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Abstract

A tree t-spanner T of a graph G is a spanning tree in which the distance
between every pair of vertices is at most ¢ times their distance in G. This notion
is motivated by applications in communication networks, distributed systems,
and network design.

This paper studies graph theoretic, algorithmic and complexity issues about
tree spanners. It is shown that a tree 1-spanner, if it exists, in a weighted graph
with m edges and n vertices is a minimum spanning tree and can be found in
O(mlog 3(m,n)) time, where 8(m,n) = min{i|log™ n < m/n}. On the other
hand, for any fixed ¢ > 1, the problem of determining the existence of a tree
t-spanner in a weighted graph is proven to be NP-complete. For unweighted
graphs, it is shown that constructing a tree 2-spanner takes linear time, whereas
determining the existence of a tree t-spanner is NP-complete for any fixed ¢ > 4.
A theorem which captures the structure of tree 2-spanners is presented for un-
weighted graphs. For digraphs, an O((m+n)a(m,n)) algorithm is provided for
finding a tree t-spanner with ¢ as small as possible, where a(m, n) is a functional
inverse of Ackerman’s function. The results for tree spanners on undirected
graphs are extended to “quasitree spanners” on digraphs. Furthermore, linear
time algorithms are derived for verifying tree spanners and quasitree spanners.
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1 Introduction

1.1 Motivation

A t-spanner of a graph G is a spanning subgraph H in which the distance between
every pair of vertices is at most ¢ times their distance in G. This notion was intro-
duced in 1987 by Peleg and Ullman [27], who showed that spanners can be used to
construct synchronizers for transforming synchronous algorithms into asynchronous
ones. A similar notion appeared in 1986 when Chew [16] studied approximations of
complete Euclidean graphs by their planar subgraphs.

The key idea behind the notion of spanners is the approximation of pairwise
vertex-to-vertex distances in the original graph by spanning subgraphs. The quality
of the distance approximation by a t-spanner is measured by the parameter ¢ > 1,
which is referred to as the stretch factor of the t-spanner. This distance approxima-
tion property makes spanners quite useful in areas such as communication networks,
distributed systems, motion planning, network design, and parallel machine archi-
tectures [5, 3, 6, 16, 27, 28, 29, 25]. For example, a sparse spanner (a spanner with
few edges) of small stretch factor can be used to plan efficient routing schemes in a
communication network while maintaining succinct routing tables [28]. Such a span-
ner can also be used as a substitute for its original network to reduce the construction
cost of the network while keeping similar communication costs [29, 24, 25, 23]. In
motion planning, when the input of a simple polygon is inaccurate, a special span-
ner of the visibility graph of the input polygon, called the visibility skeleton, can be
used to plan collision-free paths inside the real polygon [14].

In most applications, the sparseness of a spanner is the main concern; and the
sparsest t-spanner in a connected graph is a tree t-spanner, that is, a t-spanner
which is a tree. Therefore, as far as sparseness is concerned, tree t-spanners are the
best possible t-spanners. Furthermore, tree spanners have other interesting appli-
cations besides those mentioned for general graph spanners. Tree spanners of small
stretch factors can be used to perform multi-source broadcast in a network [5], which
can greatly simplify the message routing at the cost of only small delay in message
delivery. The existence of a tree 2-spanner in a 2-connected network guarantees
that the communication amongst operative sites will not be affected by any isolated
failure of communication sites and lines [10]. There are also some surprising connec-
tions between tree 2-spanners and cycles in graphs: certain cycle-extremal weighted
graphs can be represented as a weighted union of tree 2-spanners [8] (where they
were called tritrees), and graphs that contain tree 2-spanners [7] (where they were
called trigraphs) appear to be the only graphs that require a large number of cycles
to cover the edges of the graph exactly twice.

In this paper we consider graph theoretic, algorithmic, and complexity issues
about tree spanners. We study tree spanners in weighted graphs, unweighted graphs,
and directed graphs; as well as “quasitree” spanners in directed graphs. By exploring
graph theoretic characterizations, we obtain several efficient algorithms for finding
tree and quasitree t-spanners for some values of t. On the other hand, we show
the intractability of determining the existence of tree and quasitree t-spanners for
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almost all other values of . Furthermore, we present linear time algorithms for
verifying tree and quasitree t-spanners for all values of .

1.2 Notation and definitions

We use the terminology of Bondy and Murty [9]. Graphs in this paper can be either
weighted or unweighted, directed or undirected; they are connected graphs without
loops, multiedges and multiarcs. For any graph G, V(G) denotes the vertex set of
G, if G is undirected then E(G) denotes the edge set of G, and if G is directed then
A(G) denotes the arc set of G. For a subset V' of vertices of G, G[V'] denotes the
induced subgraph of G on V’; for a subset E’ of edges of G, G[E’] denotes the edge
induced subgraph of G on E’. The induced subgraph G[V(G) \ V'] is denoted by
G — V', and the edge induced subgraph G[E(G) \ E’] is denoted by G — E’. For
any subgraph H of G, G — H denotes the subgraph obtained from G by deleting
edges (or arcs) of H from G. Throughout this paper, unless specified otherwise, m
denotes the number of edges (or arcs) of G and n denotes the number of vertices of
G. For any real number z, |z] denotes the largest integer < z and [z] denotes the
least integer > .

We shall assume that the weight w(e) of an edge (or arc) e is a positive real
number, and regard an unweighted graph as a weighted graph where each edge (or
arc) has unit weight. Given a subgraph H of G, w(H) denotes the weight of H,
i.e., the sum of the weights of all edges in H; when H is a (directed) path, w(H)
is the length of H. For any two vertices x and y of G, a path from x to y is an
(z,y)-path, and an (x,y)-path of minimum length is a shortest (z,y)-path. We
use dg(z,y) to denote the weighted distance in G from x to y, i.e., the length of
a shortest (x,y)-path in G. Note dg(x,y) = oo if there is no (z,y)-path in G and
da(z,y) = dg(y,x) if G is undirected.

For any real number ¢ > 1, a spanning subgraph H of G is a t-spanner if
dg(z,y) < t-dg(z,y) for every pair of vertices = and y of G. The parameter ¢ is
called the stretch factor of H. The stretch index of a spanner H is the minimum
number ¢ for which H is a t-spanner. A t-spanner H is a minimal ¢-spanner if
no subgraph of H is a t-spanner of G, a minimum t¢-spanner if it has the least
number of edges amongst all ¢-spanners of (G, and an optimal ¢-spanner if H has
the least weight amongst all t-spanners of G.

For an undirected graph G, a spanning subgraph T of G is a tree t-spanner
if T' is both a t-spanner and a tree; and then G is tree t-spanner admissible. A
spanning subgraph T of G is a tree spanner if it is a tree t-spanner for some ¢ > 1;
and a minimum tree spanner if it has the smallest stretch factor amongst all tree
spanners of G. Thus a spanning tree of GG is always a tree spanner.

For a directed graph (or digraph in short) G = (V, A; w), we use G = (V, E;w) to
denote its underlying undirected graph, i.e., xy € E iff either (x,y) € Aor (y,z) € A
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or both, and
w((z,y)) if (z,y) €A, (y,2) ¢ A
w(zy) = ¢ w((y,z)) if (y,z) € A, (z,y) ¢ A
min{w((z,y)),w((y.x))} if (z,y),(y,z) € A.

A vertex z reaches vertex y (y is reachable from z) in G if there is a directed (z, y)-
path in G. (Then dg(x,y) = oo if y is not reachable from x in G.) A spanning
tree of G is a spanning subgraph T which contains no directed cycle and 7T is a
tree. Then, as with undirected graphs, a tree t-spanner of a digraph is a spanning
tree that is a t-spanner. A quasitree of G is a spanning subgraph 7 such that T
is a tree; and T is a quasitree t-spanner if it is a t-spanner of G. Note that a
quasitree may contain a cycle consisting of two arcs (z,y) and (y,z). Other terms
on tree spanners for undirected graphs are naturally extended to tree spanners and
to quasitree spanners of digraphs. However, a spanning tree (quasitree) of a digraph
is not necessarily a tree (quasitree) spanner.

A few more definitions are in order for undirected graphs. (For simplicity, we
will use these definitions for digraphs as well; it is understood that whenever we
do so, we either refer to the underlying graphs or mean that the underlying graphs
have the property.) For a connected graph, a k-cut is a set of k vertices whose
deletion disconnects the graph. A graph G is nonseparable if it has no 1-cut,
and triconnected if it has no k-cut for £ < 2. A block of a graph is a maximal
nonseparable subgraph, and a triconnected component of a graph is a maximal
triconnected subgraph. A vertex is universal if it is adjacent to all other vertices of
the graph. An edge e is a binding edge if its two ends form a minimal cut set. Two
disjoint subgraphs S and S’ of G are fully-joined if every vertex in S is adjacent
to every vertex in S’. A star is any complete bipartite graph K, with n > 1.

Finally, by the tree t-spanner problem we usually mean the problem of finding
a tree t-spanner in a graph, but it may refer to the problem of determining whether a
graph contains a tree t-spanner when we talk about NP-completeness. Its meaning
should be clear from the context. The meanings of other spanner problems are
similarly defined.

1.3 Observations

We gather together here some fundamental results on spanners in a graph. For
simplicity, we will only state our results in terms of undirected graphs. These results
also hold for digraphs, and will be used in our discussions throughout the paper.
First of all, because edge weights are assumed to be positive, each of the following
statements gives an equivalent definition of a ¢t-spanner in a weighted graph.

Theorem 1.1 Let H be a spanning subgraph of a weighted graph G = (V, E;w).
Then the following statements are equivalent:

(1) H is a t-spanner of G (i.e., duy(z,y) <t-dg(x,y) for every pair z,y € V).
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(2) For every edge xy € E, dy(z,y) <t-dg(z,y).

(8) For every edge xy € E\ E(H), dy(x,y) <t-dg(z,y).
(4) For every edge xy € E, dy(z,y) <t-w(zy).

(5) For every edge xy € E\ E(H), dg(z,y) <t-w(xy).

Proof. The implications (1) = (2),(2) = (3) and (4) = (5) are trivial. To see
(3) = (4), we only need to note that for any edge xy € E, we have dg(z,y) < w(zy),
and that dy(z,y) < w(xy) <t-w(xy) if zy € E(H) since t > 1 and w(zy) > 0.

We now show (5) = (1). It suffices to show that dy(x,y) <t-dg(z,y) for two
arbitrary vertices x,y of G. Let P be a shortest (x,y)-path in G. Then for each
edge uwv on P, if wv € E(H), then dy(u,v) < w(uv) < t-w(uv) since t > 1 and
w(uv) > 0; otherwise dy(u,v) <t-w(uv) by statement (5). Therefore

dp(z,y) < Z dg(u,v) <t Z w(e).

uveP eeP

Since dg(z,y) = Z w(e) by the choice of P, we obtain
ecP

This completes the proof. Il

Quite often we will use statement (5) in the above theorem as the definition of
a t-spanner, since it is easy to handle in most cases. Based on the above theorem,
we can easily observe the following facts:

Observation 1.2 Let F be a t-spanner of G and H be a k-spanner of F'. Then H
is a kt-spanner of G.

Observation 1.3 For any k > 1, H = (V,E";w) is a t-spanner of G = (V, E;w) iff
H' = (V,E;w') is a t-spanner of G' = (V, E;w'’), where w'(e) = k - w(e) for every
ec k.

It is easy to see that we can consider each block separately in dealing with most
spanners, such as minimal ¢-spanners, minimum #-spanners and optimal ¢-spanners.
In particular, we can restrict our attention to nonseparable graphs when we deal
with tree spanners.

Observation 1.4 Let T be a spanning tree of a graph G. Then T is a tree t-spanner
of G iff for every block H of G, T N H is a tree t-spanner of H.

Finally, for an unweighted graph G, the distance between any two vertices in G
is always an integer. Therefore in light of statement (4) of Theorem 1.1, we only
need to consider t-spanners for integral ¢.

Observation 1.5 Let H be a spanning subgraph of an unweighted graph G. Then
H is a t-spanner iff H is a |t]-spanner.
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1.4 Outline of the paper

We start by discussing the verification of tree spanners and quasitree spanners in
§2. We present O(m) time algorithms for verifying tree ¢-spanners in graphs and in
digraphs as well as quasitree t-spanners in digraphs.

In §3, we consider tree spanners in weighted graphs. We show that a tree 1-
spanner, if it exists, is a minimum spanning tree and can be found in O(mlog B(m,n))
time, where B(m,n) = min{i|log®”’ n < m/n}. On the other hand, we prove that
for any fixed ¢ > 1 the problem of finding a tree ¢-spanner in a weighted graph is
intractable.

In §4, we investigate tree spanners in unweighted graphs. We show that a tree
2-spanner can be constructed in linear time, and that the tree ¢-spanner problem is
NP-complete for any fixed integer ¢ > 4. We also present a skeleton tree theorem
which captures the structure of tree 2-spanners.

We deal with tree spanners of digraphs in §5. We present an O((m + n)a(m +
n,n)) algorithm for finding a minimum tree spanner in a digraph, where a(m,n) is
a functional inverse of Ackerman’s function. For general digraphs, we extend the
results of §3 and §4 to quasitree spanners.

We conclude the paper with a short summary and some open problems in §6.

2 Verifying a tree t-spanner

Given a graph G, a spanning tree 1" and a positive number ¢, we wish to verify
whether T is a tree t-spanner of G. We may also wish to know if 7" is a tree spanner,
and, if it is, determine its stretch index, i.e., the smallest ¢ for which 7' is a t-spanner.
Similar problems can also be asked for quasitree spanners. These problems will come
forth naturally in later sections, and, for convenience, we will refer to these problems
as tree spanner verification problems.

In this section we will provide linear time algorithms for the above verification
problems. The main results of this section are summarized in the following theorem,
which will be used in later sections.

Theorem 2.1 Let D and G be directed and undirected weighted graphs respectively.
Let S and T be spanning trees of D and G respectively. Let Q) be a quasitree of D.
Then the following problems can be solved in O(m) time.

(a). Determine the stretch index of T
(b). Is S a tree spanner? If it is, determine its stretch index.

(c). Is Q a quasitree spanner? If it is, determine its stretch index.

2.1 A verification algorithm paradigm

First we describe an algorithm paradigm for tree spanner verification problems.
Clearly, statement (5) of Theorem 1.1 provides us with a simple method for solving
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these problems. By taking this approach, we need to compute the distances in T
of all m —n + 1 vertex pairs defined by nontree edges. Thus the cost of distance
computation dominates the running time of verification algorithms based on this
approach. If we compute the distance of each vertex pair directly and independently,
it may take O(mn) time to compute these distances, since each distance may take
O(n) time to compute. We can reduce the cost to O(n?) by computing all pairwise
distances in T together. Unfortunately, this is not satisfactory for sparse graphs. To
speed up the verification, we need a better way to compute the distances of these
m —n + 1 vertex pairs.

For simplicity, we will describe an algorithm for verifying a tree t-spanner in an
undirected graph. The algorithm is easily extended to other verification problems.
A couple of definitions are in order. A rooted tree T is a tree with a distinguished
vertex r, called the root. For any two vertices = and y in T, if = is on the path
from 7 to y, then z is an ancestor of y. The least common ancestor of x and
y, denoted by LCA(z,y), is the common ancestor z of x and y such that for any
common ancestor z’ of x and y, 2z’ is an ancestor of z. We will take advantage of
the structure of a tree to compute distances more efficiently. To achieve this, we
arbitrarily choose a vertex r to be the root of T', and then label vertices of T in such a
way that distance dr(x,y) of any vertex pair (z,y) can be quickly computed from the
labels of x, y and LC' A(x,y). Note dp(z,y) = dp(z, LCA(x,y))+dp(LCA(x,y),y).

Algorithm VERIFICATION(G,T,t) { Verify if T is a tree t-spanner of G }
Input: A graph G, a spanning tree T' and a positive number t;
Output: “Yes” if T is a tree t-spanner; and “No” otherwise.

begin
1. Arbitrarily choose a vertex r as the root of T
2. Compute a label label(z) for each vertex x of T
3. Compute LC'A(x,y) for every nontree edge zy of G;
4 for each nontree edge zy do
begin
4.1. Compute dp(x,y) by using the labels of z, y and LCA(z,y);
4.2. if dp(z,y) > t-w(xy) then output “No” EXIT;
end;
5. output “Yes”;
end.

By statement (5) of Theorem 1.1, we note that the stretch index of T" equals

max {1, dp(z,y)/w(zy)|lry € E(G)\ E(T)}.

So the above algorithm can be modified (line (4.2)) to compute the stretch index of T'
as well. To apply this algorithm to a digraph D, we take the underlying tree T of D’s
spanning tree (quasitree) T' to define a rooted tree and carry out the computation
of the algorithm with respect to this rooted tree. In this case, noticing x reaches y
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in T iff dp(z,y) is finite, we can use the algorithm to check the reachability from x
to y in T as well.

Regarding the complexity of the algorithm, we see that line (1) is trivial. To
carry out the computation of line (3), we use a linear time least common ancestor
algorithm of Harel and Tarjan [21]. Clearly, line (4.2) takes O(1) time. In the next
two subsections, we will discuss efficient implementations of line (2) and line (4.1)
for undirected graphs and digraphs so as to obtain the results in Theorem 2.1.

2.2 Undirected case

Let G be an undirected weighted graph, and let T be a spanning tree of G. Arbi-
trarily choose a vertex r in T as the root of T'. For each vertex x in T', label x by the
root-to-vertex distance of z, i.e., label(x) = dp(r,z). See Figure 1 for an example.

yo6

Figure 1: Labelling the vertices of T' by their root-to-vertex distances

We show that for any two vertices x and y, their distance dp(x,y) in T can be
computed in constant time from label(x), label(y) and label(LC A(z,y)). Notice

label(x) = dp(r,x) = dp(r, LCA(x,y)) + dp(LC A(x,y), x)
and
label(y) = dr(r,y) = dp(r, LCA(x,y)) + dr(LC A(x,y),y).

We obtain
dr(x,y) = label(z) + label(y) — 2 - label(LC'A(x,y)).

Therefore dr(z,y) can be determined in O(1) time.

It is easy to see that by either a depth-first or a breadth-first search from the
root r, we can obtain the labels for all vertices of 7. Thus line (2) of algorithm
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VERIFICATION can be carried out in O(n) time. Furthermore, line (4.1) can be
done in O(1) time; so step (4) takes O(m — n) time. Therefore the overall time
of the algorithm is linear. Thus verifying a tree t-spanner takes linear time. Once
dr(z,y) is obtained for every nontree edge zy, we can easily determine the stretch
index of T in linear time, thereby establishing Theorem 2.1-(a).

2.3 Directed case

Let D be a weighted digraph, and let S be a spanning tree of D. Then by statement
(5) of Theorem 1.1, it is easy to see that S is a tree spanner of D iff x reaches y in
S for any nontree arc (z,y) of D. So in order to verify that S is a tree spanner of
D, we need to verify that S preserves reachability for each nontree arc of D. We
apply VERIFICATION to D and S together with the underlying tree S of S.
Arbitrarily choose a vertex r in S as the root of S. An edge zy of S, where
x is an ancestor of y, is a forward edge if (z,y) is an arc of S and a backward

edge if (y, ) is an arc of S. For an arbitrary vertex z in S, let P(z) be the unique
(r,x)-path in S. Label z by a triple (b(x), f(x),l(x)), where

b(x): the number of backward edges on P(x);
f(x): the number of forward edges on P(x);

[(x): the total weight of forward edges on P(x) minus the total weight of
backward edges on P(z).

The first two components in the triple are used for verifying reachability, and the
third one is used for computing distances. It is easy to see that all vertex labels
can be computed in O(n) time by either a depth-first or a breadth-first search of S
from the root r. See Figure 2 for an example, where backward and forward edges
are indicated by upward and downward arrows respectively.

For any two vertices x and y of 9, it is easy to see that x reaches y in S iff
f(x) = f(LCA(z,y)) and b(y) = b(LCA(z,y)).

Since these two conditions can be easily checked in O(1) time, the overall cost of
verifying a tree spanner is linear. Furthermore, it is not hard to see that if x reaches
y in S, then

ds(z,y) = U(y) — l(z).

So dg(z,y) can be computed in O(1) time. Therefore it takes linear time to compute
the stretch index of a tree spanner of D. This also implies that verifying a tree t¢-
spanner of D takes linear time. Hence we have Theorem 2.1-(b).

Now we turn our attention to quasitree spanners. Let () be a quasitree of D. Like
the situation for tree spanners in digraphs, in order to verify that @ is a quasitree
spanner of D, we need to verify that () preserves reachability for each arc of D which
is not in Q. We apply VERIFICATION to D and @) together with the underlying

tree Q of Q.
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(1,1,-1)

yO (0,3,6)

Figure 2: Labelling the vertices of S by triples

Arbitrarily choose a vertex r in Q as the root of Q. An edge zy of Q is a double
edge if both (x,y) and (y, z) are arcs in (). Note that a double edge is also a forward
edge and a backward edge. For an arbitrary vertex x in Q, let P(x) be the unique
(r,z)-path in Q. Label z by a quintuple (b(z), f(x), d(z),lb(z),1f(z)), where

b(x): the number of backward edges on P(x);

f(x): the number of forward edges on P(x);

d(x): the number of double edges on P(x);

Ib(z): the total weight of arcs of @ corresponding to backward edges on P(z);

lf(z): the total weight of arcs of @ corresponding to forward edges on P(z).

The first three components in the quintuple are used for verifying reachability, and
the last two are used for computing distances. Again all vertex labels can be com-
puted in O(n) time by either a depth-first or a breadth-first search of Q from the
root r. See Figure 3 for an example, where each double edge is shown with both an
upward arrow and a downward arrow; the numbers beside the arrows indicate the
weights of the corresponding arcs of Q.

For any two vertices z and v, it is easy to see that x reaches y iff
f(@) = f(LCA(z,y)) = d(z) — d(LCA(z,y))

and
b(y) — b(LCA(z,y)) = d(y) — d(LCA(z,y)).
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(0,0,0,0,0)

LCA(xy) (1,0,0,2,0)
2

(1,2,1,3,3)
1

(21,1,6,1)

(21,141

3

YO (2,3,2,4,6)

Figure 3: Labelling the vertices of Q by quintuples

We can check these two conditions in O(1) time, and thus verify a quasitree spanner
in linear time. Furthermore, if x reaches y, then we have

dq(z,y) = Ib(x) — I(LCA(z,y)) + 1f(y) — Lf (LCA(z,y)).

So dg(z,y) can be computed in O(1) time. Therefore it takes linear time to compute
the stretch index of a quasitree spanner of D, which implies that verifying a quasitree
t-spanner takes linear time. This establishes Theorem 2.1-(c), and thus completes
the proof of Theorem 2.1.

3 Tree spanners in weighted graphs

In this section, we consider the complexity of tree spanner problems on weighted
graphs. By statement (5) of Theorem 1.1, a spanning subgraph H of a weighted
graph G = (V,E;w) is a t-spanner iff for every edge zy € E \ E(H), we have
dg(z,y) < t-w(zry). We will present an O(mlog3(m,n)) algorithm for finding
a tree l-spanner in a weighted graph; on the other hand we show that for any
fixed t > 1, the tree t-spanner problem is NP-complete on weighted graphs. This
completely settles the complexity of tree spanner problems for weighted graphs.
Henceforth in this section, by a graph we mean a weighted graph.

3.1 Finding a tree 1-spanner

Let G = (V, E;w) be a weighted graph, and let H be a l-spanner of G. Since H is
a subgraph of G, it is clear that dy(x,y) > dg(x,y) for any two vertices z,y € V.
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Therefore, di(x,y) = dg(z,y) for any z,y € V, i.e., H preserves pairwise distances
in G.

The distance preserving property of a 1-spanner is useful in many applications.

For example, a 1-spanner of a communication network can be used as a substitute
for the original network without introducing extra delay in communication. It is also
closely related to the metric realization problem [2, 31, 20] (to construct a graph
with a minimum total weight that realizes an n-by-n symmetric distance matrix
M = (m;;)). To see this, we construct a complete graph G(M) on n vertices
such that w(ij) = m;; for each edge ij of G(M); then the optimal 1-spanner of
G(M) gives an optimal realization of G if we only allow n vertices. Regarding tree
1-spanners, we see that a tree l-spanner is a distance preserving spanning tree.
Therefore using a tree 1-spanner of a network to perform broadcast in the network
guarantees the minimum delay. Furthermore, a tree 1-spanner can also be used as
a compact encoding of the distance information of G.
Remark Because of the connection between 1l-spanners and metric realizations,
some results in this subsection regarding minimal 1-spanners have appeared in the
literature on metric realizations. In particular, Corollary 3.3 has been previously
obtained by Hakimi and Yau [20].

We shall first explore the properties of 1-spanners of G. These properties lead
us to polynomial algorithms for constructing a minimum or an optimal 1-spanner
in G; and these algorithms can be used to find a tree l-spanner in G. We then
establish a relation between a tree 1-spanner and a minimum spanning tree, and use
this relationship to derive a more efficient algorithm for finding a tree 1-spanner.

Lemma 3.1 Let H be a 1-spanner of a weighted graph G. Then H is minimal iff
di—zy(z,y) > w(xy) for every edge xy of H.

Proof. If there is an edge xy of H such that dg_y(x,y) < w(xy), then H — zy is
a l-spanner of H by statement (5) of Theorem 1.1, and thus H — xy is a 1-spanner
of G by Observation 1.2. Hence H is not minimal. Conversely if H is not minimal,
then there is an edge uv of H such that H — uv is a 1-spanner of G. This implies
dp—ww(u,v) < w(uv). 1

We are now ready to present necessary and sufficient conditions for an edge of
G to be in a minimal 1-spanner. Bear in mind that edge weights of G are positive.

Theorem 3.2 Let H be a minimal 1-spanner of a weighted graph G, and let xy be
an edge of G. Then the following statements are equivalent:

(1) edge xy belongs to H;
(2) for every vertex z € V \ {z,y}, da(x, z) + da(z,y) > w(zy);

(3) distance dg—zy(x,y) > w(zy).

Proof. (1) = (2). Let z be an arbitrary vertex in V\{x,y}. If dg(x, 2)+dg(z,y) <
w(zy), then dy (z, 2) < w(zry) since edge weights are positive, and thus any shortest
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(x,z)-path P in H avoids edge xzy. Let H' = H — zy. Then dy/(x,z) = dg(z, 2),
since P is in H'. Similarly, dy/(z,y) = du(z,y).
By the definition of distance, we have

dH/({L’,y) S dH/(Jj‘,Z) -+ dH/(Z,y).

Therefore
dp/(v,y) < du(z,2) +du(2,y) < w(zy).

Then by Lemma 3.1, H is not a minimal 1-spanner, a contradiction. Hence
dH(«T, Z) + dH(Z7 y) > w(a:y)

Now since H is a l-spanner of G, we have dy(x,z) = dg(x,z) and dy(z,y) =
da(z,y). Therefore dg(x, z) + da(z,y) > w(zy).
(2) = (3). Let G’ = G — zy. By the definition of distance, we have

der(wr.g) = _min {der(.2) + dr(2.9))

It follows from statement (2) that dg/(z,y) > w(zy).

(3) = (1). Because edge weights are positive, statement (3) implies that zy is
the only (z,y)-path in G with length < w(xy). Since H is a 1l-spanner of G, we
have dy(x,y) < w(xy). Therefore xy must appear in H. Il

Corollary 3.3 (Hakimi and Yau [20]) Every weighted graph G has a unique
minimal 1-spanner.

Proof. By Theorem 3.2, each edge of a minimal 1-spanner of G is uniquely deter-
mined. li

Since both a minimum 1-spanner and an optimal 1-spanner of G are minimal
1-spanners, Corollary 3.3 implies the following result:

Corollary 3.4 For any weighted graph G, the following statements are equivalent:
(1) H is a minimal 1-spanner of G;
(2) H is a minimum 1-spanner of G;

(3) H is an optimal 1-spanner of G.

If G contains a tree l-spanner 7', then T is also a minimal 1-spanner. Thus
Corollary 3.3 also implies the uniqueness of a tree 1-spanner.

Corollary 3.5 A weighted graph can contain at most one tree 1-spanner.
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In light of Theorem 3.2 and Corollary 3.4, we can see that the minimum (or
optimal) 1-spanner of a weighted graph can be constructed in polynomial time, since
for each edge of G, we can use either statement (2) or statement (3) of Theorem 3.2
to decide if the edge belongs to the minimal 1-spanner H of G. For a single edge, it is
more efficient to use statement (3) to determine whether the edge is in H if pairwise
distances are not given. However, it seems that the algorithm using statement (2) is
more efficient for constructing H, especially when pairwise distances are given; using
the fastest known algorithm to compute pairwise distances [17], we can implement
the algorithm in O(mn + n?logn) time.

Theorem 3.6 The minimum (or optimal) I1-spanner of a weighted graph can be
found in O(mn +n?logn) time.

Clearly we can find the tree 1-spanner (if it exists) of G in O(mn + n?logn)
time by first computing the minimal 1-spanner of G and then checking if it is a
tree. However, this approach is not efficient. To obtain a more efficient algorithm
for computing the tree 1-spanner, we will establish a relationship between the tree
1-spanner of G and a minimum spanning tree of G.

Theorem 3.7 The tree 1-spanner of a weighted graph G is a minimum spanning
tree. Moreover, every tree 1-spanner admissible weighted graph contains a unique
minimum spanning tree.

Proof. Let T be a minimum spanning tree of G. First we claim that 7T is contained
in any l-spanner H of GG. To see this, let zy be an arbitrary edge of T, and let
P be a shortest (x,y)-path in G — zy. Then there is an edge e on P which is not
in T. If w(P) < w(xy), then w(e) < w(zy) since edge weights are positive and P
contains at least two edges. This implies that T + e — xy is a spanning tree whose
weight is less than w(T'), contrary to 7" being a minimum spanning tree. Therefore
dG—zy(x,y) = w(P) > w(xy), and, by Theorem 3.2, zy is an edge of H.

Now let 7" be the tree 1-spanner of G. By the above claim, T is a subgraph of
T’. Since both T and T’ are spanning trees of G, we have T' = T’. The theorem
follows immediately. 1

In light of the above theorem, we have the following algorithm for construct-
ing the tree 1-spanner of G: We first find a minimum spanning tree T of G; and
then verify if T is a l-spanner of G. A minimum spanning tree can be found in
O(mlog 3(m,n)) time [18], where 8(m,n) = min{i|log®™ n < m/n} and log® n is
defined by log® n = n,log® n = loglog® Y n for i > 1. Since verification takes
linear time by Theorem 2.1-(a), we have the following result:

Theorem 3.8 The tree 1-spanner of a weighted graph can be found in O(mlog B(m,n))
time.

Remark The above algorithm can be applied to find tree 1-spanners in a weighted
graph GG where zero weight is allowed. Let G be the subgraph of G induced by zero
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weighted edges of G, and let Z1,...,Z; be the connected components of Gy. We
construct a new weighted graph G’ as follows: contract each Z; to a single vertex z;,
remove all loops, and for all parallel edges (formed from the contraction) between
two vertices, delete all but one with the lightest weight. Then G’ is a weighted graph
with no zero weight on edges, and its tree 1-spanner can be found by the algorithm
in this subsection. It is not hard to see that G' admits a tree 1-spanner iff G’ admits
one. Actually, a tree 1-spanner of G' can be obtained from the tree 1-spanner of G’
by “replacing” each z; by a spanning tree of Z;. However, G may contain many tree
1-spanners when it has zero weighted edges. In fact, the number of tree 1-spanners
in GG equals the product of the number of spanning trees of Z;, 1 < i < k. Figure 4
illustrates the above construction.
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Figure 4: Graphs G, G’ and their tree 1-spanners (solid edges)

3.2 NP-completeness for ¢t > 1

We now consider the complexity of finding tree ¢-spanners (¢ > 1) in a weighted
graph. It turns out that the tree t-spanner problem on weighted graphs is intractable
for any fixed rational number ¢ > 1. As a consequence, the minimum ¢-spanner
problem on weighted graphs is intractable for any fixed rational number ¢ > 1.
Furthermore, we deduce that the optimal ¢-spanner problem on weighted graphs is
also intractable for any fixed rational number ¢t > 1. In this subsection we assume
that all edge weights are positive rational numbers, and that ¢t > 1 is a fixed rational
number.

Recall that an instance (U,C) of 3SAT (cf. [LO2] in [19]) consists of a set U
of n distinct Boolean variables and a collection C' of m 3-element clauses over U.
For any variable u € U, both u and w are literals; and for a truth assignment &, a



Tree Spanners 18

literal [ is true if £(I) = 1 and false otherwise.

Theorem 3.9 For any fized rational number t > 1, it is NP-complete to determine
whether a weighted graph contains a tree t-spanner, even if all edge weights are
positive integers.

Proof. It is clear that the problem is in NP. To establish the NP-completeness of
the problem, we will present a polynomial transformation from 3SAT. Here we will
only consider the case 1 < t < 4; the proof for ¢ > 4 is the same as that for un-
weighted graphs (see Theorem 4.10 of § 4.3) where a more complicated construction
is employed.

Let t € (1,4) be a fixed rational number, and, for convenience, let ¢ = ¢ —1; then
0 < e < 3. For an arbitrary instance (U, C) of 3SAT, we construct a weighted graph
G such that C' is satisfiable iff G admits a tree ¢-spanner. Graph G is constructed
as follows:

1. Take a vertex x and vertices U' = {uy,uy,...,Up, Ty}, where n = |U|, and
construct a star H centered at x by joining x to each vertex in U’. Each
vertex in U’ is a literal verter and each edge in H is a literal edge.

2. Create a new vertex c for each clause in C, and add an edge between ¢ and
each of its three distinct literal vertices in H. These new vertices and edges
are called clause vertices and clause edges respectively.

3. Connect each pair u;,@; of literal vertices by a distinct path (whose length is
specified in Table 1), called a bridge, to complete the construction of G. Each
edge on the bridge is called a bridge edge.

4. For each edge e of G, assign it weight w(e) according to Table 1.

bridge edge weights w(e)
t length || bridge edge | literal edge clause edge
1<t<2 1 1 |1/€] [(1+2[1/€e])/€]
2<t<4 | 2le 1 2 [(442|€])/¢€]

Table 1: Bridge length (number of edges) and edge weights of G (note t = 1 + ¢)

Figure 5 shows an example of G. It is easy to see that G can be constructed in
polynomial time.

Now for any tree t-spanner T' of G (remember 1 < t < 4 and € = ¢t — 1), we note
the following two important properties:

P1. Every bridge is contained in T';

P2. For every pair xu;, xu; of literal edges, exactly one of them belongs to T'.
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{u,uzu,}

Figure 5: The graph G for t = 2.5 and C' = {{u1, u2,us}, {uz, us, us}}

To see property P1, let ab be an arbitrary bridge edge, and let Py, be an (a, b)-
path in T. Suppose that ab is not in 7. If 0 < € < 1, then P, contains either
two literal edges or at least two clause edges; otherwise 1 < € < 3 and P, contains
all other 2|e] — 1 bridge edges on the bridge containing ab and either two literal
edges or at least two clause edges. It is readily checked that we would then have
dr(a,b) > t-w(ab) in both cases, contrary to T being a t-spanner. Hence ab belongs
to T

To see property P2, without loss of generality, we consider edge zu;. If the
(z,u;)-path in T contains neither edge xu; nor z;, then it must contain a literal
edge and at least two clause edges. It is easy to see that dr(z,u;) > t - w(xu;) if
0 < € < 1; otherwise 1 < € < 3 and

44 2¢€]

dT(m,ui) > 2+ 2[

|

It can be shown that
[

(consider € € [1,2) and [2,3) separately). Thus it follows that dp(x,u;) >t - w(zu;)
for 1 <t < 4, contrary to T" being a tree t-spanner. So at least one of xu;, zu; is in
T. Since T is a tree, it can be deduced from property P1 that exactly one of them
isin 7.

4+ 2
4—7LEJ]>61°01"1§6<3
€

We now prove that C is satisfiable iff G' contains a tree t-spanner. Suppose that
C is satisfiable, and let £ be a satisfying truth assignment for C'. Call a literal vertex
of G a true vertex if its corresponding literal is a true literal under £. Construct a
spanning tree T of G by taking all bridge edges, all literal edges incident with true
vertices, and, for each clause, an arbitrary clause edge that is incident with a true
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vertex. Since C' is satisfied by &, it is clear that T is a spanning tree and that each
clause vertex is a leaf.

To see that T is a t-spanner, we note that for any literal edge x! not in T, the
(z,1)-path in T consists of a literal edge and a bridge; and that for any clause edge
cl’ not in T, the (¢,l')-path in T consists of a clause edge, two literal edges and
at most one bridge. It is a routine matter to check that dr(x,l) < t - w(xl) and
dr(e,l') <t-w(cl"). Therefore it follows from statement (5) of Theorem 1.1 that T
is a tree t-spanner of G.

Conversely, suppose that T is a tree t-spanner of G. Then by property P2,
exactly one of the two literal edges xu;, zu; is contained in 7. Therefore we can
define a truth assignment &7 by setting {r(u;) = 1 if zu; € E(T) and &p(u;) = 0 if
xu; € E(T). Tt remains to be shown that &p satisfies C.

It is easy to see, by property P1, that any two literal vertices are connected by a
path in T" that avoids clause vertices. Thus each clause vertex is a leaf of T'. Suppose
that there is a clause vertex ¢ which only contains false literals under £7. Then for
a clause edge cl not in T, the (c,l)-path in T consists of a clause edge, two literal
edges and two bridges. If 0 < e < 1, then it is easy to check that dr(c,l) > ¢ - w(cl)
(notice 1/e > 1); otherwise 1 < € < 3 and again it is a routine matter to check that
dr(c,l) > t-w(cl) (notice 2| €] > €); this contradicts 1" being a t-spanner. Therefore,
each clause in C' contains at least one true literal under £7; and thus C is satisfiable.
The proof is complete. 1

Since a tree t-spanner has the least number of edges amongst all ¢-spanners, the
above theorem implies that finding a minimum ¢-spanner in a weighted graph is
intractable for any fixed rational number ¢ > 1.

Corollary 3.10 For any fixed rational number t > 1, it is NP-complete to deter-
mine, given a weighted graph G and a positive integer K, whether G contains a
t-spanner with at most K edges, even if all edge weights are positive integers.

Furthermore the tree t-spanner T in the proof of Theorem 3.9 also achieves the
minimum total weight (sum of weights of all edges in the spanning subgraph) over
all t-spanners of G. Therefore Theorem 3.9 also implies the following result:

Corollary 3.11 For any fized rational number t > 1, it is NP-complete to de-
termine, given a weighted graph G and a positive rational number W, whether G
contains a t-spanner of total weight at most W, even if all edge weights are positive
integers.

4 'Tree spanners in unweighted graphs

We now consider tree spanners in unweighted graphs, which can be considered as a
special case of tree spanners in weighted graphs, i.e., tree spanners in unit weighted
graphs. Henceforth in this section, by a graph we always mean an unweighted graph.
By statement (5) of Theorem 1.1, a spanning subgraph H is a t-spanner of a graph
G = (V,E) iff for every edge zy € E \ E(H), we have dy(z,y) < t.
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In light of Observation 1.5, we only need to consider tree t-spanners for integral
t. Clearly, a graph contains a tree 1-spanner iff it itself is a tree. We will show that
a tree 2-spanner in a graph can be found in linear time. We also study the structure
of tree 2-spanners and give a characterization of tree 2-spanner admissible graphs.
In particular we present a structural theorem for tree 2-spanners in terms of the
“skeleton tree” of a graph. This structural theorem is useful in dealing with various
tree 2-spanner problems. On the other hand, we will show that the tree t-spanner
problem is NP-complete for any fixed ¢ > 4. The complexity of the tree 3-spanner
problem remains open.

4.1 Finding a tree 2-spanner

Our main concern is to find a tree 2-spanner in a graph. In order to design an
efficient tree 2-spanner finding algorithm, we first investigate the structure of tree 2-
spanners in a graph. Then we describe a linear time algorithm. Furthermore, we give
a characterization of tree 2-spanner admissible graphs in terms of decomposition.
Because of Observation 1.4, we can restrict our attention to nonseparable graphs.

Remark It is interesting to note that tree 2-spanner admissible graphs coincide
with trigraphs introduced by Bondy [7] in his work on cycle double covers, and
that our characterization results are quite similar to his. In particular, our de-
composition theorem (Theorem 4.4) for tree 2-spanner admissible graphs as well as
Lemma 4.1 have been previously obtained by Bondy. They are reformulated here
in our terminology for the sake of completeness.

Lemma 4.1 (Bondy [7]) Let G be a nonseparable graph, and let T' be an arbitrary
tree 2-spanner of G. Then for every 2-cut {u,v} of G, wv € E(T).

Proof. Let {u,v} be a 2-cut of G. Let H; be a connected component of G — {u, v}.
Let G1 = G[V(H;)U{u,v}] and Go = G—V(H;). Then each G;, i = 1,2, contains a
(u,v)-path P; of length at least two. If uv & E(T'), then for each edge in E(P;)\E(T),
there is a path of length two in T'N G; between its two ends. Thus there is a (u, v)-
path @Q; in TN G;. Then ()1 and ()2 would be a cycle in T, a contradiction. Hence
wo € E(T). 1

Theorem 4.2 Let G be a nonseparable graph. Then a spanning tree T of G is a
tree 2-spanner iff for each triconnected component H of G, TN H is a spanning star
of H.

Proof. If TN H is a spanning star of H for each triconnected component H of
G, then T'N H is a tree 2-spanner of H. Since each edge of G belongs to some
triconnected component, it follows that 7" is a 2-spanner of G.

Conversely, suppose that T is a tree 2-spanner of G. We first show that for each
triconnected component H of G, T' = TN H is a tree 2-spanner of H. It is trivial if
H consists of a single edge. So we may assume that |V (H)| > 3. Then H contains at
least one edge uv ¢ E(T), since H contains a cycle. Because T is a tree 2-spanner,
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there exists a vertex w such that ww,vw € E(T). If w is not in H, then uw and v
are the only vertices in H adjacent to w since H is a triconnected component and
|V(H)| > 3. This implies that {u,v} is a 2-cut. By Lemma 4.1, uv would be an
edge in T, a contradiction. Therefore w is in H and thus uw,vw are in T'. This
implies that 7" is a tree 2-spanner of H.

It remains to be shown that T’ is a star. Suppose that T” is not a star, then
there is an edge xy € E(T") which is not incident to any leaf. Let T, and T, be
the two connected components of T/ — xy containing vertices z and y respectively.
Note that both T, and T} contain at least two vertices. For two arbitrary vertices
u € V(T;)\{z} and v € V(T,)\{y}, it is easy to see that dr(u,v) > 3. This implies
uv € E(H). Then {z,y} would be a 2-cut of H, contrary to H being a triconnected
component. Therefore T’ is a spanning star of H. Il

Corollary 4.3 A triconnected graph G admits a tree 2-spanner iff it contains a
universal vertex.

Lemma 4.1 and Theorem 4.2 can be used to obtain a characterization of tree
2-spanner admissible graphs in terms of decomposition. A graph G is an edge
bonding of two graphs G1 and G if G = G1 U Gy and G1 N G4 is an edge.

Theorem 4.4 (Bondy [7]) A graph G is tree 2-spanner admissible iff each block
H of G is either

(1) a triconnected graph with a universal vertex, or

(2) an edge bonding (on edge e) of two tree 2-spanner admissible graphs where e
s a tree edge in both graphs.

Proof. Because of Observation 1.4, we only need to consider a block H of G. If H
contains a universal vertex u, then the set of edges incident with u induces a tree
2-spanner of H. If H is an edge bonding of two tree 2-spanner admissible graphs
Hy and H; on a tree edge e, then the edge bonding of a tree 2-spanner T7 of H;
and a tree 2-spanner To of Hy on edge e yields a tree 2-spanner of H.

Conversely, suppose that H is tree 2-spanner admissible. If H has no 2-cut, then
it is triconnected and by Corollary 4.3 it contains a universal vertex. Otherwise H
has a 2-cut {x,y}; then, by Lemma 4.1, xy is an edge of H and belongs to every
tree 2-spanner of H. Let H' be a connected component of H — {x,y}, and let
H, = HIV(H) U{z,y}] and Hy = H — V(H;). Then it can be deduced from
Theorem 4.2 that T'N Hy and T'N Hy are tree 2-spanners of Hy and Ho respectively.
Hence, H is an edge bonding of two tree 2-spanner admissible graphs H; and Hs
on edge zy. This completes the proof. 1

We now use the above results to derive an algorithm for finding a tree 2-spanner
T (if it exists) in a graph G. The algorithm can be outlined as follows (details are
left to the reader). First find all blocks of G. Then for each block, find all 2-cuts
(if there is a 2-cut that does not induce a binding edge, then G contains no tree
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2-spanner by Lemma 4.1) and triconnected components. Put all binding edges in 7.
Now for each triconnected component H, finding a spanning star which contains all
edges of H that have been put into T so far and put it in 7" (if such a spanning star
does not exist, then G contains no tree 2-spanner by Lemma 4.1 and Theorem 4.2).
Finally if 7" is a spanning tree, then it is a tree 2-spanner; otherwise G' contains
no tree 2-spanner. The algorithm can be implemented in linear time by using the
triconnected component finding algorithm of Hopcroft and Tarjan [22] and standard
techniques.

Theorem 4.5 A tree 2-spanner (if it exists) of a graph can be found in O(m + n)
time.

4.2 The skeleton tree

A tree spanner may be required to have some additional properties, such as a degree
constraint, a bound on the diameter, or a limit on the number of leaves. Here we
shall conduct a further investigation of the structure of tree 2-spanners to provide
a useful tool in dealing with the construction of tree 2-spanners with additional
properties. Henceforth, we assume that all graphs in this subsection are tree 2-
spanner admissible.

By Theorem 4.2, every tree 2-spanner of a triconnected graph is a spanning
star. Thus there is nothing more to be said about the structure of tree 2-spanners
in a triconnected graph. In light of Lemma 4.1, we can restrict our attention to
nonseparable graphs with binding edges. We will show that any tree 2-spanner of
such a graph can be obtained from a “skeleton tree” of the graph by properly adding
“compound leaves” to the skeleton tree. This result also gives another clear picture
of the structure of tree 2-spanner admissible graphs. In the rest of this subsection,
we assume that G is a tree 2-spanner admissible graph which is nonseparable and
contains at least one binding edge. We start with the subgraph of G induced by the
set of its binding edges.

Lemma 4.6 The set of binding edges of G induces a tree.

Proof. Let B be the set of binding edges, and T's = G[B]. Clearly T is a forest
since G admits a tree 2-spanner T" and every edge in B belongs to T by Lemma 4.1.
We only need to show that T’z is connected.

Let H be the set of triconnected components of G. Construct a bipartite graph
F with vertex set BUH in which e € B and H € H are adjacent iff edge e is in the
triconnected component H. Since G is connected, it is clear that F' is connected.

Let v and v’ be two arbitrary vertices of Tg, and let e and ¢’ be two binding
edges incident with v and v respectively. Consider the bipartite graph F. Since
F is connected, there is an (e, e’)-path P = ey Hyes ... Hy_1ex in F, where ¢; € B,
H; € H, e = e and e, = ¢/. Thus for any two elements e;,e;.1 € B, H; is a
triconnected component of GG that contains edges e; and e;11. By Theorem 4.2, e;
and e; 1 share a vertex. Now it is easy to deduce that there is a (v,v’)-path in Tp,
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since each e; is an edge in T'g. Therefore Tz is connected and the proof is complete.

Let 7(G) denote the set of tree 2-spanners of G, and let £(G) denote the
set of edges of G which are contained in every tree 2-spanner of G, ie., £(G) =
Nrer() E(T). Note that a nontrivial tree is a tree with at least one edge.

Lemma 4.7 G[E(G)] is a nontrivial tree.

Proof. Obviously, G[£(G)] is a forest. Since G is tree 2-spanner admissible, by
Lemma 4.1, every binding edge of G is contained in G[€(G)]. Furthermore, for any
edge e € £(G), if e is not a binding edge of G then it belongs to a unique triconnected
component H of G. Since H contains at least one binding edge of G, it follows from
Theorem 4.2 that edge e shares a vertex with at least one binding edge of G. By
Lemma 4.6 and the assumption that G contains a binding edge, we see that G[E(G)]
is connected and hence a nontrivial tree. il

Because G[E(G)] induces a nontrivial tree that belongs to every tree 2-spanner
of G, we call it the skeleton tree of G and denote it by S(G). Now let us examine
the structure of G — V(S(G)). Recall that two disjoint subgraphs are fully-joined
iff every vertex in one subgraph is adjacent to every vertex in the other.

Lemma 4.8 FEach connected component C of G — V(S(Q)) is fully-joined with a
unique edge of S(G). Moreover, for any tree 2-spanner T of G, each vertex in C' is
a leaf of T.

Proof. By Lemma 4.1, the skeleton tree S(G) contains the subgraph S induced by
the set of binding edges of G. Therefore each connected component C of G-V (S(G))
is a subgraph of a connected component C’ of G—V(.5). Since C’ belongs to a unique
triconnected component H of GG, so does C. If H contains more than one edge of
S(G), say e and eg, then it follows from Theorem 4.2 that e; and ey must share a
vertex u, and all the edges between u and C' belong to T'. This implies that every
vertex of C'is in S(G), contradicting the choice of C'. Therefore H contains a unique
edge e of S(G). If one end of e is not a universal vertex of H, then by Theorem 4.2,
all the edges between the other end of e and C belong to T'. Again this contradicts
the choice of C. Therefore, C' is fully-joined with a unique edge e of S(G). By
Theorem 4.2, each vertex of C' is a leaf of T 1

Because of the above lemma, we call each connected component of G —V(S(G))
a compound leaf. Then every edge e of the skeleton tree S(G) has a set (possibly
empty) of compound leaves fully-joined with it. Let the two ends of e be z and
y. Then for any compound leaf C fully-joined with e, V(C) U {z,y} induces a
triconnected component H of G. Note that both x and y are adjacent to every
vertex in C. The set of edges between x and C' (y and C) forms a star LY (LY,), and
will be referred to as a leafstalk of C'. These concepts are illustrated in Figure 6,
where thick lines depict the skeleton tree, each box contains a compound leaf, and
each shaded triangle indicates a nontrivial leafstalk (a leafstalk with more than one
edge).
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Figure 6: The skeleton tree, compound leaves and leafstalks

Theorem 4.9 [Skeleton Tree Theorem| Let G be a tree 2-spanner admissible
nonseparable graph which contains binding edges. A spanning tree T is a tree 2-
spanner of G iff it is obtained from the skeleton tree S(G) of G by adding to S(G)
exactly one leafstalk for each compound leaf of G.

Proof. This follows from Theorem 4.2, Lemma 4.7 and Lemma 4.8. 1

We now turn to the construction of the skeleton tree S(G) of G. First, we find
all binding edges and triconnected components of GG. As discussed in Lemma 4.6
and the proof of Lemma 4.7, these binding edges form a tree .S that is a subtree of
S(G). Then we extend S to S(G) by considering triconnected components one by
one. For each triconnected component H, if H contains two distinct edges e; and
eg of S then e; and ey share a vertex u and we put into S(G) all the edges of H
that are incident with u (by Theorem 4.2); if H contains only one edge e = uv of S
and one end of e, say u, is not a universal vertex of H, then we put into S(G) all
the edges of H that are incident with v (by Theorem 4.2). The correctness of the
above algorithm follows from our previous discussions.

By using the linear time triconnected component finding algorithm of Hopcroft
and Tarjan [22] and standard techniques, we can construct the skeleton tree and find
all compound leaves in linear time. Therefore the skeleton tree provides a handy
and useful tool in constructing tree 2-spanners with certain properties. For instance,
with the aid of the skeleton tree, the problem of finding a tree 2-spanner of bounded
degree is easily solved in linear time. It is interesting to note that the corresponding
degree-bounded spanning tree problem is NP-complete ([ND1] in [19]). Skeleton
trees were also used in the design of a polynomial time algorithm for determining
whether a 2-connected graph contains a tree 2-spanner isomorphic to a given tree
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[11, 13]. We note again that the corresponding isomorphic spanning tree problem
is NP-complete ([ND§] in [19]). Further applications of skeleton trees can be found
in the construction of quasitree 2-spanners (§ 5.2), as well as in the construction of
nearly distance-preserving spanning trees [11].

4.3 NP-completeness for ¢t > 4

Although a tree 2-spanner in a graph can be constructed in linear time, the problem
of finding a tree t-spanner seems to be very hard for ¢ > 3; in fact, as we will show
here, the problem is intractable for any fixed ¢ > 4. As a consequence, the minimum
t-spanner problem on unweighted graph is NP-complete for any fixed ¢ > 4. The
complexity of finding a tree 3-spanner in a graph is still unknown.

Remark Stronger NP-completeness results hold for the minimum ¢-spanner problem
on unweighted graphs. In fact, the problem is NP-complete for any fixed t > 2
([12, 26]), even when restricted to graphs of bounded degree [15].

Theorem 4.10 For any fized t > 4, the tree t-spanner problem is NP-complete.

Proof. It is clear that the problem is in NP. To establish the NP-completeness, we
present a polynomial transformation from 3SAT. By Observation 1.5, we only need
to consider integral values of ¢. Let ¢t > 4 be a fixed integer, and let (U,C) be an
arbitrary instance of 3SAT. We will construct a graph G such that C' is satisfiable
iff G has a tree t-spanner. Call a path with ¢ edges a t-path. The following result
is useful in our construction.

Lemma 4.11 Let G be a graph, and e an edge of G. Let G' be a graph formed
from G by adding two distinct t-paths Py, Py (all internal vertices of Py and Py are
new vertices) between the two ends of e, and let T be a tree t-spanner of G'. Then
ee€ E(T).

Proof. We first notice that for any edge ¢’ of either P; or P, there is only one path
in G’ — € of length <t between the two ends of €¢/. Furthermore, this unique path
contains edge e. It follows that if e is not in T, then all edges of P; and P> would
have to be in T. However, P; and P» form a cycle, contradicting T being a tree. O

From now on, by forcing an edge we mean to add two distinct ¢-paths between
the two ends of the edge. Such an edge will be called a forced edge, and the two
t-paths will be called forcing paths. Denote |U| by n and |C| by m. The graph G
is constructed as follows:

For each variable u; € U,1 < i < n, construct a graph H; by
1. taking five vertices x;, u;, u;, y; and z;,
2. adding edges x;y;, x;u;, T;u;, ziu; and z;u;,

3. joining y; with z; by a (¢t — 2)-path (all internal vertices on the path are new
vertices) and forcing every edge on the path, and
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4. joining u; with @; by a (t — 3)-path (all internal vertices on the path are also
new vertices) and forcing every edge on the path as well.

Figure 7 shows the graph H; for t = 4. Next put Hi,..., Hy, together by identifying

Xi

Figure 7: Component H; for t =4

vertices x1,...,T, into a single vertex x to form the variable setting component H.
Vertices u; and u; of H; will be used to represent the literals u; and @; respectively,
and they are called literal vertices.

For each clause ¢; € C, 1 < j < m, create a new vertex c;, called a clause vertex,
and add an edge between c¢; and each of its three distinct literal vertices in H. Note
that each literal vertex is either a vertex u; or a vertex w,;.

It is easy to see that G can be constructed in polynomial time. It remains to be
shown that C is satisfiable iff G has a tree t-spanner. Before we get into the proof,
we should note the following important property of the graph G, which will enable
us to define a proper truth assignment for C' in terms of a tree ¢-spanner of G.

Lemma 4.12 Any tree t-spanner T of G contains exactly one of the two edges xu;
and xu; for each 1 <i<n.

Proof. Clearly, because T' contains the forced path between u; and @;, at most one
of zu; and zu; can be in T’ (otherwise we would have a cycle in T'). We need to show
that T' contains at least one of zu; and zw;. Suppose that neither xu; nor zu; is in
T. Then the shortest path in F = G — E(H;) between = and u; consists of at least
three edges (edge xl for some literal [, edge lc and edge cu; for some clause ¢ that
contains both ! and w;). Thus dp(x,u;) > 3, and similarly dp(x,u;) > 3. Consider
two cases depending on whether xy; is in T or not.
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Case 1. zy; € E(T). If neither z;u; nor z4; is in 7', then no tree (z,u;)-path is
presented inside H;, and thus

dp(z,u;) > dp(z,u;) >3
But then
dT(zi,ui) = dT(ZZ',:E) + dT(ﬂj‘,uZ‘) > (t — 1) + dp(:l?,uz) >t+2

contrary to 1" being a t-spanner. Therefore at least one of z;u; and zw; is in T.
Without loss of generality, we may assume that z;u; € E(T). Note that z;u; ¢ E(T)
as there is a forced (u;,u;)-path in T'. Since a tree path is unique between any two
vertices, we have

dT(:L’i,ﬁi) = dT(a:Z-, ZZ') + dT(Zi,Ui) + dT(ui,m) =2t—-3>1

for ¢t > 4, again a contradiction to 7" being a t-spanner.

Case 2. zy; € E(T). Then no tree path is presented inside H; between x and
u; or x and u;, and thus
dr(z,u;) > dp(x,u;) >3

and
dr(x, ;) > dp(x,7;) > 3

Then
dT(ﬂj‘, ZZ) = min{dT(aj, uz) + dT(’LLZ', Zi), dT(ﬂj‘,UZ‘) + dT(UZ', ZZ)} >4

It follows that
dr(z,y;) = dr(z, z;) + dr(zi, ;) >t +2

contrary to T being a t-spanner.

Since both cases lead to contradictions, we conclude that T' contains exactly one
of two edges zu; and zu; for each 1 < i <n. O

We now prove that C is satisfiable iff G has a tree t-spanner. Suppose that
C is satisfiable, and let £ be a satisfying truth assignment for C'. We construct a
spanning tree T of G as follows:

1. for each forced edge e, put edge e in T

2. for each forcing path, arbitrarily delete one edge, then put the remaining edges
in T,
3. for each variable u;, 1 <1i < mn, if {(u;) = 1 then put edges xu; and z;u; in T,

otherwise ({(u;) = 0) put edges zu; and z;u; in T

4. for each clause c;j,1 < j < m, arbitrarily pick a true literal /; in ¢;, and put
edge c;l; in T
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Note that each clause vertex is a leaf in T'. It is a routine matter to verify that T is
a tree t-spanner.

Conversely, suppose that T' is a tree t-spanner of G. We need to present a truth
assignment &p which satisfies C. By Lemma 4.12, T contains exactly one of two
edges zu; and xu; for each 1 < ¢ < n. Therefore we can define a truth assignment
&r by setting, for 1 < i < n, &p(u;) = 1 whenever zu; € E(T) and &p(u;) = 0
otherwise. It remains to be shown that {7 satisfies C.

Suppose that some clause c; only contains false literals under {7. Notice that
any two literals are joined by a path in 7' that avoids clause vertices. Therefore c;
is a leaf in T". Then for a clause edge c¢;l; not in T', dp(cj,l;) =2t —3 > t+ 1 for
t > 4, since the distance between any two false literals in 7' is 2t — 4, contrary to
T being a t-spanner. Therefore, each clause in C' contains at least one true literal
under &7, and thus C is satisfiable. This completes the proof. i

5 Tree spanners in digraphs

In this section, we consider tree spanners and quasitree spanners in digraphs. At first
glance, it seems that tree spanner problems on digraphs are at least as hard as tree
spanner problems on undirected graphs. Surprisingly, a tree t-spanner of a digraph
can be found in almost linear time. In fact, even a minimum tree spanner (i.e., a
tree t-spanner with ¢ as small as possible) of a digraph can be found in almost linear
time. On the other hand, the situation for quasitree spanners in digraphs is closer
to that for tree spanners in undirected graphs. We will use the results developed in
83 and §4 for undirected graphs to obtain similar results for quasitree spanners.

Throughout this section, G = (V, A; w) is a weighted digraph, and G = (V, E;w)
denotes the underlying undirected graph of G. Recall that for an arc (z,y) € A,
ay) = w((z,)) if (y,2) & A and D(zy) = min{w((z,y)), w((y, )} if (1,7) € A.
Also recall that an in-neighbour of a vertex = in G is a vertex y such that (y,z) € A,
and that an out-neighbour of z is a vertex z such that (z,z) € A. A vertex v is a
source if it has no in-neighbours, and an intermediate vertex if it has both in-
and out-neighbours. A spanning subgraph 7" of G is a spanning tree if T' contains
no directed cycle and T is a tree. For convenience, we say that G is connected
(triconnected) whenever its underlying graph G is connected (triconnected). The
meanings of blocks and connected components of G should be understood in the
same manner.

5.1 Finding a minimum tree spanner

Recall that in a digraph G, a vertex z reaches vertex y (i.e., y is reachable from x)
if there is a directed (z,y)-path in G. By the definition of a tree spanner, it is easy
to see that a spanning tree T of GG is a tree spanner iff it preserves reachability of G,
i.e., x reaches y in G iff x reaches y in T. So unlike undirected graphs, a spanning
tree of G is not necessarily a tree spanner. In fact, we have the following result:
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Lemma 5.1 A digraph G contains at most one tree spanner.

Proof. Let S and T be two arbitrary tree spanners of G. If S £ T, then there is an
arc (z,y) in S that is not in 7. Thus there is a directed (z,y)-path P in T, since T is
a tree spanner. Let z be an internal vertex of P. Then there is a directed (x, z)-path
Q@ and a directed (z,y)-path @’ in S since S is a tree spanner. This implies that
there are two distinct directed (x,y)-paths QQ’ and zy in S, contradicting S being
a tree. Therefore S =T, and G contains at most one tree spanner. Il

Because of the above lemma, we only need to consider the problem of finding the
tree spanner T in a digraph G since T is automatically a minimum tree spanner and
we can use it to solve the tree t-spanner problem by comparing ¢ with the stretch
index of T'. Recall that an acyclic digraph is a digraph which contains no directed
cycle.

Lemma 5.2 If a digraph G admits a tree spanner, then G is acyclic.

Proof. Let T be a tree spanner of G. Suppose that G contains a directed cycle C.
Then any two vertices of C' are mutually reachable in T since T is a spanner of G,
contradicting T being a tree. Hence G is acyclic. 11

In light of the above lemma, we will assume that G is acyclic hereafter. Then G
contains a source s. We now present a necessary and sufficient condition for G to
admit a tree spanner in terms of G —s. Note that N, (s) is the set of out-neighbours
of s in G and that a trivial digraph (a digraph with a single vertex) itself is a tree
spanner.

Theorem 5.3 Let G be an acyclic digraph, and let s be a source of G. Then G
admits a tree spanner iff each connected component H; of G — s contains a tree
spanner T; such that there is a vertex v; € V(H;) N N (s) which reaches every
vertex of V(H;) N N (s) through arcs of T;.

Proof. If the condition of the theorem is satisfied, then it is readily checked that
Ty U...UTg + {svy,...,svx}, where k is the number of connected components of
G — s, is the tree spanner of G, since for ¢ # j there are no arcs between H; and Hj.

Conversely suppose that GG contains a tree spanner 7. Then s is a source in
T. First we show that each connected component H; contains a unique vertex v;
adjacent to s in T'. Since G is connected, H; contains at least one such vertex by
the definition of H;. Suppose that H; contains two such vertices u and u/. Then
there is a (u,u')-path P in H;. Each edge in P corresponds to a unique arc in H;
as G is acyclic; and for each such arc (z,y), there is a directed (z,y)-path Py, in T
since T' is a tree spanner. Let T; = T'N H;. It is easy to see that P, lies entirely in
T;. Tt follows that there is a (u,u/)-path P’ in Tj; but P’ together with su and su/
forms a cycle in T, a contradiction. Therefore s is adjacent to a unique vertex v; of
H; in tree T. Clearly v; € V/(H;) N N (s).

Now by the definition of H;, we easily see that T; is connected, and thus T; is
a tree spanner of H;. Furthermore, for each out-neighbour v of s in H;, there is a
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directed (s,v)-path @ in T since T is a tree spanner. Then the (v;, v)-section of @
is a directed (v;,v)-path in T}; hence v is reachable from v; in T;. 1

It is trivial to transform the above theorem into a recursive procedure for finding
the tree spanner of G. In order to implement the procedure efficiently, we present
an iterative version of the procedure. Let {1,...,n} be the vertex set of G. Since
G is acyclic, we can assume that the vertices of G have been topologically ordered,
i.e., if (4,7) is an arc of G, then i < j. Let G; denote the subgraph of G induced by
vertices {i,...,n}. Then vertex i is a source of G; by the definition of the topological
ordering of GG. Therefore vertex v; in Theorem 5.3 is the vertex with smallest number
in V(H;) N N/ (s). Note that the out-neighbours of vertex i in G; are the same as
those of 7 in G, and hence will be denoted by N*(i). Figure 8 depicts an acyclic
digraph, its tree spanner, and a topological ordering of its vertices. The following
procedure finds the tree spanner of G when it contains one:

Figure 8: An acyclic digraph G, its tree spanner, and a topological ordering of V

procedure treespanner(G,T); { Find the tree spanner T of an acyclic digraph G }
begin
1. T « the trivial tree consisting of vertex n;
for i — n — 1 downto 1 do
H; « {H|(H is a connected component of G; 1) A(V(H)NN7T(i) # 0)};
for each H € 'H; do
vig — min{jlj € V(H) N N*(i)};
if v; i reaches every vertex in V(H) N N7 (i) through arcs of T
then T — T + (i,v; i) else output “No” EXIT;
end for;
end for;
7. return 7'

oot W
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end treespanner

Notice that T is a forest during the computation of the above procedure. Let
T; denote the forest T after the normal completion of the (n — i)-th iteration of the
“for” loop at line (2). By Theorem 5.3, it is clear that T); consists of tree spanners
of the connected components of G;; and thus T is the tree spanner of G. However,
a straightforward implementation of the procedure may take O(mn) time.

We now refine the procedure to obtain a more efficient algorithm. We notice the
following: First of all, the check at line (6) can be postponed after the completion
of “for” loop at line (2), since v; g reaches all vertices in V(H) N N*(i) through
arcs of T; iff it reaches these vertices through arcs of T4; secondly, the computation
at lines (3) and (5) only requires the vertex sets of connected components of G;41;
and thirdly, the connected components of G; can be obtained from those of G;11 by
merging vertex ¢ and all connected components in H; into a single component.

Based on the above observations, we will use sets to maintain the connected
components of G;. Initially, we have n sets consisting of n single vertices. These
sets will be merged to represent the connected components of G; during the process.
Thus line (3) can be carried out by finding all sets containing the out-neighbours
of vertex .. We are now ready to present an algorithm that finds the tree spanner
of G. The algorithm first decides if G is acyclic, then finds a spanning tree T of G,
and finally verifies if T is the tree spanner of GG. It also computes the stretch index
t of T' when T is a tree spanner.

Algorithm TREE-SPANNER(G,T,t) { Find the tree spanner T" of G }

Input: A weighted digraph G = (V, A; w);

Output: The tree spanner 1" and its stretch index ¢ if G admits a tree spanner;
otherwise output “No”.

begin
1. if G is not acyclic then output “No” EXIT
else compute a topological ordering of G;
{ Vertices 1,...,n is a topological ordering of G. }

2. T « the trivial tree consisting of vertex n;
3. Create set {i} for each vertex i of G;
4. for ¢ — n — 1 downto 1 do
5. Hi — @;
6. for each out-neighbour k of ¢ do
{Compute {H|(H is a connected component of G; 1) A(V(H)NNT(i) #0)}. }
7. Find the set H; containing vertex k;
8. H; <—7‘[¢LJ{1T‘[;€};
end for;
9. for each set H € ‘H; do
10. v;, g < min{j|j is an out-neighbour of i in H};

11. T —T+ (i,vn5);
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end for;
12. Merge {i} and all H € H; into a single set;
end for;
13. if T' is a tree spanner

then compute the stretch index ¢ of T
else output “No”;
end TREE-SPANNER.

We now consider the complexity of the above algorithm. Line (1) takes O(m+n)
(cf. [1, 30]). Vertex v; g at line (10) can be found in O(|NT(i)|) time by keeping
track of the set Hy, for each out-neighbour k of i at line (7). By Theorem 2.1-(b), line
(13) can be carried out in linear time. The merge operation at line (12) and the find
operation at line (7) constitutes a sequence of union-and-find operations on disjoint
sets; and there are at most m + n operations in total. By using the well known
“path compression on balanced trees” technique for disjoint set manipulation, these
< m + n union-and-find operations can be implemented in O((m + n)a(m + n,n))
time (cf. [1, 30]), where « is a functional inverse of Ackermann’s function and for
all feasible large m and n, a(m,n) < 4 [30].

The remaining computation takes linear time. So the overall running time of the
algorithm is O((m + n)a(m +n,n)). Therefore we can state the following theorem.

Theorem 5.4 The minimum tree spanner of a weighted digraph and its stretch
index can be computed in O((m + n)a(m +n,n)) time.

5.2 Quasitree spanners in digraphs

Recall that a quasitree of GG is a spanning subgraph T such that T is a tree, and
that T is a quasitree t-spanner if it is a t-spanner of G. See Figure 9 for an example
of a quasitree spanner. The notion of quasitree spanners is intended to capture the
underlying tree structure of the spanner. As we will see, results on quasitree spanners
in digraphs are quite similar to those of tree spanners in undirected graphs. We start
by considering relationships between quasitree spanners in G and tree spanners in

G.

Lemma 5.5 Let T be a quasitree t-spanner of G. If both arcs (x,y) and (y,x)
belong to G, then (x,y) € A(T) iff (y,x) € A(T).

Proof. It suffices to show that (z,y) € A(T) implies (y,z) € A(T). Suppose
(y,z) ¢ A(T). Then there is a directed (y,x)-path P in T. It follows that the
corresponding edges of P in T together with edge zy forms a cycle in T, contradicting
T being a tree.

Lemma 5.6 If T is a quasitree t-spanner of G, then T is a tree t-spanner of G.
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Figure 9: A quasitree 1.5-spanner

Proof. Let zy be an arbitrary edge in G —T. We need to show di(z,y) <t-w(xy).
By the definition of T, it is easy to see that di(u,v) < dp(u,v) for any two vertices
u,v € V. If exactly one of arcs (z,y) and (y,x), say (z,y), is in G, then (x,y) is in
G — T; and thus

di(z,y) < dr(z,y) <t-w((z,y)) =t d(zy),

since w(zy) = w((x,y)). Otherwise both (z,y) and (y,z) are arcs in G, and thus
they are both in G — T by Lemma 5.5. Then dp(z,y) < t-w((x,y)) and dr(y,x) <
t-w((y,z)). Therefore

dz(x,y) < min{dr(z,y),dr(y,2)} <t-min{w((z,y)), w((y,2))} =t - w(zy).

This proves the lemma. i

In light of the above two results, we can use the results on tree spanners in
83 and §4 to obtain similar results for quasitree spanners. Given a weighted undi-
rected graph F', we construct a weighted digraph D by replacing each edge zy of F
with two arcs (x,y) and (y,x), and setting w’((x,y)) = w'((y,x)) = w(xy), where
w,w’ are the weighting functions of F, D, respectively. Then the following two NP-
completeness results can be readily obtained from Theorems 3.9 in §3.2 and 4.10 in
§4.3 respectively by using Lemmas 5.5 and 5.6.

Theorem 5.7 For any fixed t > 1, it is NP-complete to determine whether a
weighted digraph contains a quasitree t-spanner, even if all arcs have integral weights.

Theorem 5.8 For any fized t > 4, it is NP-complete to determine whether an
unweighted digraph contains a quasitree t-spanner.
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On the other hand, the results in §3.1 and §4.1 can be extended to quasitree 1-
spanners in weighted digraphs and to quasitree 2-spanners in unweighted digraphs
respectively.

We first discuss the weighted case. Suppose that G admits a quasitree 1-spanner
T. Then by Lemma 5.6, T is a tree 1-spanner of G. Therefore T is the unique
minimum spanning tree of G by Theorem 3.7 of §3.1. By Lemma 5.5, T' is uniquely
determined by 7. Therefore, it is easy to see that the following algorithm finds a
quasitree 1-spanner in a weighted digraph: First find a minimum spanning tree T of
G; then construct the maximum quasitree T corresponding to T by putting into T,
for every edge xy of T, all arcs between vertices z and y in G; and finally verify if
T is a l-spanner. Since G can be obtained from G in linear time, T can be found in
O(mlog B(m,n)) time, T can be constructed from 7T in linear time, and verification
takes linear time by Theorem 2.1-(c), we have the following result:

Theorem 5.9 The quasitree 1-spanner of a weighted digraph can be found in O(mlog B(m,n))
time.

We now turn our attention to finding a quasitree 2-spanner in an unweighted di-
graph G. We first consider triconnected digraphs. Remember that by a triconnected
digraph GG, we mean that G is triconnected. Also bear in mind that a vertex u will
be referred to as a universal vertex of G whenever it is a universal vertex of G, and
recall that an intermediate vertex is any vertex with both in- and out-neighbours.

Theorem 5.10 A triconnected digraph G admits a quasitree 2-spanner iff it con-
tains a universal verter u such that for any intermediate vertex v of G — u, both
(u,v) and (v,u) are arcs of G.

Proof. If G contains such a universal vertex u, then it is readily checked that the set
of arcs between u and the remaining vertices of G induces a quasitree 2-spanner of
G. Conversely, suppose that G admits a quasitree 2-spanner T'. Then by Lemma 5.6
and Theorem 4.2, T is a spanning star of G centred at a vertex, say u. Therefore u
is a universal vertex of G, and hence of G. Let v be an arbitrary intermediate vertex
of G. If (u,v) is an arc of G, then there must be a vertex = such that (v,z) is an arc
of G since v is an intermediate vertex. If x # u, then (v, x) is an arc of G —T. Then
there is a directed (v, x)-path P of length two in 7', since T is a quasitree 2-spanner
of G. Notice that 7T is a spanning star. So P passes through vertex u, implying that
(v,u) is an arc of G. By a similar argument, we can deduce that (u,v) is an arc of
G if (v,u) is an arc of G. 1

To illustrate the above theorem, a triconnected digraph and its quasitree 2-
spanner are depicted in Figure 10. It is clear that we can use the above theorem
to find a quasitree 2-spanner in a triconnected digraph. We only need to find all
intermediate vertices I and all universal vertices U of G, then check if there is a
vertex u € U such that all possible arcs between v and [ appear in G. If such a
vertex u exists, then the set of arcs between u and the remaining vertices of G forms
a quasitree 2-spanner; otherwise G has no quasitree 2-spanner. It is easy to see that
this method takes linear time.



Tree Spanners 36

Figure 10: A quasitree 2-spanner in a triconnected digraph

It is possible to extend the structural results in §4.1 to quasitree 2-spanners,
and then obtain an algorithm for constructing quasitree 2-spanners. However, an
easy way to construct a quasitree 2-spanner is to use the skeleton tree. Because
of Theorem 5.10, we only need to consider a nonseparable digraph G which is not
triconnected. As we have mentioned, if G contains a quasitree, then G is tree 2-
spanner admissible. Then G contains a skeleton tree S = S(G), which corresponds
to a subgraph S of G. Since S belongs to every tree 2-spanner of G, by Lemma 5.6,
any quasitree 2-spanner of G must contain S. Therefore S must be a 2-spanner of
the subgraph of G induced by vertices in 5. For a compound leaf C' of G, let ec
be the unique edge in S with which C' is fully-joined, and H¢ be the triconnected
component of G containing C. Let LC and L2 denote the two leafstalks in Ho with
the addition of edge ec. Denote the subgraphs in G corresponding to H, ol L and L2
by He, LC and LC, respectively. In light of the skeleton tree theorem (Theorem 4. 9
in §4.2), we only need to check, for each compound leaf C, if one of L{, and LC is
a 2-spanner of He¢.

To summarize, we outline the quasitree 2-spanner algorithm as follows: First
decide if G is tree 2-spanner admissible. If it is, then find all blocks of G. For
each block B of G, if it is triconnected, then use Theorem 5.10 to find its quasitree
2-spanner; otherwise construct the skeleton tree Sp of B and the corresponding
subgraph Sp in B. Check if Sp is a 2-spanner of B[V (Sp)]. Finally for each
compound leaf C of B check if one of Lb and LQC is a 2-spanner of Heo. If G passes
all the above checks, then it contains a quasitree 2-spanner; otherwise, it does not
contain one. The actual quasitree 2-spanner of G can be obtained by keeping track
of Sp, Lt and L2,
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The correctness of the algorithm follows from our discussions. We now estimate
the complexity of the algorithm. It has been shown in §4.1 and §4.2 that whether
G is tree 2-spanner admissible can be decided in linear time, and that the skeleton
tree of B can be found in linear time. We also mentioned that it takes linear time
to find a quasitree 2-spanner in B if B is triconnected. Furthermore, checking if
Sp is a 2-spanner of B[V (Sg)] takes linear time by Theorem 2.1-(c). Since all the
remaining operations can be carried out in linear time as well, the algorithm takes
linear time.

Theorem 5.11 A quasitree 2-spanner in an unweighted digraph can be found in
linear time.

6 Concluding remarks

In this paper, we introduced the notion of tree spanners and studied the theoretical
and algorithmic aspects of the subject. In particular, we considered the complex-
ity of tree spanner problems for weighted graphs, unweighted graphs and directed
graphs. The current complexity status of tree spanner problems is summarized in
Table 2, where row “oc0” indicates the complexity of finding a tree spanner (with
minimum weight if G is weighted). The complexity of quasitree spanner problems
on weighted digraphs and unweighted digraphs is the same as that of tree spanner
problems on weighted graphs and unweighted graphs respectively.

t weighted graphs | unweighted graphs directed graphs
O(mlog B(m,n)) O(m +n) O((m +n)a(m + n,n))
(1,3) NPc O(m +n) O((m +n)a(m +n,n))
[3,4) NPc ? O((m +n)a(m+n,n))
[4,00) NPc NPc O((m +n)a(m+n,n))
oo | O(mlogB(m,n)) O(m+n) O((m +n)a(m+n,n))

Table 2: The complexity status of tree spanner problems

Note that the tree 3-spanner problem on unweighted graphs and the quasitree
3-spanner problem on unweighted digraphs remain open. We conjecture that the
tree 3-spanner problem on unweighted graphs is NP-complete; if true it would imply
the NP-completeness of the quasitree 3-spanner problem on unweighted digraphs.

One can also consider the tree t-spanner problem for restricted families of graphs.
For partial k-trees, it is easily deduced from the results of Arnborg et al. [4] that
the problem is polynomial time solvable for any fixed ¢, since it is a monadic second
order problem. However, the problem is open for planar graphs, bounded degree
graphs, and many other interesting families of graphs.

In terms of applications, it is desirable to construct tree spanners with small
stretch factors. Is there a polynomial time algorithm for finding a tree t-spanner such
that t is close to the stretch factor of the minimum tree spanner? The notion of tree
spanners can also be extended to other families of graphs. In general, given a family
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F of graphs, one can ask whether a graph G contains a spanner H € F. The problem
is particularly interesting for families of graphs that underlie communication network
structures or parallel machine architectures, since graphs that contain these graphs
as spanners capture some important properties of jobs that can be carried out on
these networks or machines. However, we expect that the problem is hard for most
families of graphs.
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