersect three corresponding triangles.
. Structure constraint. In our 1D feature detection along

@I 0s, a set of feature points with signed feature strength

is detected. These features characterize the inherent

structure of @I 0s with which @I 0t should exactly match.

Specifically, the 1D features detected along @I 0t should

be distributed in a similar way as those along @I 0s.
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Fig. 10. One-dimensional features along the partition. (a) The input
image shown in Fig. 7. The blue line is the partition. The red crosses
indicate the 1D features detected by using gradient strength along the
partition. (b) Plot of pixel intensity and gradient strength along the
partition. The local maxima of the gradient strength are highlighted using
the red crosses. They map to the 1D features along the partition in (a).

TABLE 3
1D Feature Detection Along a Partition

Fig. 11. Direction of 1D features along the optimal partition. The light
green curve is @I 0s. p and q are the curve features since they are salient
structure points, shown in the magnified view on the right. We assign the
direction of @I 0s, shown as the black dashed arrow on the right. The
gradient directions of p and q are illustrated by the purple arrows. The
corresponding gradient direction projected onto the curve is negative for
p and positive for q.

Fig. 12. Triangulation constraint. The two input images are triangulated
with compatible triangulation using five points. Since the optimal
partition in IS intersects three triangles, as shown on the left, @I 0t should
also intersect the corresponding three triangles. The corresponding
ratios (for instance, �sð0Þ and �tð0Þ shown in the figure) by which the
partitions divide the edges should also be similar.

TABLE 2
Computing Compatible Triangulations



The smoothness constraint requires that @I 0t satisfies:

min
P

0�i<m k�ði; tÞk
2, where �ð�Þ is similarly defined as that

in (4), except that we replace IS by IT . We formulate the

smoothness energy E1 as

E1 ¼
X
i

k�ði; tÞk2; ð6Þ

where pixel i is within the space of all pixels along the

partition.
The triangulation constraint requires that @I 0s and @I 0t

intersect exactly the same set of corresponding triangles.

Specifically, suppose that @I 0s intersects an edge subset E0s �
Es and partitions each edge inE0s into two segments with ratios

�sð0Þ; �sð1Þ; � � � , respectively. To be matchable to @I 0s, @I
0
t

should intersect the same corresponding edge subset E0t and

partition the edges with similar ratio �tð0Þ; �tð1Þ; � � � . One

example is shown in Fig. 12. We formulate the triangulation

energy E2 as

E2 ¼
X
j

ð�sðjÞ � �tðjÞÞ2

s:t: jE0tj ¼ jE0sj & 8fFi
s; F

j
sg 2 E0s : fFi

t ; F
j
t g 2 E0t;

ð7Þ

where j � j denotes the cardinality of a set.
To formulate the structure constraint, we first detect the

salient 1D features along @I 0t using the same algorithm shown

in Table 3, except that we replace all instances of @I 0s by @I 0t. To

achieve robust matching, the number of detected features in

@I 0s and @I 0t should be the same, where the respective strength

should also be similar in value. In addition, the variance of the

geometric distance between the matched features should be

small. Let dðfkt ; fks Þbe the euclidean distance between any two

corresponding features fkt and fks in the overlapped regions.

The structure energy term E3 is defined as

E3 ¼
X
k

ðgsðkÞ � gtðkÞð Þ2þ� dðfkt ; fks Þ � �dÞ2
� �

s:t: jgtj ¼ jgsj;
ð8Þ

where � is the normalization term, gsðkÞ and gtðkÞ are the

respective signed gradient strength for 1D features along

@I 0s and @I 0t, and �d is the mean of dðfkt ; fks Þ.
The diversity of the forms of the three energy terms in the

above equations makes it difficult to simultaneously mini-

mize them once and for all. Alternatively, we introduce an

iterative algorithm to estimate @I 0t by first minimizing (6) to

filter out nonsmooth partitions and then computing and

comparing the defined matching scores from E1 to E3 to

obtain the optimal partition @I 0t. We describe the algorithm

as follows:

1. In the overlapped region, we compute all possible
partitions @I 0t connecting any two pixels on the upper
and lower boundaries in � to minimize (6) of E1. If
there are n pixels on the upper and lower boundaries
in �, respectively, the shortest path algorithm [10] can
be applied to compute n2 most smooth partitions with
different start and end points with computation
complexity Oðn2Þ. We then set h ¼ 0.

2. Along the computed hth partition in IT , detect the
1D features and compute the triangles that the
hth partition intersects.

a. If jgsj 6¼ jgtj or jE0tj 6¼ jE0sj, we set its error
errðhÞ ¼ 1 according to (7) and (8).

b. Otherwise, we compute the error errðhÞ using

errðhÞ ¼E1 þ �E2 þ �E3

¼
X
i

k�ðiÞk2 þ �
X
j

ð�sðjÞ � �tðjÞÞ2þ

�
X
k

ððgsðkÞ�gtðkÞÞ2þ� dðfkt ; fks Þ � �dÞ2
� �

;

ð9Þ

where � and � are weights.
c. hþþ. If h < n2, go to Step 2.

3. Set @I 0t to be the partition with error err� ¼
min errðiÞ, where 0 � i < n2.

In all our experiments, the above algorithm works well

and produces visually matchable partition @I 0t in the target

image. Another possible way to minimize E1, E2, and

E3 simultaneously is by formulating it as a maximum

a posteriori (MAP) problem where the smoothness

energy E1 is the log prior and the other two energy terms

(E2 and E3) are the log likelihood. It can be solved by

applying Markov Chain Monte Carlo in a Bayesian inference

framework [7] over a large solution space. Since there is no

exact time complexity estimation, defining an appropriate

proposal to speedup the convergence is an issue.

After we have obtained @I 0s and @I 0t, the images IS and IT
are similarly partitioned into two parts, where Is and It are

those parts to be stitched. Referring to that in Fig. 9g shows

the result of the partition @I 0t computed using the above

algorithm. The triangulation and smoothness constraints are

well satisfied. Figs. 9h and 9i show that@I 0t and @I 0s contain the

matchable 1D features and satisfy the structure constraint.

Fig. 9j shows the final result after structure deformation, to be

introduced in the following sections. Notice that the visual

artifact is largely reduced.

3.2 One-Dimensional Feature Matching

In DOP estimation, @I 0s and @I 0t are computed separately.

Using the algorithm described above, the matched parti-

tions have exactly the same number of detected 1D features

distributed in a similar order. Thus, the 1D features can be

readily matched by forming a one-to-one mapping fis ! fit .
In an SOP estimation, we can also detect the 1D features

along @I 0s and @I 0t using the same algorithm described in

Table 3. Similarly, the feature strength can also be computed.

Suppose that there are, respectively, m and n detected

feature points along @I 0t and @I 0s, where m and n may not be

equal, in the rest of this section, we propose a general

1D feature-matching approach for the partitions generated

using SOP estimation.

Without losing generality, we assume that n � m, that is,

@I 0s has more detected features. We propose to match each

1D feature in @I 0t to a distinctive feature in @I 0s in monotonic
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order. One example is shown in Fig. 13. This problem can be

formulated as

E0 ¼min
X

0�i<m
ðgT ðiÞ � gSðkiÞÞ2

s:t: 0 � k0 < k1 < � � � < km�1 < n:

ð10Þ

We propose a dynamic programming algorithm to solve
(10). Before the description, we denote

E0a;b ¼ min
X

0�i<a
ðgtðiÞ � gsðkiÞÞ2 s:t: 0 � k0 < � � � < ka�1 < b;

which is to minimize the energy in matching the first a
features in @I 0t to the first b features in @I 0s in the respective
queues, where b � a. Therefore, E0m;n ¼ E0.

In the top-down approach, we have

E0m;n ¼ min
m�1�i<n

E0m�1;i þ min
i�j<n

gtðm� 1Þ � gsðjÞð Þ2
� �

;

..

.

E02;3 ¼ min
1�i<3

E01;i þ min
i�j<3
ðgtð1Þ � gsðjÞÞ2

� �
;

E02;2 ¼ gtð0Þ � gsð0Þð Þ2þðgtð1Þ � gsð1ÞÞ2;
E01;1 ¼ ðgtð0Þ � gsð0ÞÞ

2:

This implies that the dynamic programming using an array
storage can efficiently solve the matching problem.

Now, we have constructed a feature mapping, which is
injective since there may exist unmatched features along one
partition. There are two possible ways to further handle
them: leaving them unmatched or matching them with the
nearest similar features on the other partition without
having feature mappings crossing each other. The first
solution may still cause structure misalignment in the final

stitched image, whereas the latter method produces a
surjective mapping and makes 1D features merge during the
transformation, which is employed in our approach.

3.3 Deformation Propagation

For each matched 1D feature pair ðfk1
t ; f

k2
s Þ along the two

partitions, we construct a deformation vector:

Vðfk1
t Þ ¼ Vxðfk1

t Þ; Vyðfk1
t Þ; Vkrkðfk1

t Þ
� �

;

where Vx and Vy are the x and y components of the

vector pointing from fk1
t to fk2

s (the matched feature

pixels) in the image plane, as shown on the right in

Fig. 14. Vkrk measures the strength difference in the

gradient map and is computed by

Vkrkðfk1
t Þ ¼ krItðfk1

t Þk � krIsðfk2
s Þk: ð11Þ

Therefore, the deformation vector consists of both the geometric

and strength differences between the matched 1D features,

respectively, in the image plane and gradient map.
For clarity of depiction, in the following, we describe our

structure deformation method by matching features from It
to Is. The analogous problems that Is is deformed to match

It, or both Is and It are deformed to match their mean

respective feature points, are similar.
To smoothly propagate deformation vectors from the

sparse 1D features along @I 0t to part of or all other pixels in

image It, we define the deformation area St to represent the

region being affected by the deformation propagation. We list

two configurations in producing seamless results as follows:

1) full propagation, where St ¼ It to globally diffuse the

deformation and 2) partial propagation, where St ¼ �t to

locally deform the image. They are alternatively used in our

method in different situations.
Taking Fig. 15 as an example, the yellow region in

Figs. 15a and 15b are the deformation areas, where St ¼ �t

and St ¼ It, respectively. The sparse 1D feature points are

illustrated using small red squares with associated defor-

mation vectors V. In Fig. 15a, @S0t is the boundary

separating St and It � St. Thus, in order not to propagate

the deformation outside of St, we set the deformation

vectors to be 0 ¼ f0; 0; 0g for all pixels along @S0t. For

Fig. 15b, St ¼ It, so @S0t is outermost boundary, colored in

dark purple. In both cases, we have
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Fig. 14. After 1D feature matching, similar 1D features (pairs of black and
blue dots) along the two partitions in the images should be transformed to
align the two partitions. One example is shown in the zoom-in view on the
right, where features in It and Is are aligned according to the direction
ðVx; VyÞ, as indicated by the dashed arrow in image plane.

Fig. 15. Boundary condition for deformation propagation. (a) and (b)
show that St ¼ �t and St ¼ It, respectively. The small red squares are
the 1D features whose deformation vectors are marked by arrows.
Along @S0t, we set the deformation vector to 0 to avoid unnecessary
deformation in It � St.

Fig. 13. Feature matching in queues of different lengths. In this example,
@I 0t has m detected features in the queue, whereas @I 0s has n features,
n > m as shown. Therefore, there is no one-to-one mapping between
the two queues. We propose to match each feature in @I 0t to a distinctive
in @I 0s in a monotonic order. Crossed feature mapping such as the one
highlighted in red is not allowed.



VðpÞ ¼ 0 8p 2 @S0t:

Given the sparsely assigned deformation vectors for the

features and pixels along @S0t to smoothly propagate the

deformation inside image It, we propose to solve the

minimization problem

V� ¼ arg min
V

Z
p2St
krVk2dp ð12Þ

by using conjugate gradients. After the optimization, each

pixel in St is associated with a deformation vector.
Finally, using the propagated deformation vectors in St,

we perform an inverse mapping with bilinear interpolation
in the gradient domain in St to construct the deformed
gradient map. The final image is obtained by solving the
Poisson equations on the deformed gradient map.

To summarize this section, our double-optimal-partition
method appropriately incorporates the three stitching prop-
erties described in Section 1. Specifically, the structure
connectivity is preserved in our stitching process by introdu-
cing the structure constraint in Section 3.1.4 and structure
deformation in Section 3.3. The intensity alignment is achieved
by the operations in gradient domain: After solving the
Poisson equations, global color consistency can be obtained.
The image context is considered by incorporating the feature

points in computing @I 0t. The sparsely matched features offer
the necessary image topology information, and the triangu-
lation constraint in Section 3.1.4 requires that the partitions
be in relatively similar positions in the aligned images.

4 RESULTS

In this section, we show that our method is capable of
generating natural image stitching results for a variety of
scenes. Comparison with other methods using our imple-
mentation is also given.

4.1 Image Stitching Using Single Optimal
Partition (SOP)

We first show some image stitching examples using SOP. In
Figs. 16a and 16b, we show two overlapped images of a sunset
scene. Precise alignment is difficult because of the local
displacement and the small overlapped region shown inside
the green boxes in the figure. Fig. 16c is the feathering result
obtained from initial alignment, where the ghosting artifact is
significant because of intensity discrepancy between the
images. In Figs. 16d, 16e, 16f, 16g, 16h, and 16i, we compare
our result with those generated using previous methods.
Fig. 16d is the result obtained by the optimal seam method
operated in gradient domain. Although the color discrepancy
is alleviated, it does not help in solving the problem of
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Fig. 16. Sunset. (a) and (b) are the two registered images. The green boxes indicate the overlapped area. (c) Feathering result from the initial
alignment. The ghosting artifact is evident because of local structure and intensity misalignment. (d), (e), (f), (g), (h), and (i) are zoom-in views of the
results generated by (d) the optimal seam method operated in the gradient domain. The seam is highlighted in red. (e) GIST1 [22]. (f) Structure
deformation in [37]. (g) Feature matching in [13]. (h) Our method using SOP. (i) Magnified view of our result, where we set St ¼ It. (j) The result from
the optimal seam method. (k) is our image stitching result, where intensity and structures are globally aligned.



structure misalignment. Fig. 16e shows the result computed
by GIST1 [22], where the imposed smoothness constraint
cannot eliminate the structure misalignment. Fig. 16f is the
structure deformation result obtained in [37]. Matching of
the extracted 2D features cannot adequately handle complex
structures such as the boat, causing incorrect warping result
and local distortion as shown. Fig. 16g is the feature-matching
result generated in [13]. The significant difference in global
image intensity makes their optimization method susceptible
to local minima, which causes inaccurate alignment.

In Fig. 16h, SOP feature matching is applied. By taking
structure smoothness into consideration, the matching
process is robust. Fig. 16i shows a magnified view of the
overlapped area in our result after image deformation.
Fig. 16j is the full result generated by the optimal seam
method [11]. Since no pixels are similar in intensity, an
obvious seam is produced (indicated by the thin red curve).
Fig. 16k is obtained by our method. Because the deforma-
tion is properly and smoothly propagated toward the
interior of the images, structures are properly aligned, and
intensities are better matched.

Fig. 17 shows one example where the two input images
in Figs. 17a and 17b have a large discrepancy in both color
and structures. Fig. 17c shows the zoom-in view of the
result generated by the optimal seam method. Fig. 17d
shows a magnified view of the feathering result. Fig. 17e
shows our result using SOP. Our method can handle color
and structure deformation within the same framework.

4.2 Image Stitching Using Double Optimal
Partitions (DOP)

We have shown in Fig. 9 one example using the detected
2D features to constrain the partitions constructed separately
in two images.

Another example is shown in Figs. 18a and 18b, where the
two input images IS and IT to be stitched. Color and structure
distortion are present in the overlapped area, which makes
alignment fail to produce satisfactory result, as shown in
Fig. 18c. In Figs. 18d, 18e, 18f, 18g, 18h, 18i, and 18j,
intermediate results in the overlapped region from different
steps in the DOP process are shown. We first produce
partition @I 0s, as shown on the left in Fig. 18d. Fig. 18e shows
the plot of gradient strength along the partition. Using our
method, three 1D feature points are detected in this case,
which are highlighted using red crosses. The 2D features in
the overlapped region are then detected in both images, as
shown in Fig. 18f. Fig. 18g shows the result in which the two
regions are compatibly triangulated. Combining all the
constraints described in the paper, the optimal partition @I 0t
is computed as shown in the right subfigure in Fig. 18h, which
corresponds well to @I 0s in terms of shape and the triangles
intersected. Fig. 18i shows the gradient strength along the
computed partition @I 0t, where the detected 1D features are
also matchable to those in @I 0s shown in Fig. 18e. The
deformation vectors for the sparse 1D features are illustrated
in Fig. 18j. Fig. 18k shows a failure example using optimal
seam compositing, where salient structure misalignment is
visible. Fig. 18l shows our image stitching result. By
performing structure deformation in the image gradient
domain, structure and color misalignment is avoided.

4.3 Image Stitching in General Image Compositing

Our method can be readily applied to unconventional image
stitching with arbitrary overlapped areas to generate special
effect. In Fig. 19a, we only use a single input image, where the
lower brush is copied to align with the upper one. The user
draws the mask, as shown in the yellow region in Fig. 19b. The
feathering result is shown in Fig. 19c, where misalignment is
obvious. Fig. 19d shows the result obtained by the optimal
seam method. The corresponding pixels along the boundary
differ significantly in intensity, resulting in the obvious seam
as shown. Fig. 19e shows the result of the GIST1 method [22],
which cannot eliminate misalignment in this example.
Fig. 19f shows the result obtained using the deformation
method in [37]. Since this example contains complex features
at multiple scales, their proposed warping function mixes up
these features and causes alignment error. Shown in Fig. 19g
is the result produced by direct Poisson blending [27]. Our
result is shown in Fig. 19h, where structures and intensities
are seamlessly aligned along the stitching boundary, and the
sparse deformation vectors are smoothly propagated into the
interior of the pasted region.

Fig. 20 shows another example demonstrating that our
method can automatically align salient structures for seam-
less image composition, whereas previous techniques em-
ploying interactive photo editing tools still require user to
perform manual adjustment. Figs. 20a and 20b show,
respectively, the input source and target images. Fig. 20c
shows the target scene on which we want to composite the
source object. Fig. 20d shows the result after a set of typical
operations, where the user first manually selects the position
that the object cut-out will be placed then applies the optimal
seam method to compute the partition where color incon-
sistency is minimized and, finally, uses Poisson blending to
composite the object. Even after all these operations, since
there exist inherent misaligned structures, visual artifacts
such as broken edges are still visible, as shown in the
magnified view in Fig. 20e. Our method does not require the
user to carefully adjust where the object cut-out should be
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Fig. 17. Lamp post. (a) and (b) are the two registered images. (c) and (d)
are zoom-in views of the results generated by (c) the optimal seam
method and (d) feathering. Notice the visible artifact in both color and
structure. (e) Our result using SOP. The structures are globally aligned
and deformed with minimum distortion under our computation framework.



placed to achieve maximum alignment. Using our automatic
1D feature detection, matching and deformation, as shown in
Fig. 20f, structure misalignment is eliminated in our result.
Magnified views are shown in Fig. 20e.

5 CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel image stitching
approach by image deformation, where the overlapped
regions may contain significant intensity inconsistency and
structure misalignment. Instead of generating precise

alignment, considering all salient features in a 2D image
plane or using a predefined model in image alignment, we
propose to match only the necessary features along one or two
optimal partitions and use them to construct a sparse set of
deformation vectors. This reduces the misalignment problem
causedbycomplex 2Dstructure andcolor, especially for input
images with significant mismatches in the overlapped area.
From the 1D sparse features detected along the partition(s),
we propagate the deformation into the target image smoothly.
Structure deformation and color correction are simulta-
neously achieved within the same framework operating in
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Fig. 18. DOPs. (a) and (b) are input images IS and IT , respectively. Because of image distortion, the initial alignment of the two images introduces visual
artifact, as shown in (c). We apply DOP. The steps are shown in (d) to (j). (d) shows the computed @I 0s. (e) illustrates the detected 1D features along @I 0s,
denoted by crosses. To compute a matchable partition @I 0t, 2D matched features are first detected in the overlapped area (f), followed by constructing
compatible triangulations in the two images in (g). Combining all constraints, the partition @I 0t is computed, as shown on the right in (h). (i) shows the
detected 1D features along @I 0t. (j) shows the deformation vectors computed on the corresponding 1D features. (k) shows the result computed using the
optimal seam method [11], where structure mismatching is apparent. (l) is our result after structure deformation. Both structure and color are well aligned.



the image gradient domain. In experiments, we also observe
that commonly used methods such as blending or optimal
seam cannot always produce seamless results. Our method,
when applied to image composition, can automatically search
for matchable features and align them by deformation. This
largely alleviates the users from carefully and manually
matching structures along the optimal boundaries.

Our method provides a principled and effective way to
address the general problem of natural image stitching. SOP
or DOP are adopted in different situations to achieve
seamless stitching. Generally speaking, SOP is applicable
when very few feature points are found in the overlapped
regions, whereas the DOP method is appropriate for more
general scenes.

Due to complexity of natural images, the following factors
may influence our stitching quality. First, in our experiments,
when DOP is applied, we need to employ existing feature
detectors and descriptors [24] to match features. The SIFT
detector is not invariant to affine transformation and partial
occlusion and may produce erroneous matching results in
difficult images. We show one example in Figs. 21a, 21b, 21c,
and 21d, where the input images contain very complex
structures (the canyon) and textures (the plant). In this
example, the features cannot be matched well. The magnified
regions in Fig. 21d illustrates the misaligned structures.
Second, our method stitches images in the image gradient
domain, it does not guarantee to produce the best visual effect
if the source and target images are very different in
appearance. One example is shown in Figs. 21e, 21f, and
21g, where we composite part of the chimney in Fig. 21f to the
image in Fig. 21e. Although the main structures are aligned
well, the stitching result is not visually natural because the
textures of the two chimneys are very dissimilar.

In the future, we shall investigate other image matching
criteria to handle the above difficult examples. Moreover,
extending this method to videos and multiple images is
another possible direction.
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Fig. 19. Brushes. (a) Input image. (b) Part of the lower brush is copied and
pasted onto the upper one, as shown inside the yellow region.
(c) Feathering result. (d) Optimal seam result. (e) GIST1 result [22].
(f) Result of structure deformation in [37]. (g) Result by direct Poisson
blending [27]. (h) Our result. The complexity in feature matching is
reduced to 1D, allowing the sparse deformation vectors to be robustly
propagated into the interior of the image to enforce the necessary
structure continuity and smoothness.

Fig. 20. Bust. (a) and (b) show that, respectively, the source and target
images. (c) shows part of bust in (a) is to be composited to the target
image. In traditional image editing, a user needs to carefully align the
source object and the target image in order to produce a seamless
result. (d) shows that in this example, even with careful manual
alignment and optimal seam computation followed by Poisson blending,
the result still contains artifact because of structure discontinuity.
Magnified views are shown in (e). (f) shows our result where all
pertinent structures are seamlessly aligned.

Fig. 21. Two difficult examples. (a) and (b) are two input images to be
stitched. They contain complex structures and features. (c) shows our
stitching result. (d) The magnified region still contains errors. (e) and (f)
show two input images. We graft the chimney in the red rectangle onto
(e). (g) shows our result. Although the structure is aligned well, it does
not look natural.
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