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Abstract
We address the problem of regional color transfer be-

tween two natural images by probabilistic segmentation. We
use a new Expectation-Maximization (EM) scheme to im-
pose both spatial and color smoothness to infer natural con-
nectivity among pixels. Unlike previous work, our method
takes local color information into consideration, and seg-
ment image with soft region boundaries for seamless color
transfer and compositing.

Our modified EM method has two advantages in color
manipulation: First, subject to different levels of color
smoothness in image space, our algorithm produces an op-
timal number of regions upon convergence, where the color
statistics in each region can be adequately characterized by
a component of a Gaussian Mixture Model (GMM). Sec-
ond, we allow a pixel to fall in several regions according
to our estimated probability distribution in the EM step,
resulting in a transparency-like ratio for compositing dif-
ferent regions seamlessly. Hence, natural color transition
across regions can be achieved, where the necessary intra-
region and inter-region smoothness are enforced without
losing original details. We demonstrate results on a variety
of applications including image deblurring, enhanced color
transfer, and colorizing gray scale images. Comparisons
with previous methods are also presented.

1 Introduction
Recent advances in digital image processing and en-

hancement techniques have made new and useful applica-
tions possible. One involves color manipulation between
images, which can be applied to perform color correction,
noise reduction, and production of high-quality composite
images [14, 8, 4, 5, 6].

In [9], Reinhard et al. reported a simple but very suc-
cessful technique that transfers color characteristics from a
source to a target image. In the target image It, the trans-
ferred color at pixel Ct in the lαβ color space is:

g(Ct) = µs +
σs

σt
(Ct − µt) (1)
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where µs, µt are the means of the underlying Gaussian dis-
tribution in the lαβ color space of the respective source
and target images. σs, σt are the respective standard devi-
ations. We call this approach global color transfer because
the color statistics are calculated by taking into account all
pixels in the respective images.

Global color transfer does not have adequate spatial con-
sideration, so it cannot avoid the following two problems.
One is that if the source or target image contains different
color regions, the global transfer cannot distinguish the dif-
ferent statistics and will mix regions up. The other problem
is that if the color of the two images are very different, in
the lαβ color space, the chromaticity channels are easily ex-
aggerated which will cause unnatural and saturated result.
Swatches [9] can alleviate the errors in some situations, but
they cannot solve all problems because they do not provide
without sufficient clustering information.

In this paper, we address the above issues, and propose
a method to establish spatial connectivity so that local color
statistics can be inferred simultaneously with the optimal
partitioning of the image space. We call the transfer in the
presence of color correspondences and spatial relations as
local color transfer. It has following three properties:
Probabilistic segmentation. Pixel clustering is achieved
via probabilistic segmentation, where we estimate the prob-
ability iPxy ∈ [0, 1] that pixel I(x, y) belongs to region i in
image I . Hence, I(x, y) may concurrently exist in several
regions according to its probability distribution Pxy . Pre-
vious binary segmentation where iPxy ∈ {0, 1} is just a
special case in our definition.

The advantage of using probabilistic segmentation over
binary segmentation is that inter-region smoothness can be
enforced by encoding natural connectivity among pixels. In
our method, pixel I(x, y) tends to have a large probability
falling into a single region i when it is in the center of the
region, while it has a more uniform probability distribution
among several regions if it lies on boundary. This guaran-
tees smooth color transition across regions without mixing
up colors in the interior of the regions.
Expectation-Maximization. We estimate these probabil-
ity distributions through a novel propagation step by the
Expectation-Maximization (EM) algorithm, and appropri-
ately model all segments as Gaussian Mixtures where the
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color statistics of each segment is modelled by one compo-
nent. This guarantees that if two regions respectively sat-
isfy this model, both of them should have roughly one peak
in the corresponding color statistics. Thus, in the transfer
process, dominant colors will not be mixed up and natural
color transition across regions can be maintained.
Unified approach. Because of the generality of GMM, our
unified approach can be applied to a variety of applications,
including image deblurring, image restoration and coloriza-
tion of gray scale images.

The rest of this paper is organized as follows. Section 2
reviews previous work in related areas. In Section 3, we de-
scribe our method which includes the modified EM method
for probabilistic segmentation, mapping function construc-
tion and result compositing. We present our results in sec-
tion 4, with detailed comparison with previous work. The
summary and conclusion are given in section 5.

2 Previous work
We review previous work proposed for color manipula-

tion between two images, together with several image seg-
mentation techniques related to our probabilistic segmenta-
tion and EM techniques.

2.1 Color transfer and related applications
Reinhard et al. [9] first performed global color transfer

according to Eqn. 1 in [10], after converting the RGB space
to the decorrelated color space lαβ. In their approach, if the
image contains different color regions, swatches are speci-
fied by users and are used to divide the colors into clusters.
However, for complex scenes, either swatches are inade-
quate to discern different color statistics, or a lot of swatches
need to be specified by user.

The method was extended to gray scale image coloriza-
tion in [14], where chromaticity transfer is performed af-
ter equalizing the luminance channels of both input images.
In [7], Levin et al. colorized a gray scale image or movie by
assuming that neighboring pixels in space-time with simi-
lar intensities should have similar colors. A quadratic opti-
mization was formulated which can be solved efficiently by
standard techniques. These colorization techniques require
a lot of human interactions if complex textures or patterns
are present. Without human interaction, undesirable color
mixture will be observed.

As for other related applications in color transfer, in [5],
a Bayesian approach was proposed to correct image inten-
sity. Without performing motion deblurring, a low/normal
exposure image pair is used. Global color statistics are
transferred from the normal exposure (blurred) image to
the low exposure (sharp) image. Explicit spatial correspon-
dence was used.

Later, two image restoration or denoising techniques us-
ing flash/no-flash pairs were proposed independently in [4,
8]. In comparison, [4] used a compositing approach to in-

Meaning
Gi Gaussian distribution Gi(i;µi, σi) for region i
µt

i Mean of Gi at iteration t
σt

i Standard deviation of Gi at iteration t

iP
t
xy Probability of pixel I(x, y) in Gi at iteration t

Pt
xy Probability distribution of pixel I(x, y)

estimated at t. Pt
xy = {iP

t
xy|i = 1, 2, · · ·}

Table 1: Notations used in this paper.

tegrate colors from flash/no flash pairs, while in [8], a joint
bidirectional filter is used to perform de-noising. The latter
approach cannot avoid texture smoothing. Otherwise, noise
will be remained even with the guidance of details from the
flashed image, due to the use of smoothing filter.

2.2 Color segmentation
The watershed algorithm [13] performs color segmenta-

tion which easily produces a large number of small regions
with hard boundaries. Mean shift segmentation [3] main-
tains spatial consistency by incorporating the spatial coor-
dinates into their feature space representation. In the filter-
ing step, the kernel size is determined with the help of the
spatial domain parameter.

An earlier work in [1] performs color and texture seg-
mentation by EM, which models the joint distribution
of color and texture with a mixture of Gaussians in 6-
dimensional space (three dimensions for color and three for
texture). Since no spatial coordinates are incorporated, after
the model has been inferred, it needs a spatial grouping step
by applying a maximum-vote filter and connected compo-
nent algorithm.

In our new EM algorithm, we perform our model estima-
tion in the 3D color space, which makes the EM estimation
more stable and run faster. To maintain spatial consistencies
and introduce natural probabilistic region boundaries, we
introduce an additional propagation step in the loop. For
probabilistic segmentation, note that natural matting tech-
niques (such as [2] and [11]) are not applicable in our work,
since they do not guarantee smoothness for in certain situa-
tions.

3 Our approach
Given an input image pair Is and It, we first construct a

probabilistic segmentation in each of them so that the col-
ors in every segmented region ri can be fitted by a Gaussian
component Gi of a GMM appropriately. It guarantees that
any two regions in the two input images have similar sta-
tistical model, and a natural mapping can be achieved be-
tween them. Hence, region ri and Gaussian component Gi

are closely related. Table 1 shows the notation to be used in
the rest of the paper.

In this section, we first review in section 3.1 the original
EM algorithm for estimating general 3D GMM. Afterward,
a detailed description on our new model construction and



mapping estimation will be presented. The outline of our
approach is as follows:

• Segment the two input images into a set of regions with
soft boundaries. The optimal number of regions is also
determined automatically in this step (sections 3.2-
3.3).

• Construct the mapping function from the source image
to the target with or without spatial correspondence.
(section 3.4).

• Composite the final image where no visual artifact
should be observed among regions (section 3.5).

We will describe these steps in separate sections.

3.1 The original EM algorithm for 3D GMM esti-
mation

Initially, we assume that the image can be partitioned
into N regions, namely, the underlying joint color distrib-
ution in lαβ channels can be approximated by a set of N
Gaussians. It is equivalent to 3D GMM estimation:

E-step: The probability that a pixel color I(x, y) be-
longs to the ith Gaussian Gi(i;µi, σi) is calculated as:

iPxy =
exp(− (I(x,y)−µi)

2

2σ2
i

)∑N
j=1 exp(− (I(x,y)−µj)2

2σ2
j

)
(2)

M-step: the mean µi and standard deviation σi of each
Gaussian Gi are re-estimated in region i as:

µi =
1
Z

∑
x,y

iP xyI(x, y) (3)

σi =

√∑
x,y iP xy(I(x, y) − µi)2

Z
(4)

where Z is the normalization factor, which is equal to∑
x,y iP xy .
The E-step and M-step are iterated until convergence.

Usually, the initial values of the above EM algorithm is
calculated by performing K-means. The EM algorithm
works well on estimating 3D GMM from only the proba-
bility or the statistical point of view. However, for an image
with 3 color channels, it does not take spatial correlation
into account. Note that it is also not practical to upgrade
this method to 5D (including 2 image spatial dimensions),
which may easily lead to local minima. Also, the number
of Gaussians converged is not guaranteed to be optimal.

3.2 Modified EM for estimating probabilistic seg-
mentation

In our modified EM, we encode an additional spatial
smoothness step within the loop, in order to simultaneously
constrain spatial connectivity among pixels and refine the

number of Gaussians iteratively until no two Gaussian com-
ponents are largely overlapping. Our output is optimized in
the number of Gaussian N .

Given an input image I , we iterate the following EM
process.

1. Expectation Estimate probability distribution Pt
xy in it-

eration t according to the result from iteration t − 1.
Instead of using Eqn. 2, we introduce a new represen-
tation, subjected to

∑N
i=1 iP

t
xy = 1:

iP
t
xy = iP

′t−1
xy +

exp(− (I(x,y)−µt−1
i

)2

2(σt−1
i

)2
)

∑N
j=1 exp(− (I(x,y)−µt−1

j
)2

2(σt−1
j

)2
)

(5)

where iP
′t−1
xy is the result from spatial smoothness

propagation in step 2 of the last iteration. We initialize
iP

′0
xy using Eqn. 2. The explanation of Eqn. 5 will be

given in section 3.2.1.

2. Spatial smoothing In this step we perform spatial
smoothness propagation and update the expectation
values as iP

′t
xy . Details of this step will be described

in section 3.2.2.

3. Maximization Re-estimate µt
i and σt

i using Eqn. 3 and
4 with new probability distribution iP

′t
xy for each

Gaussian component i.

4. Refine Gaussians Given the new estimation of
Gaussian parameters from the previous step, for every
pair of Gaussian components in the same image, e.g.,
Gi(i;µt

i, σ
t
i) and Gj(j;µt

j , σ
t
j), if |µt

i − µt
j | < δ for

some small δ, we merge them and re-estimate their
parameters. Subject to the tolerance δ, this step pro-
duces an optimal number of Gaussians in each image.
In practice, we iterate the algorithm for a fixed number
of Gaussians until it converges before applying region
merging. This produces better convergence result.

5. Output If the difference of means and variances be-
tween all corresponding pairs of Gaussian components
between iterations t and t − 1 is small enough, and
there is no Gaussian merging in current iteration t,
stop. Otherwise, go back to step 1 and begin iteration
t + 1.

Steps 3–5 are straightforward. We give further descrip-
tions on steps 1 and 2 in the following subsections.

3.2.1 Expectation

We explain step 1 of our modified EM algorithm. Suppose
the region i to be inferred is shaped like a disc. If a pixel is
in the center of region i, its probability of belonging to this
region, or equivalently the corresponding Gaussian compo-
nent Gi, should be very high. On the other hand, if the



region is elongated, or the pixel lies on boundary of region
i, we want the pixel to have non-zero probability to fall in
other regions. This will introduce a transparency-like ratio
among regions to ensure boundary smoothness.

According to the above analysis, we explain how Eqn.
5 operates in different situations. Let us denote iP

′′t
xy =

exp(− (I(x,y)−µ
t−1
i

)2

2(σ
t−1
i

)2
)∑N

j=1
exp(−

(I(x,y)−µ
t−1
j

)2

2(σ
t−1
j

)2
)

, then:

• If both iP
′
xy

t−1 and iP
′′t

xy have similar distributions,
it is highly probable that the neighboring pixels have
similar color values, which indicates that this pixel is
not lying on any region boundary. Hence, the addi-
tion operation increases the probability that the pixel
belongs to some dominant Gaussian component.

• If iP
′
xy

t−1 and iP
′′t

xy have disparate probability dis-
tributions, the pixel receives different propagated value
from its neighbors. Hence, it indicates that the pixel is
lying close to the boundary of some regions. The addi-
tion operation averages these distributions, so that this
pixel will have similar probability of fitting into several
Gaussian components concurrently.

3.2.2 Spatial smoothing

Step 2 in the previous section defines the spatial propa-
gation operation. Denote N (x, y) as the neighborhood of
(x, y), and also suppose (x′, y′) ∈ N (x, y). If I(x, y) and
I(x′, y′) have similar colors, they should also be close in
Gaussian distributions considering spatial connectivity after
smoothing, namely, iP xy ≈ iP x′y′ . Otherwise, their prob-
ability distribution should not be affected so as to generate
a spatial partition. According to this analysis, we define the
smoothing operation as:

iP
′t
xy =

1
Zi

∑
(x′,y′)∈N(x,y)

D(I(x, y), I(x′, y′))iP
t
x′y′ (6)

where Zi =
∑

i

∑
(x′,y′)∈N(x,y) D(I(x, y), I(x′, y′))iP

t
x′y′

is the normalization factor. For simultaneous color and
spatial smoothness, we adopt the bilateral filter [12]:

D(I(x, y), I(x′, y′)) = exp(− (x − x′)2 + (y − y′)2

σd
)

exp(−|I(x, y) − I(x′, y′)|2
σg

) (7)

where σd and σg are parameters to control the strength of
smoothing in the spatial and color spaces respectively.

|N | > |N ∗| |N | ≈ |N ∗| |N | < |N ∗|
Figure 1: The top is the input image. The second row shows
one of our automatically segmented regions where we transfer the
color from red to blue. The last two rows show the transferred re-
sult and the zoom-in view. Note that the spatial smoothness is not
uniform along the boundary. Different configurations of neighbor-
hood size N are shown in 3 columns. See online version for color
images.

3.3 Evaluation of probabilistic segmentation
After EM estimation, Is and It will respectively be as-

sociated with a GMM, denoted as {Gsi
|0 ≤ i ≤ Ns} and

{Gtj
|0 ≤ j ≤ Nt}, where Ns and Nt are the total number

of components in Is and It respectively.
Let us evaluate our probabilistic segmentation by 1)

boundary smoothness, and 2) quality of segmentation in
comparison with some representative techniques. Since
each pixel may belong to several segments according to
iP xy , in the following results (Figs. 1 and 2), we display
each pixel color as I(x, y) · iP xy in each segmented region
i. iP xy thus acts as a transparency ratio in display.

1. Boundary smoothness of probabilistic segmentation.
In Fig. 1, we show the result for different configura-
tions of neighborhood size N where |N ∗| is the op-
timal value. The top of figure 1 is the input image.
The second row shows one of the regions we segment
by our modified EM method. Note that the left side of
the image consists of a smooth background, while the
right consists of complex patterns. For the shirt of the
Teddy bear, the left boundary is smoother than the right
boundary. This example depicts different amount of
smoothness, which is automatically computed by our



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: (a) The original image. (b) Image segmented by mean shift segmentation [3]. (c) Image segmented by K-means clustering with
k = 3. (d)–(f): The image segmented by the original EM algorithm, using three Gaussians for estimation. Without spatial consideration,
spatially dissimilar patterns are mixed up. (g)–(i): Image segmented by our modified EM algorithm. Spatial information is taken into
account, making the estimation less vulnerable to local minima. In (d)–(i), the probability distribution Pxy is displayed as the alpha value.
The histograms in the lαβ channels are respectively shown for comparison. Note that our method successfully separates several textures
with smooth boundary connection. See online version for color display.

method. The transferred results and their zoom-in are
shown in the last two rows for comparison. We observe
that if |N | is too large, the region boundaries are over-
smoothed, leading to low probability that the original
red color are completely substituted by the blue color
on the boundary of the shirt. On the contrary, if N is
too small, unnatural results are generated due to the bi-
nary boundary. For a wide range of N , we can achieve
the result for |N | ≈ |N ∗|. The typical size of N is
7 × 7.

2. Quality of probabilistic segmentation. In Fig. 2, we
compare our result with those from other methods.
Note that mean shift and K-means segmentation can-
not preserve complex region shapes, e.g., white river,
which violates the single Gaussian assumption and
mixes different patterns up. As a result, simple bound-
ary smoothing or feathering cannot generate compara-
ble result to ours. Similarly, the original EM algorithm,
cannot separate spatially different patterns easily, e.g.,
water and leaves. In our method, spatial relations
are effectively encoded in our EM algorithm, result-
ing in clear segmentation of several patterns with well-

preserved complex boundary. Even the interweaved
green and yellow leaves are roughly segmented.

3.4 Gaussian mapping for color transfer
After performing probabilistic segmentation on the two

input images Is and It respectively, we obtain a set of seg-
mented regions. In this section, we establish the mapping
function f(·) which maps each Gaussian component Gtj

(related to region rtj
) in image It to some Gaussian in im-

age Is. We discuss the function construction in two situa-
tions:

3.4.1 Without spatial correspondence

In most general cases where two input images are not
similar, we estimate f(·) directly from color statistics.
In practice, humans are more sensitive to the luminance
channel, where the monotonic constraint should be main-
tained. Specifically, suppose we have a pair of Gaussian
components Gti

(ti;µti
, σti

) and Gtj
(tj ;µtj

, σtj
) where

µti
≥ µtj

in the luminance channel. Then, the transferred
Gaussian means µ′ should also satisfy µ′

ti
≥ µ′

tj
. In our



method, Gtj
is mapped to Gsi

where 1) their means in lu-
minance channel are closest and 2) monotonic constraint is
enforced simultaneously.

3.4.2 With spatial correspondence

In some applications, such as deblurring [5] and denois-
ing [8], images Is and It are similar in content. We define
our mapping function f(·) as the region correspondence in
Is and It, using the largest amount of overlapping in the re-
spective regions as the mapping criterion. In other words,
f(Gtj

) = Gsi
if corresponding regions rtj

and rsi
are over-

lapping significantly.

3.5 Result compositing
After obtaining the mapping function f(·) which

maps Gaussian component from Gtj
(tj ;µtj

, σtj
) to

Gsi
(si;µsi

, σsi
), we compute the final transferred color in

pixel It(x, y) as:

g(It(x, y)) =
∑

j

tj
P

xy
(
σsi

σtj

(It(x, y) − µtj
) + µsi

) (8)

where tj
P

xy
is the probability that I(x, y) belongs to region

tj of the target image. It guarantees the smoothness after the
transfer, especially in regions rich in colors.

4 Results and comparison
We implement our method and apply it to a variety of

examples on a Pentium-M 1.4GHz laptop computer. Our
new EM algorithm converges within 4 minutes for an image
of size 512 × 512, starting with 20 Gaussians initially.

We show results on local color transfer as well as other
applications, including motion deblurring, denoising using
flash/no flash image pairs, and colorizing gray scale images.
Comparisons with previous methods are also given.

4.1 Local color transfer
Fig. 3 and Fig. 4 show two results of local color transfer.

In Fig. 3, the source and the target images are shown in
Fig. 2(a) and Fig. 3(a) respectively. Fig. 2(g)-(i) show the
segmented regions in the source image while the segmented
regions in the target image are illustrated in Fig. 3(b)-(d).
We use the mapping function defined in section 3.4.1. The
whole process is automatic. Our result is shown in Fig. 3(g).

In Fig. 4, (a) and (b) are two input images. (c) is the re-
sult generated by our automatic method. Comparing with
results generated by global color transfer in Fig. 4(d) and
histogram equalization in Fig. 4(e), our result is natural and
less saturated. Our method not only determines the neces-
sary color regions, but also maintains smooth color transi-
tion in the entire image.

4.2 Motion deblurring from normal/low exposure
pairs

Given two images: 1) one is acquired under normal
exposure without a tripod and thus motion blurring is in-
evitable, 2) the other is taken with short shuttle speed where
the image is under-exposed but has crisp boundary, we
transfer the color from image 1 to image 2 to generate a
bright and crisp image composite. In this situation, because
the source and the target images have strong spatial coher-
ence, we estimate the mapping function using the following
relation (section 3.4.2): for each region in the target image,
we use the largest overlapping area as the criterion to select
matched region in the source image. Fig. 5 shows the result
of deblurring via local color transfer.

4.3 Denoising using flash/no flash pairs
Similarly, we perform image restoration also using two

images: one is taken under flashing and the other is cap-
tured using high ISO configuration, which causes a large
amount of noise. In [8], the flash image was used to guide
denoising in the image with high ISO setting for preserving
appropriate colors. However, if the noisy image is severely
contaminated, smoothing and noise are inevitable in their
result. As an alternative, in our method, we first use a me-
dian filter to alleviate the effect of noise. Then, both the
source and target images are segmented probabilistically by
our EM estimation. Finally, we map colors from the noisy
image to the flashed image to construct our noise-free and
crisp result. Fig. 6 shows the restoration result. Note that
our current method does not consider transferring shadow.

4.4 Colorizing gray scale images
In image colorization, we only have luminance channel

in the gray scale image. To constrain color transfer, we as-
sume that two pixels in the same region should have similar
colors if they have similar luminance value, as described in
[7]. Accordingly, in the source and target images, we also
perform the probabilistic segmentation. The only modifica-
tion of our method for this application is that we perform the
EM method on the only l channel in the gray scale image
and assign the same distribution to the absent ab channels.
Our method is automatic with the mapping function con-
structed as in section 3.4.1. Fig. 7 shows one result. By
probabilistic segmentation and mapping function construc-
tion, we optimally generate 2 Gaussian components, and
appropriately propagate blue and green colors in the target
image. Note the smooth transition in our result between
blue sky and green trees. The whole process is fully auto-
matic.

5 Summary and conclusion
In this paper, we propose to perform local color trans-

fer to automatically and faithfully maintain color and spa-
tial coherence. We propose probabilistic segmentation, and



(a) (b) (c) (d)

(e) (f) (g)

Figure 3: (a) The target image, with the source image shown in Fig. 2(a). (b)-(d) Probabilistic segmentation results. (e) Color transfer
result by histogram equalization. (f) Result by global color transfer. Note that (e) and (f) mix up the color of leaves and the river, causing
undesirable and inconsistent transferred color to the water. (g) Result from our local color transfer, where the color of water is transferred
faithfully from the corresponding color of the rivulet in Fig. 2(a). See color display in online version.

(a) (b) (c) (d) (e)

Figure 4: Local color transfer. (a) An image scan of an old photograph of a downtown scene on an overcast day. (b) The original target
image captured on a sunny day. (c) Transfer result generated by our local color transfer where Gaussians with closest means are mapped.
The scene is automatically modeled by 3 Gaussian components. (d) Transfer result generated by global color transfer. It contains large
areas with unacceptable mixture of colors. (e) Transfer result generated by histogram equalization. Undesirable saturation are observed.
See online version for color display.

(a) (b) (c) (d)

Figure 5: Image deblurring. (a) Source image. (b) Target image. (c) Our result. (d) Result by global transfer. Note that we achieve a
smoother transition in our result. Neither the textures on the red packet nor the furs on the doll are smoothed out because of color saturation.
See online version for color display.



(a)

(b)

(c)

(d)

Figure 6: Image denoising comparison. (a) Source/non-flashed
and target/flashed images from by using global color transfer, (c)
from [8], (d) by using our automatic local color transfer. Our
method makes use of the strong spatial coherence between source
and target images, so it does not mix up the red shade of the sofa
with the bottles and stones, as suffered by global transfer in (b).
The result using joint bidirectional filter in [8] still cannot elimi-
nate all noise. See online version for color display.

model the set of regions as Gaussian Mixtures. A mod-
ified EM algorithm is also introduced, by augmenting a
smoothness propagation step to enforce spatial and color
consistency among regions or Gaussian components. Our
unified approach is general, and can be applied to a range
of applications, including deblurring, image restoration and
colorization of gray scale images. In our future work, we
will investigate spatially coherent texture transfer and video
transfer from examples.

.
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