
Game Chromatic Index
of k-Degenerate Graphs

Leizhen Cai1y and Xuding Zhu2z

DEPARTMENT OF COMPUTER

SCIENCE AND ENGINEERING

THE CHINESE UNIVERSITY OF HONG KONG

SHATIN, HONG KONG, CHINA

E-mail: lcai@cse.cuhk.edu.hk

DEPARTMENT OF APPLIED

MATHEMATICS

NATIONAL SUN YAT-SEN UNIVERSITY

KAOHSING, TAIWAN

E-mail: zhu@math.nsysu.edu.tw

Received August 11, 2000

Abstract: We consider the following edge coloring game on a graph G.
Given t distinct colors, two players Alice and Bob, with Alice moving ®rst,
alternately select an uncolored edge e of G and assign it a color different
from the colors of edges adjacent to e. Bob wins if, at any stage of the
game, there is an uncolored edge adjacent to colored edges in all t colors;
otherwise Alice wins. Note that when Alice wins, all edges of G are properly
colored. The game chromatic index of a graph G is the minimum number of
colors for which Alice has a winning strategy. In this paper, we study the
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edge coloring game on k-degenerate graphs. We prove that the game
chromatic index of a k-degenerate graph is at most �� 3kÿ 1, where � is
the maximum vertex degree of the graph. We also show that the game
chromatic index of a forest of maximum degree 3 is at most 4 when the
forest contains an odd number of edges. ß 2001 John Wiley & Sons, Inc. J Graph Theory
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1. INTRODUCTION

Consider the following two person coloring game on a graph G � �V ;E�. Given t
distinct colors, two players Alice and Bob, with Alice moving ®rst, alternately
select an uncolored vertex v of G and assign it a color different from the colors of
vertices adjacent to v. Bob wins if, at any stage of the game, there is an uncolored
vertex adjacent to colored vertices in all t colors; otherwise Alice wins. Note that
all vertices of G are properly colored when Alice wins, and that Alice always
wins if t � jVj.

Bodlaender [1] studied the computational complexity pertaining to the above
coloring game, and de®ned the game chromatic number �g�G� of a graph G to be
the smallest number of colors for which Alice has a winning strategy. Recently,
there has been a growing interest in the coloring game [2±4, 6±9]. A notable
development involves the game chromatic number of a planar graph, which was
conjectured to have a constant bound by Bodlaender [1], proved to be at most 33
by Kierstead and Trotter [7], improved to 30 by Dinski and Zhu [2], reduced to 19
by Zhu [9], and further reduced to 18 by Kierstead [6].

In this article, we consider a variation of the coloring game where Alice and
Bob color edges instead of vertices. In this edge coloring game, Bob wins if, at
any stage of the game, there is an uncolored edge adjacent to colored edges in all
t colors; otherwise Alice wins. We de®ne the game chromatic index �0g�G� of a
graph G to be the smallest number of colors for which Alice has a winning
strategy for the edge coloring game on G. Note that for any graph G of maximum
degree �, we have � � �0g�G� � 2�ÿ 1 since no edge is adjacent to more than
2�ÿ 2 edges. This motivates us to consider graphs whose chromatic game
indices are bounded above by �� C for some constant C.

To facilitate the study of game chromatic index, we consider the following
edge ordering game on a graph G: Alice and Bob, with Alice moving ®rst,
alternately select an unselected edge and put it at the end of the linear order
formed by the edges selected earlier. The outcome of a game is a linear order on
the edge set E of G. For any edge e of G, any adjacent edge of e that precedes e in
the linear order is called a preceding neighbor of e. In this edge ordering game,
Alice's goal is to minimize the maximum number of preceding neighbors of
edges, and Bob's goal is to maximize it. It turns out that we can use this edge
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ordering game to obtain an upper bound of game chromatic index. Suppose that
Alice has a strategy for the edge ordering game on G which guarantees that,
regardless of how Bob plays, each edge of G has at most t preceding neighbors in
the resulting edge order of E. Then Alice can use this strategy for the edge
coloring game to guarantee her win with t � 1 colors: she simply uses her
strategy for the edge ordering game on G to select the next edge to be colored.
This implies �0g�G� � t � 1.

We now de®ne k-degenerate graphs. Let L be a linear order on the vertex set V
of a graph G. For a vertex v 2 V , the back degree of v relative to L is the number
of adjacent vertices of v that precede v in L, i.e., jfu 2 V : uv 2 E and L�u� <
L�v�gj. The back degree of L is the maximum back degree of vertices relative to
L. A graph G is k-degenerate if there is a linear order L on V whose back degree
is at most k. Note that G is k-degenerate iff every induced subgraph of G has a
vertex of degree at most k. Many interesting families of graphs are k-degenerate
for some constant k. For example, graphs embeddable on some ®xed surface,
graphs avoiding a certain minor, and graphs of bounded arboricity. In particular,
planar graphs are 5-degenerate, outerplanar graphs are 2-degenerate, partial k-
trees are k-degenerate, and graphs of arboricity i is �2iÿ 1�-degenerate.

In this article, we study game chromatic indices of k-degenerate graphs. In
Section 2, we use the edge ordering game to prove that the game chromatic index
of a k-degenerate graph is at most �� 3k ÿ 1. In Section 3, we show that the
game chromatic index of a forest of maximum degree 3 is at most 4 when the
forest contains an odd number of edges. We summarize in Table 1 our upper
bounds for game chromatic indices of some k-degenerate graphs.

2. EDGE ORDERING GAME ON k-DEGENERATE GRAPHS

In this section we will present a strategy for Alice to play the edge ordering game
on a k-degenerate graph G such that, no matter how Bob plays the game, each
edge e has at most �� 3k ÿ 2 preceding neighbors in the resulting linear order
of edges. This implies that the game chromatic index of a k-degenerate graph is at
most �� 3k ÿ 1.

TABLE 1. Upper bound of �0g�G� on some k-
degenerate graphs

Graph G Upper bound of �0g�G�
Arboricity i �� 6iÿ 4
Partial k-tree �� 3kÿ 1
Planar �� 14
Outerplanar �� 5
Forest �� 2
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We will use a digraph in describing Alice's strategy, and thus ®rst ®x some
de®nitions and notation for digraphs. For an edge e � uv in a digraph G, u is the
tail of e and v the head of e. For a vertex x of G, edges with x as head and tail,
respectively, are in-edges and out-edges of x, and the number of out-edges of x is
the out-degree d��x� of x. A vertex with no out-edges is a sink, and G is acyclic if
it contains no directed cycle. In an acyclic digraph, the level of an edge e is the
length of a longest directed path from the head of e to a sink.

We now begin our description of Alice's strategy. Let G � �V ;E� be a k-
degenerate graph and L be a linear order on V with maximum back degree at most
k. Alice will regard G as a digraph by orienting every edge uv of G from u to v
whenever L�u� > L�v�. Under this orientation, G is an acyclic digraph where
every vertex has out-degree at most k.

During a game, Alice maintains a subgraph Ga, called active subgraph, of G

that contains all sinks. Edges and vertices in Ga are active edges and active
vertices, respectively. At any stage of a game, an edge not in Ga is an inactive

edge, and an edge that has been selected by either player before that stage is a
selected edge.

We also need the following notion of an extension of a directed �u; v�-path P in
G. Let Q be a directed path in G from v to an active vertex such that all internal
vertices of Q are inactive. Since G is acyclic, the concatenation PQ is a directed
path, and is called an extension of P.

In her ®rst move, Alice selects an in-edge e of a sink and set Ga to be the graph
consisting of edge e and all sinks of G. Then each time after Bob has selected an
edge uv, Alice uses the following three-step procedure to select an unselected
edge in her move.

Step 1. Set path P � uv initially and then repeat the following until the last
vertex of P has no inactive out-edges: Pick up an inactive out-edge e of the last
vertex of P and replace path P by an extension of the concatenation Pe of P and e.
(Note that path P maintains a path that grows until it cannot grow further through
an inactive edge.)

Step 2. If the last vertex of P has an unselected active out-edge, select such an
edge; otherwise arbitrarily select an unselected edge of minimum level.

Step 3. Add P and the newly selected edge to the active subgraph Ga.

Note that in Step 1, whenever the head of edge e is not an active vertex, Pe is
always extended to a longer path as the active subgraph Ga contains all sinks.
Furthermore, since G is acyclic, Step 1 always terminates and produces a directed
path P whose last vertex has no inactive out-edges. See Fig. 1 for an example of
an execution of Step 1. Also note that Alice always tries to select an unselected
active edge before considering an unselected edge of minimum level.

For a vertex x, let ai�x�, ao�x�, and so�x�, respectively, be the numbers of active
in-edges, active out-edges, and selected out-edges of x. Then we observe the
following two facts from Alice's strategy.
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Lemma 2.1. Each time when Alice ®nishes a move, every selected edge is an
active edge.

Proof. The edges selected by both Alice and Bob in the round just ®nished
are added to the active subgraph in Step 3 of Alice's strategy.

Lemma 2.2. Each time when Alice ®nishes a move, every vertex x satis®es

ao�x� � minfd��x�; ai�x�g

and

so�x� � minfd��x�; ai�x� ÿ d��x�g:

Proof. The two inequalities clearly hold after Alice's ®rst move, and
Lemma 2.1 implies that ao�x� is never decreased. We need only show that each
time an inactive in-edge of x becomes active, an inactive out-edge of x, if it exists,
also turns active; and after all out-edges of x become active, each time an inactive
in-edge of x becomes active, an unselected active out-edge of x, if it exists, will be
selected by Alice.

The only time an inactive in-edge of x becomes active is either when the
directed path P constructed in Step 1 passes through or terminates at x, or when
the inactive in-edge is of minimum level and selected by Alice in Step 3. In the
former case, if P passes through x, then an inactive out-edge of x indeed turns
active; otherwise, x has no inactive out-edges (ao�x� � d��x�) and indeed Alice
selects an unselected active out-edge of x, if it exists. In the latter case, because of
the minimality of the level of the inactive in-edge, all out-edges of x are selected
edges, and hence also active edges by Lemma 2.1. Therefore, the two inequalities
are not violated after each of Alice's moves. &

FIGURE 1. An execution of Step 1. Black vertices are active vertices, thick edges
are active edges, and the dashed line segments indicate path P.
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We are now ready to obtain an upper bound on the game chromatic index of a
k-degenerate graph.

Theorem 2.3. For any k-degenerate graph G, �0g�G� � �� 3k ÿ 1.

Proof. Alice uses her edge ordering strategy given in this section to select the
next edge to be colored. Then we need only show that during the game, any
unselected edge of G is adjacent to at most �� 3k ÿ 2 selected edges, and hence
is adjacent to at most �� 3k ÿ 2 colored edges when it is to be colored. Let
e � xy be an unselected edge right after Alice ®nishes a move.

Since y has degree at most �, it has at most �ÿ 1 active in-edges and out-
edges; and since x has out-degree at most k, it has at most k ÿ 1 active out-edges
other than xy. Because xy is an unselected edge, x has at most k ÿ 1 selected out-
edges. By Lemma 2.2, x has at most k ÿ 1� d��x� � 2k ÿ 1 active in-edges.
Therefore, the total number of active edges adjacent to e is at most �� 3k ÿ 3,
and at most �� 3k ÿ 2 after Bob's move. By Lemma 2.1, at most �� 3k ÿ 2
selected edges are adjacent to e at any stage of the game. Therefore the game
chromatic index of G is at most �� 3k ÿ 1. &

3. FORESTS OF MAXIMUM DEGREE THREE

We have deduced in the previous section that the game chromatic index of a
forest is at most �� 2. On the other hand, it is easy to construct a tree whose
game chromatic index is at least �� 1. In an attempt to characterize forests of
game chromatic index at most �� 1, we investigate the game chromatic index of
forests of maximum degree 3 in this section. We will show that if a forest of
maximum degree 3 has an odd number of edges, then Alice has a winning
strategy with four colors.

Let F be a forest of maximum degree 3 where some edges are properly colored
by colors from a set of four distinct colors. We obtain a family of independent
subtrees of F by cutting each colored edge of F in the middle. Thus, each colored
edge becomes two half-edges with the same color but in two different indepen-
dent subtrees, and each uncolored edge belongs to one independent subtree only.
During a game, when an uncolored edge e is to be colored, only the independent
subtree T containing e need to be considered; and once e is colored, T is broken
into two smaller independent subtrees by cutting e into two half-edges. Therefore,
we can consider each independent subtree independently during a game.

Remark. Using the notion of independent subtrees, we have a simpler winning
strategy for Alice that uses �� 2 colors on a forest. During a game, Alice need
only make sure that every independent subtree contains at most � colored edges
after her move. Then after Bob's move, at most one independent subtree can
contain �� 1 colored edges, and Alice can easily break it into two independent
subtrees each containing no more than � colored edges.
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We call an uncolored edge of F a safe edge if it is adjacent to at least three
colored edges with two of them having the same color. Note that a safe edge can
always be colored properly at any later stage using one of the four colors. A legal
color for an edge e is any color that has not been used for any edges adjacent to e.

For clarity, the following notation is used in all ®gures of this section: a thick
edge denotes a colored edge, a dashed line indicates a path with zero or more
edges, boldface letters a, b, c, and d represent the four distinct colors, and
`̀ Alice[x]'' with an arrow pointing to an edge means that Alice's move is to color
the edge with color x. Boldface letters x and y denote two different colors from
the color set.

Theorem 3.1. If F is a forest of maximum degree 3 with an odd number of
edges, then �0g�F� � 4.

Proof. To prove that Alice has a winning strategy with four colors, we
present a strategy for Alice guaranteeing that each time after her move but before
Bob's next move, each independent subtree T of F satis®es the following color
invariants:

1. No uncolored edge in T is adjacent to one uncolored edge and three
distinctively colored edges.

2. If T contains four or ®ve colored edges, then it has at least one safe edge.
3. If T contains more than ®ve colored edges, then it is one of the

independent subtrees in Fig. 2.

Note that such a strategy will ensure that both Alice and Bob can always make
a legal move until all edges of F are colored properly, and thus is a winning
strategy for Alice.

Clearly, the color invariants are satis®ed within the ®rst two moves. Suppose
that the color invariants are satis®ed after Alice ®nishes a move. Because of the
color invariants, Bob can always pick up an uncolored edge of F (otherwise the
game is ®nished) and use a legal color to color it. This edge belongs to a unique

FIGURE 2. Three special independent subtrees. Color x can equal color a and
colors for unmarked thick edges are arbitrary. Note that Alice will not produce the
independent subtree in (c) but Bob may.
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independent subtree before Bob's move. After Bob's move, this independent
subtree is broken into two independent subtrees while all other independent
subtrees remain unchanged. It is a routine matter to check that at most one of
these two new independent subtrees may violate the color invariants.

We now describe a strategy for Alice to color an uncolored edge of F so that
each independent subtree satis®es the color invariants after her move. If no
independent subtree violates the color invariants, Alice arbitrarily selects an
independent subtree that contains an odd number of uncolored edges (such
an independent subtree exists as F always has an odd number of uncolored edges
each time before Alice's move). Otherwise, she selects the only independent
subtree T that violates the color invariants. Note that Alice will never select an
independent subtree in Fig. 2(b) or (c), and thus T has at most six colored edges.

Case 1. T contains at most four colored edges. In this case, T may only violate
color invariants (1) and (2). If T has two adjacent colored edges, then there is an
uncolored edge e adjacent to these two colored edges. Note that e is the only edge
in T that may violate color invariant (1). Alice tries a legal color, say color c, for e
to see if the resulting independent subtrees satisfy the color invariants. If yes,
Alice colors e with color c in her move; otherwise, one of the two resulting
independent subtrees violates color invariant (1) and the two possible con®-
gurations of T are shown in Figure 3(a) and (b). For Fig. 3(a), Alice makes her
move as indicated in the diagram. For Figure 3(b), if e does not violate color
invariant (1), Alice colors edge g with color a; otherwise one of the two leftmost
colored edges is in color d, and she colors edge f with color d.

If T does not have adjacent colored edges, then it may only violate color
invariant (2). Alice picks an edge e of T whose removal disconnects T into two

FIGURE 3. Case 1: T has at most four colored edges (one colored edge in (c)
may not appear).
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independent subtrees each containing at most two colored edges. Again, Alice
tries a legal color, say color c, for e to see if the resulting independent subtrees
satisfy the color invariants. If yes, Alice colors e with color c in her move;
otherwise, color invariant (1) is violated by the resulting independent subtrees
(other color invariants will not be violated) and the structure of T and Alice's
move are shown in Fig. 3(c).

Case 2. T contains ®ve colored edges. By color invariant (2), T contains a safe
edge and its structure is shown in Fig. 4(a). Note that if T violates color invariant
(1) then e is the only edge that violates it. Alice tries a legal color for e. If it does
not cause any violation to color invariants, Alice colors edge e with the legal
color. Otherwise, color invariant (1) is violated, and the structure of T and Alice's
move are given in Fig. 4(b) Note that the independent subtree in Fig. 2(a) is
produced after Alice's move.

Case 3. T contains six colored edges. By color invariant (2), T contains a safe
edge (T can be the independent subtree in Fig. 2(a)), and Fig. 5(a) shows the
structure of T . Note that T may violate color invariants (1) and (3), but e is the
only edge that may violate color invariant (1). Again, Alice tries a legal color for
e. If it does not cause a violation to color invariants, Alice colors edge e with the
legal color; otherwise, at least one of T1 and T2 violates color invariant (1).

Case 3.1. T1 violates color invariant (1). The structure of T1 is shown in Fig.
5(b). If e is also adjacent to an edge of color b, then the structure of T is shown in
Fig. 6(a). Otherwise b is a legal color for e. In the former case, if edge f is not
adjacent to an edge of color a, Alice colors edge f with color a; otherwise we
have the structure of T shown in Fig. 6(b) and Alice's move is indicated in the
®gure (it produces an independent subtree in Fig. 2(b)). In the latter case, if
coloring e with color b does not cause T2 to violate color invariant (1), Alice
colors e with b; otherwise, the structure of T is shown in Fig. 6(c) and Alice's
move is indicated in the ®gure. (Again, it produces an independent subtree in
Fig. 2(b).) Note that e does not violate color invariant (1) after Alice's move.

FIGURE 4. Case 2: T contains ®ve colored edges.
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Case 3.2. T2 violates color invariant (1). The structure of T2 is shown in
Fig. 5(c). If e is not adjacent to an edge of color x, then x is a legal color for e;
otherwise T has the structure shown in Fig. 7(a). In the former case, if coloring e
with color x causes T1 to violate color invariant (1), we have the situation
discussed in Case 3.1; otherwise Alice colors e with color x. In the latter case, if
e is adjacent to three colored edges then we have T as shown in Fig. 7(b), and
Alice colors edge f with the color of the topmost colored edge if it is different

FIGURE 5. Case 3: (a) Structure of T. (b) Structure of T1 when it violates color
invariant (1). (c) Structure of T2 when it violates color invariant (1).

FIGURE 6. Case 3.1: T1 violates color invariant (1).
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from y, else she colors f with a third color z. Otherwise, we have the situation
in Fig. 7(c). If edge g is not adjacent to an edge of color y, Alice colors edge g

with color y, else we have the situation in Fig. 7(d) as T has an odd number of
uncolored edges, and an independent subtree in Fig. 2(b) is produced after Alice's
move.

It is a routine matter to check that in all cases, independent subtrees after
Alice's move satisfy the color invariants. This completes the proof. &

Corollary 3.2. If T is a tree of maximum degree 3 in which all internal vertices
have degree 3, then �0g�T� � 4.

Proof. Every vertex of T is of odd degree, and thus T contains an even
number of vertices, implying an odd number of edges. &

We note that our strategy for Alice fails to work if a forest of maximum degree
3 has an even number of edge. This is because an independent subtree T in
Fig. 2(b) or (c) may be produced during a game. Notice that there are four
uncolored edges in T . When the number of uncolored edges in the forest is even,
Alice will eventually be forced to color an uncolored edge in T ®rst (recall that
Alice moves ®rst). If x � a and all unmarked thick edges are in color b, then it is
easy to check that Alice loses once she colors an uncolored edge in T . On the
other hand, if Bob colors an uncolored edge in T ®rst, no obstruction is produced
to prevent Alice from winning. Thus T does not cause a problem for Alice when
the forest has an odd number of edges, since she can always avoid touching such
a subtree until Bob colors an uncolored edge in T .

Remark. Recently, He et al. [5] have proved, by a similar method, that the
game chromatic index of every forest of maximum degree 3 is at most 4.

FIGURE 7. Case 3.2: T2 violates color invariant (1).
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