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We study the parameterized complexity of the problems of determining whether a graph
contains a k-edge subgraph (k-vertex induced subgraph) that is a Π-graph for Π-graphs
being one of the following four classes of graphs: Eulerian graphs, even graphs, odd
graphs, and connected odd graphs. We also consider the parameterized complexity of their
parametric dual problems.
For these sixteen problems, we show that eight of them are fixed parameter tractable and
four are W[1]-hard. Our main techniques are the color-coding method of Alon, Yuster and
Zwick, and the random separation method of Cai, Chan and Chan.
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1. Introduction

The initial motivation of this paper comes from Eulerian graphs, which are often regarded as the cradle of graph theory.
How can we efficiently find k edges in a graph to form an Eulerian graph? Unfortunately, like most subgraph problems,
the problem is NP-hard. This in turn leads us to study the problem using the framework of parameterized complexity by
Downey and Fellows [7]: regard some part of the input I of a problem as a parameter k to form a parameterized problem
and determine whether the problem can be solved by an FPT algorithm, i.e., an algorithm that runs in time f (k)|I|O (1) for
some computable function f (k). A parameterized problem is fixed-parameter tractable (FPT) if it admits an FPT algorithm.

Subgraph problems (a.k.a. edge-deletion and vertex-deletion problems) have been studied extensively in the literature
under the framework of traditional complexity. Among others, a classical result of Lewis and Yannakakis [11] states that for
any “interesting” hereditary property3 Π , it is NP-hard to decide whether a graph G contains at least k vertices that induce
a Π -graph, and a useful article of Natanzon, Shamir and Sharan [13] gives complexity classification of a large number of
edge-deletion problems.

Parameterized subgraph problems have also been considered for various properties Π in the literature, and here we only
mention two general results. Cai [4] has shown that it is FPT to obtain a Π -graph by k vertex/edge additions and deletions
whenever Π is a hereditary property that can be characterized by a finite set of forbidden induced subgraphs. Khot and
Raman [10] have proved that, for any decidable hereditary property Π , the problem of finding k vertices to induce a Π -
graph is FPT if Π includes all trivial graphs and all complete graphs or excludes some trivial graphs and some complete
graphs, and W[1]-hard if Π includes all trivial graphs but not all complete graphs or vice versa.
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Table 1
The parameterized complexity of the 16 parameterized subgraph problems. For instance, the k-Edge Even Subgraph problem is FPT as indicated by the
entry at row “k-Edge” and column “Even”.

Eulerian Even Odd Connected Odd

k-Edge FPT FPT FPT ?
(m − k)-Edge ? FPT FPT ?
k-Vertex ? FPT FPT FPT
(n − k)-Vertex W[1]-hard W[1]-hard W[1]-hard W[1]-hard

In this paper, we study parameterized complexity of subgraph problems motivated by Eulerian graphs. An even graph
(respectively, odd graph) is a graph where each vertex has an even (odd) degree, and an Eulerian graph is a connected even
graph. Let Π be one of the following four graph classes: Eulerian graphs, even graphs, odd graphs, and connected odd graphs.
For each Π , we define the following subgraph and induced subgraph problems:

Π Subgraph (resp. Induced Π Subgraph)
Instance: G = (V , E) and nonnegative integer k.
Question: Does G contain a Π subgraph with k edges (resp. an induced Π subgraph on k vertices)?

We can take k in the above two problems as a parameter to form two parameterized subgraph problems, which also
yield their corresponding parametric dual problems, where m and n are the numbers of edges and vertices, respectively, in
the input graph G:

k-Edge Π Subgraph (resp. k-Vertex Π Subgraph)
Instance: G = (V , E) and nonnegative integer k.
Question: Does G contain a Π subgraph with k edges (resp. an induced Π subgraph on k vertices)?
Parameter: k.

(m − k)-Edge Π Subgraph (resp. (n − k)-Vertex Π Subgraph)
Instance: G = (V , E) and nonnegative integer k.
Question: Does G contain a Π subgraph with m − k edges (resp. an induced Π subgraph on n − k vertices)?
Parameter: k.

Our main concern is to determine whether these 16 problems are fixed-parameter tractable. Note that the properties
Π we consider here are not hereditary, and therefore the theorems of Cai, and Khot and Raman are not applicable to our
problems. Table 1 summarizes our results for the parameterized complexity of the 16 problems we study in the paper:
8 problems are FPT, 4 problems are W[1]-hard and the remaining 4 problems are open. The main techniques for our FPT
algorithms are the color-coding method of Alon, Yuster and Zwick [1], and the random separation method of Cai, Chan and
Chan [5]. We will also use kernelization and Ramsey numbers in designing our FPT algorithms.

We note that for the eight unparameterized problems corresponding to our parameterized subgraph problems, six of
them are NP-complete (Section 4) and the other two are conjectured to be also NP-complete (Section 5).

All graphs in this paper are undirected simple graphs. We use m and n, respectively, for the numbers of edges and
vertices of the input graph G = (V , E). For a subset V ′ ⊆ V , G[V ′] denotes the subgraph induced by V ′ , and for a subset
E ′ ⊆ E , G[E ′] denotes the subgraph formed by E ′ . For a vertex v , dG(v) denotes the degree of v , and NG(v) denotes the
neighborhood of v . For a subset V ′ ⊂ V , we use NG(V ′) to denote the open neighborhood (

⋃
v∈V ′ NG(v)) \ V ′ of V ′ . We

will drop subscript G in our notation when it will not cause confusion.
The rest of the paper is organized as follows. We present our FPT algorithms in two sections based on the techniques

we use: we use color-coding to obtain FPT algorithms for 4 problems in Section 2, and use kernelization and random
separation, together with Ramsey numbers, to solve 4 more problems in Section 3. We give W[1]-hardness proofs for
another 4 problems in Section 4, where we also establish the NP-completeness of 6 unparameterized problems. We discuss
some open problems and propose some conjectures in Section 5.

2. FPT by color-coding

In this section, we use the color-coding method of Alon, Yuster and Zwick [1] to obtain FPT algorithms for the following
four problems:

• k-Edge Eulerian Subgraph

• k-Edge Even Subgraph

• (m − k)-Edge Even Subgraph

• (m − k)-Edge Odd Subgraph.
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The key idea of color-coding is to randomly color elements with k colors, and then find a k-element solution with
distinct colors in FPT time. Such a randomized algorithm finds a solution, if it exists, with probability at least k!/kk , and can
be converted into a deterministic FPT algorithm by using perfect hash functions. An (m,k)-family of perfect hash functions is
a family F of functions from a domain of size m to a range of size k such that for every subset S of size k from the domain
there is a function in F that is 1-to-1 on S . Moni Naor (see [1]) has used the construction of Schmidt and Siegal [14] to
obtain an (m,k)-family of perfect hash functions of size 2O (k) log m that can be listed in time 2O (k)m logm.

To use color-coding to solve our problems, we color each edge randomly by a color from {1, . . . ,k} and then try to find
a k-edge subgraph with certain properties. Before getting into our algorithms, we define a few terms for an edge-colored
graph G . A subgraph H of G is colorful if its edges have distinct colors. For a colorful H , we may say that it is C ′-colorful
when we want to emphasize the colors C ′ used for edges of H . For a subset C ′ of colors, we use G(C ′) to denote the
subgraph of G formed by edges with colors from C ′ .

We also need connections between trails, Eulerian graphs and even graphs. For a pair (u, v) of vertices, a (u, v)-trail
is an alternating sequence of vertices and edges u = v0, e1, v1, . . . , et, vt = v such that each edge ei has vi−1 and vi as
endpoints and all edges are distinct. The length of a trail is the number of edges in the trail, and a (u, v)-trail is closed if
u = v . An Eulerian graph has a closed trail containing all edges and vertices, and every component of an even subgraph
is an Eulerian graph. Therefore trails play a pivotal role in this section, and central to our FPT algorithms is the following
result for finding a colorful (u, v)-trail between a pair {u, v} of vertices in an edge-colored graph in FPT time.

Lemma 2.1. Let G be an edge-k-colored graph. It takes O (k2km) time to find, for any given pair {u, v} of vertices, a colorful (u, v)-trail
of length k (if it exists), and O (k2kmn) time to find a colorful k-edge Eulerian subgraph (if it exists).

Proof. Let c : E → {1, . . . ,k} be the edge coloring of G . For a trail T , let α(T ) denote the set of colors used for edges of T .
For each vertex x of G and each 1 � i � k, define

C i(x) = {
α(T ): T is a colorful (u, x)-trail with i edges

}
.

Then G has a colorful (u, v)-trail of length k iff Ck(v) �= ∅.
We can easily obtain the following recurrence for C i(x):

C1(x) =
{ {{c(ux)}} if x ∈ N(u),

∅ otherwise

and for each 2 � i � k,

C i(x) = {{
c(xy)

} ∪ C : y ∈ N(x), C ∈ C i−1(y), and c(xy) /∈ C
}
.

It is straightforward to compute Ck(v) by dynamic programming, which takes O (
∑k

i=1 i
(k

i

)
m) = O (k2km) time, and a

simple book keeping will enable us to construct a colorful (u, v)-trail with k edges (if it exists) in O (k2km) time. To find a
colorful k-edge Eulerian subgraph, we consider a colorful (v, v)-trail of length k for each vertex v , which altogether takes
O (k2kmn) time. �

With the above lemma in hand, we now proceed to use color-coding to design FPT algorithms.

Theorem 2.2. k-Edge Eulerian Subgraph is solvable in 2O (k)mn log n time.

Proof. We use the color-coding method. Randomly color each edge of the input graph G with probability 1/k by a color
from {1,2, . . . ,k} to obtain an edge colored graph G ′ . Then a k-edge Eulerian subgraph in G , if it exists, has probability
k!/kk to become colorful in G ′ . By Lemma 2.1, we can determine whether G ′ contains a colorful k-edge Eulerian subgraph
in O (k2kmn) time, and therefore we can determine, with probability at least k!/kk , whether G contains a k-edge Eulerian
subgraph in O (k2kmn) time. We can derandomize the algorithm by using an (m,k)-family of perfect hash functions (for
details, see Section 4 in [1]). Note that log m = logn as m = O (n2). This yields a deterministic FPT algorithm that runs in
2O (k)mn log n time. �

Our next three FPT algorithms need to deal with set partitions, and the following bound by Berend and Tassa [2] on the
k-th Bell number Bk , which denotes the number of partitions of a set of size k, is useful in analyzing the running times of
our algorithms: Bk < (0.792k/ ln(k + 1))k < kk .

We can solve k-Edge Even Subgraph by using a close connection between even graphs and Eulerian graphs.

Theorem 2.3. k-Edge Even Subgraph is solvable in kO (k)mn log n time.
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Proof. Again we use color-coding. Randomly color each edge of the input graph G with probability 1/k by a color from
{1,2, . . . ,k} to obtain an edge k-colored graph G ′ .

Since every component of an even subgraph is an Eulerian graph, G ′ has a colorful k-edge even subgraph iff there is
a partition {C1, . . . , Ct} of colors {1, . . . ,k} such that each subgraph G ′(Ci) = (Ei, V i) has a Ci -colorful Eulerian subgraph.
Therefore we only need to check, for every partition {C1, . . . , Ct} of {1,2, . . . ,k}, whether each G ′(Ci) has a Ci -colorful
Eulerian subgraph.

For a given partition of {1,2, . . . ,k}, it takes O (m + n) time to construct all subgraphs G ′(Ci), and O (|Ci |2|Ci ||Ei ||V i|)
time (by Lemma 2.1) to find a Ci -colorful Eulerian subgraph in G ′(Ci). Since the number of partitions of {1, . . . ,k} is the
k-th Bell number Bk < kk , the total time of our randomized algorithm is O (Bkk2kmn) = kO (k)mn. After derandomization by
an (m,k)-family of perfect hash functions, we obtain a deterministic algorithm that runs in kO (k)mn logn time. �

We now turn our attention to two parametric dual problems. We cannot use color-coding directly to find colorful (m−k)-
edge subgraphs in FPT time. However, we can consider k edges not in (m −k)-edge subgraphs instead and use the following
fact to transform our problems into that of finding colorful trails and even subgraphs.

Lemma 2.4. Every graph G with t � 0 odd vertices can be decomposed into t/2 trails between odd vertices and an even graph, which
may be empty.

Proof. Note that the number of odd vertices is even in a connected graph. If t > 0, then there is a trail P between two odd
vertices in a connected component of G , implying that the graph G − E(P ) has t − 2 odd vertices. Thus, we can obtain an
even graph by repeating this process until the graph contains no odd vertices. �

We now regard (m − k)-Edge Even Subgraph as an edge deletion problem, and use color-coding to get an FPT algorithm.

Theorem 2.5. (m − k)-Edge Even Subgraph is solvable in kO (k)mn logn time.

Proof. Clearly the problem is equivalent to whether we can delete k edges E ′ from the input graph G to obtain an even
graph. Since the deletion of an edge can change at most two odd vertices into even ones, G can contain at most 2k odd
vertices in order for the problem to have a solution, and therefore we only need to consider the case that G has 2t odd
vertices for some 0 � t � k.

Consider the graph G ′ = G[E ′]. Every odd vertex in G is also an odd vertex in G ′ and all other vertices in G ′ are even
vertices. By Lemma 2.4, we can decompose G ′ into t trails between odd vertices and an even subgraph S (note that S may
be an empty graph). Therefore, in order to find E ′ , we only need to find a pairing {{ui, vi}: 1 � i � t} of odd vertices in G
such that G contains edge-disjoint (ui, vi)-trails Ti with k′ � k edges in total and G − ⋃t

i=1 Ei , where Ei are edges of Ti ,
contains an even subgraph S with k − k′ edges.

Given a pairing {ui, vi} of odd vertices, we use color coding to find E ′ that is consistent with this pairing. Randomly color
each edge of G with probability 1/k by a color from {1,2, . . . ,k} to obtain an edge k-colored graph G∗ . Then G∗ contains
a colorful E ′ iff there is a partition {C1, . . . , Ct+1} of {1, . . . ,k} such that each G∗(Ci), 1 � i � t , has a Ci -colorful (ui, vi)-
trail and G∗(Ct+1) has a Ct+1-colorful even subgraph (note that Ct+1 may be empty). Therefore we consider each possible
partition {C1, . . . , Ct+1} of {1, . . . ,k}, and for each partition, we check whether each G∗(Ci), 1 � i � t , has a Ci -colorful
(ui, vi)-trail and G∗(Ct+1) has a Ct+1-colorful even subgraph.

There are at most (2t − 1)(2t − 3) · · · 3 · 1 = kO (k) different ways to pair 2t odd vertices (note t � k) and Bk < kk different
partitions of {1, . . . ,k}. Given a pairing and a partition, it follows from Lemma 2.1 that it takes O (k2kmn) time to check
whether G∗(Ci) has a Ci -colorful (ui, vi)-trail and G∗(Ct+1) has a Ct+1-colorful even subgraph. Therefore our randomized
algorithm takes kO (k)mn time, which can be derandomized by an (m,k)-perfect family of perfect hash functions to produce
a deterministic algorithm that runs in kO (k)mn log n time. �

We can use a similar method to obtain an FPT algorithm for (m − k)-Edge Odd Subgraph.

Theorem 2.6. (m − k)-Edge Odd Subgraph is solvable in kO (k)mn log n time.

Proof. First we observe that the problem is equivalent to whether we can delete k edges E ′ from the input G to obtain a
graph where every nonisolated vertex has an odd degree. Since the deletion of an edge can make at most two even vertices
into odd ones, G can contain at most 2k even vertices in order for the problem to have a solution, and therefore we only
need to consider the case that G has 2t even vertices for some 0 � t � k.

Consider the graph G ′ = G[E ′]. Every even vertex in G is an odd vertex in G ′ and all other vertices in G ′ are even
vertices. By Lemma 2.4, G ′ can be decomposed into t trails between odd vertices and an even subgraph S , which may be
empty. Therefore, in order to find E ′ , we only need to find a pairing {{ui, vi}: 1 � i � t} of even vertices in G such that G
contains edge-disjoint (ui, vi)-trails Ti with k′ � k edges in total and G − ⋃t

i=1 Ei , where Ei are edges of Ti , contains an
even subgraph S with k − k′ edges.
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Given a pairing {ui, vi} of even vertices, we use color coding, as what we did for (m − k)-Edge Even Subgraph, to find E ′
that is consistent with the pairing. The same analysis gives us a deterministic algorithm that runs in kO (k)mn logn time. �
3. FPT by kernelization and random separation

In this section, we use kernelization and random separation, together with Ramsey numbers, to obtain FPT algorithms
for the following four problems:

• k-Edge Odd Subgraph

• k-Vertex Odd Subgraph

• k-Vertex Connected Odd Subgraph

• k-Vertex Even Subgraph.

The basic idea of kernelization is to reduce in polynomial time an instance (I,k) of a parameterized problem to an
equivalent instance (I ′,k′) with |I ′| � g(k) for some function g(k) and k′ � k. The resulting instance (I ′,k′) is called a kernel,
which can be easily solved in FPT time by exhaustive search whenever the problem is decidable.

The random separation method of Cai, Chan and Chan [5] is a powerful randomized method for solving parameterized
problems, mainly for problems on graphs of bounded degree. Its main idea is to randomly partition the vertex set of a
graph G into green and red vertices in a hope to separate a solution from the rest of G into green components (connected
components in the graph induced by green vertices). For this purpose, we typically require that all vertices in a solution
S are green and all vertices in N(S) are red. Once we have such a partition, we can usually use dynamic programming
to select appropriate green components to form a solution in polynomial time. Randomized algorithms from this method
can be converted into deterministic FPT algorithms by using universal sets. A collection of binary vectors of length n is
(n, t)-universal if for every subset of size t of the indices, all 2t configurations appear. Naor, Schulman and Srinivasan [12]
have a deterministic construction for (n, t)-universal sets of size 2tt O (log t) log n that can be listed in linear time.

The Ramsey number R(k,k) is the smallest integer such that every graph on at least R(k,k) vertices contains either a k
clique or an independent set of size k. It is well known that R(k,k) �

(2k−2
k−1

) = O (4k/
√

k), and we will use Ramsey numbers
to bound the number of vertices or vertex degrees, which then enables us to use suitable techniques to obtain our FPT
algorithms. We make one technical note here: since there is no efficient way to compute R(k,k), we cannot use it directly
in our algorithms. What we really use is the efficiently computable upper bound

(2k−2
k−1

)
of R(k,k). However, we will write

R(k,k) in our proofs for the sake of a clear exposition.
First we show that k-Edge Odd Subgraph is FPT by kernelization.

Theorem 3.1. k-Edge Odd Subgraph has a kernel with O (k2) vertices and edges that can be constructed in O (m + n) time.

Proof. We consider two cases. W.l.o.g., we may assume that G has no isolated vertices.

Case 1. Every vertex has degree at most k.

If G has at least k(2k − 1) edges, then we can easily use a greedy method to find a matching with k edges in O (m + n)

time, which forms a k-edge odd subgraph. Otherwise, G has less than k(2k − 1) edges and thus (G,k) itself is a kernel with
O (k2) vertices and edges.

Case 2. There is a vertex v of degree at least k + 1.

For odd k, any k edges incident with v form a k-edge odd subgraph. For even k, there is no solution when G is a star.
Otherwise, G contains an edge e not incident with v . Since d(v) � k + 1, there are k − 1 edges E ′ incident with v but not
adjacent to e, and hence E ′ and e together form a k-edge odd subgraph. �

Next we show that k-Vertex Odd Subgraph is also FPT by using Ramsey numbers to obtain a kernel.

Theorem 3.2. k-Vertex Odd Subgraph has a kernel with O (4k
√

k) vertices that can be constructed in O (m + n) time.

Proof. Since every graph has an even number of odd vertices, the problem has no solution for odd k and we will use
Ramsey numbers to get a kernel for even k.

If G has a vertex v with at least R(k − 1,k − 1) neighbors, then N(v) contains k − 1 vertices V ′ that induce either a
clique or an independent set, and therefore G[V ′ ∪ {v}] is an induced odd subgraph with k vertices.

Otherwise, every vertex of G has degree at most d for d = R(k − 1,k − 1) − 1. If G has at least dk vertices, then we
can easily use a greedy method to find in O (m + n) time an induced matching with k/2 edges (note that k is even), which
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gives us an induced odd subgraph on k vertices. Otherwise, G has less than dk = O (4k
√

k) vertices and thus (G,k) itself is
a kernel. �

For the next two problems, we will use random separation to obtain FPT algorithms. A key step in our algorithms is to
use Ramsey numbers to bound the maximum degree of the graph under consideration, which paves the way for us to use
the powerful random separation method.

Theorem 3.3. k-Vertex Connected Odd Subgraph is FPT.

Proof. Like k-Vertex Odd Subgraph, the problem has no solution for odd k. When the input graph G has a vertex v with
at least R(k − 1,k − 1) neighbors, the odd subgraph we have obtained for k-Vertex Odd Subgraph is connected and thus
is also a solution for our problem. Therefore we only need to consider the case that k is even and every vertex of G has
degree at most d for d = R(k − 1,k − 1) − 1.

Since the degree of G is bounded by a function of k, we will use random separation to design an FPT algorithm. First
we randomly color each vertex of G by either green or red with equal probability. A set V ′ of k vertices is a “well-colored
solution” if

1. G[V ′] is a connected odd graph, and
2. all vertices in V ′ are green and all vertices in its neighborhood N(V ′) are red.

Let V g be the set of green vertices of G . Then a well-colored solution is a connected component of G[V g] that is a k-vertex
odd graph. Therefore, given a red–green coloring of G , we can easily determine whether there is a well-colored solution in
O (m + n) time.

Suppose that G has k vertices V ′ such that G[V ′] is a connected odd graph. Then every vertex in V ′ is adjacent to at
least one vertex in V ′ , and thus |V ′ ∪ N(V ′)| � dk, which implies that a random red–green coloring has probability at least
2−dk to produce a well-colored solution. Therefore, when G has a solution, we can solve the problem with probability at
least 2−dk in O (m + n) time.

To derandomize the algorithm, we need a family of 2-colorings (green and red) such that for every 2-coloring C of any
dk vertices with k green vertices and (d − 1)k red vertices, there is a 2-coloring in the family that is consistent with C . We
can use a family of (n,dk)-universal sets for this purpose, where we interpret each n-vector in the family as a 2-coloring
for vertices of G . Since such a family can be generated in 2dkdkO (log dk)n log n time, we obtain a deterministic algorithm that
runs in O ( f (k)(m + n) log n) time for

f (k) = 2dk(dk)O (log dk),

where d = R(k − 1,k − 1) − 1. �
For k-Vertex Even Subgraph, we will use Ramsey numbers to bound the maximum degree of the complement G of G ,

and then use random separation on G to obtain an FPT algorithm. Note that we can also use Theorem 3.2 to obtain an
alternative FPT algorithm.

Theorem 3.4. k-Vertex Even Subgraph is FPT.

Proof. We consider two cases.

Case 1. k is odd.

If the input graph G = (V , E) has at least R(k,k) vertices, then it contains k vertices V ′ that form either a clique or an
independent set, and hence G[V ′] is a required even subgraph. Otherwise, G has less than R(k,k) vertices and thus (G,k)

itself is a kernel.

Case 2. k is even.

Let d = R(k − 1,k − 1), and consider vertex degrees in the complement G of G . If G has a vertex v with dG(v) � d, then
NG(v) contains k − 1 vertices V ′ that form either a clique or an independent set in G , and therefore V ′ ∪ {v} induces a
k-vertex even subgraph in G .

Otherwise, dG(v) < d for every vertex v , and we will use random separation on G to solve the problem. Let V ′ be a
set of k vertices. Since k is even, we see that G[V ′] is an even graph iff G[V ′] is an odd graph. Therefore, we only need to
consider the problem of finding k vertices V ′ such that G[V ′] is an odd graph. Randomly color each vertex of G by either
green or red with equal probability. We call V ′ a “well-colored solution” if
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1. G[V ′] is an odd graph, and
2. all vertices in V ′ are green and all vertices in NG(V ′) are red.

Let V g be the set of green vertices of G , and call connected components in G[V g] green components. Then a well-colored
solution consists of a collection of green components of G[V g] such that each green component is an odd subgraph in G
and the total number of vertices is k.

Given a red–green coloring, we can determine whether there is a well-colored solution in O (m + kn) time as follows:
Let H be the set of green components of G[V g] such that each green component Gi has at most k vertices and is an odd
subgraph in G , and denote the number of vertices of Gi by ni . What we need is to determine whether H contains a subset
H′ such that

∑
Gi∈H′ ni = k, which can be done in O (kn) time by using the standard dynamic programming algorithm for

the subset sum problem.
If G has k vertices V ′ that induce an even graph, then G[V ′] is an odd graph and a random red–green coloring has

probability at least 2−dk to produce a well-colored solution as |V ′ ∪ NG(V ′)| � dk. Therefore, when G has a solution, we can
solve the problem with probability at least 2−dk in O (m + kn) time.

We can use a family of (n,dk)-universal sets to derandomize our algorithm to obtain a deterministic algorithm that runs
in O ( f (k)(m + kn) log n) time for

f (k) = 2dk(dk)O (log dk),

where d = R(k − 1,k − 1). �
4. W[1]-hardness

In this section we show that the following 4 problems are W[1]-hard, which indicates that they are very unlikely to
admit FPT algorithms.

• (n − k)-Vertex Even Subgraph

• (n − k)-Vertex Eulerian Subgraph

• (n − k)-Vertex Odd Subgraph and
• (n − k)-Vertex Connected Odd Subgraph.

For the 8 unparameterized problems corresponding to our 16 parameterized even/odd subgraph problems, we show that
6 of them are NP-complete, which is another justification for studying our problems under the framework of parameterized
complexity.

The above four listed problems are clearly equivalent to the problems of determining whether we can delete k vertices
to obtain even (Eulerian, odd, and connected odd, respectively) graphs, and we will use this equivalence in our proofs. To
establish their W[1]-hardness, we need the following problem which was shown by Downey et al. [8] to be W[1]-hard and
also NP-complete when k is not regarded as a parameter.

k-Exact Odd Set

Instance: Bipartite graph G = (X, Y ; E) and positive integer k.
Question: Does G contain an odd k-set, i.e., k vertices X ′ ⊆ X such that every vertex in Y has an odd number of neighbors

in X ′?
Parameter: k.

We will use fpt-reductions to establish our W[1]-hardness results. An fpt-reduction from a parameterized problem Π to
another parameterized problem Π ′ is an FPT algorithm that transforms each instance (I,k) of Π into an instance (I ′,k′) of
Π ′ such that

1. (I,k) is a yes-instance of Π iff (I ′,k′) is a yes-instance of Π ′ , and
2. k′ � g(k) for some computable function g(k).

In our reductions, we will attach a special graph H to a vertex v of a graph G to prevent vertex v from being deleted
when we delete k vertices to obtain a required graph, where attaching H to a vertex v of G means that we identify a vertex of
H with vertex v . The following lemma indicates that we can use a (2k + 1)-cycle as H for our problems on even subgraphs.

Lemma 4.1. If a (2k + 1)-cycle Cv is attached to a vertex v of a graph, then the deletion of at most k vertices from Cv will result in at
least one odd vertex.
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Proof. When we delete at most k vertices from Cv , we break it into at most k paths and thus at least one path P has at
least two vertices. Then one end of P is different from vertex v , and thus is an odd vertex of degree 1 in the resulting
graph. �

We are now ready to give our W[1]-hardness proofs. All reductions in our proofs actually take polynomial time, which
is easy to see and will not be stated inside our proofs. We start with a reduction from k-Exact Odd Set to establish the
following result.

Theorem 4.2. (n − k)-Vertex Even Subgraph is W[1]-hard.

Proof. We give an fpt-reduction from k-Exact Odd Set. For an arbitrary instance (G,k) of k-Exact Odd Set, we form an
instance (G ′,k′) of our problem by setting k′ = k and constructing G ′ from the bipartite graph G = (X, Y ; E) as follows:

1. For each vertex y ∈ Y , make a copy y′ of y, i.e., create a new vertex y′ and add an edge between y′ and every vertex
in NG(y). Add edge yy′ if dG(y) is even.

2. Let Y ′ = {y′: y ∈ Y }. For each vertex v ∈ Y ∪ Y ′ , attach a (2k + 1)-cycle Cv .

Note that in graph G ′ , X are even vertices and Y ∪ Y ′ are odd vertices.
We claim that G contains an odd k-set iff we can delete k vertices from G ′ to obtain an even graph. Suppose that X ′ is

an odd k-set of G . Then in graph G ′ , NG ′ (X ′) ⊆ Y ∪ Y ′ and each vertex in Y ∪ Y ′ is adjacent to an odd number of vertices in
X ′ . Therefore the deletion of X ′ will change all odd vertices in G ′ , i.e., vertices in Y ∪ Y ′ , into even ones, and thus G ′ − X ′
is an even graph. Conversely, suppose that we can delete k vertices X∗ from G ′ to obtain an even graph. Since in G ′ every
vertex v ∈ Y ∪ Y ′ has a (2k + 1)-cycle Cv attached to it, we deduce from Lemma 4.1 that X∗ ⊆ X . For each vertex y ∈ Y ,
dG ′(y) is odd and dG ′−X∗(y) is even, and thus NG ′(y) contains an odd number of vertices from X∗ . Since X∗ ⊆ X , we deduce
that NG(y) contains an odd number of vertices from X∗ , and therefore X∗ is an odd k-set of G . �

Because even graphs and Eulerian graphs are closely related, we can obtain the following result by an easy reduction
from (n − k)-Vertex Even Subgraph.

Theorem 4.3. (n − k)-Vertex Eulerian Subgraph is W[1]-hard.

Proof. We give an fpt-reduction from (n − k)-Vertex Even Subgraph. Given an arbitrary instance (G,k) of (n − k)-Vertex

Even Subgraph, we construct an instance (G ′,k′) of our problem by setting k′ = k and constructing G ′ from G = (V , E) as
follows:

1. Add two new vertices u and v , connect them to all vertices of G by edges, and add edge uv if |V | − k is odd.
2. Attach (2k + 1)-cycles Cu and Cv to u and v respectively.

We claim that one can delete k vertices from G to obtain an even graph iff one can delete k vertices from G ′ to obtain
an Eulerian graph. Suppose that G has k vertices S such that G − S is an even graph. Then G ′ − S is a connected even graph
(note that both dG ′−S (u) and dG ′−S (v) are even) and hence an Eulerian graph. Conversely, suppose that G ′ has k vertices S ′
such that G − S ′ is Eulerian. We deduce from Lemma 4.1 that S ′ should consist of vertices inside G , and therefore G − S ′ is
an even graph. �

We now consider the two parametric dual problems on odd subgraphs. A (4k + 1)-wheel is the graph obtained from a
(4k + 1)-cycle C by adding a new vertex x and edges between x and all vertices of C . The following lemma shows that we
can attach a (4k + 1)-wheel to a vertex v to prevent v from being deleted when we want to obtain an odd subgraph by
vertex deletion. Note that all vertices of a (4k + 1)-wheel are odd vertices, and when we attach it to vertex v , it does not
matter which vertex of the wheel is identified with v .

Lemma 4.4. If a (4k + 1)-wheel W v is attached to a vertex v of a graph, then the deletion of at most k vertices from W v will result in
at least one even vertex.

Proof. When we delete at most k vertices from the (4k + 1)-cycle of W v , we will break the cycle into at most k paths and
thus at least one path P contains at least 4 vertices. Therefore after the deletion, the two ends of P have degree 2 if the
central vertex of W v is not deleted, otherwise the internal vertices of P have degree 2. At least one of these vertices is
different from vertex v , and thus it is an even vertex in the resulting graph. �

With the above lemma at hand, we can establish the W[1]-hardness of the two parametric dual problems on odd
subgraphs by a reduction from (n − k)-Vertex Even Subgraph.
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Theorem 4.5. Both (n − k)-Vertex Odd Subgraph and (n − k)-Vertex Connected Odd Subgraph are W[1]-hard.

Proof. We use the following fpt-reduction from (n − k)-Vertex Even Subgraph for both problems.
For an arbitrary instance (G,k) of (n − k)-Vertex Even Subgraph, we construct a graph G ′ from G = (V , E) as follows:

1. Add a new vertex v , and connect it to all vertices of G by edges.
2. Attach to v a (4k + 1)-wheel if |V | − k is even and two (4k + 1)-wheels otherwise.

First we show that one can delete k vertices from G to get an even graph iff one can delete k vertices from G ′ to get
an odd graph. Suppose that G has k vertices S such that G − S is an even graph. Then clearly G ′ − S is an odd graph (note
that dG ′−S (v) is odd). Conversely, suppose that G ′ has k vertices S ′ such that G ′ − S ′ is an odd graph. By Lemma 4.4, we
see that no vertex of S ′ comes from the attached (4k + 1)-wheel(s), and thus S ′ should consist of vertices of G . It follows
that G − S ′ is an even graph. This proves the W[1]-hardness of (n − k)-Vertex Odd Subgraph.

Observe that in the above proof, the odd graph G ′ − S is connected when G − S is an even graph. Therefore G − S
is an even graph iff G ′ − S is a connected odd graph, which implies the W[1]-hardness of (n − k)-Vertex Connected Odd

Subgraph. �
We close this section by establishing the NP-completeness of 6, out of 8, unparameterized problems corresponding to

our 16 parameterized even/odd subgraph problems.

Theorem 4.6. The following problems are NP-complete:

• Induced Even Subgraph

• Induced Eulerian Subgraph

• Induced Odd Subgraph

• Induced Connected Odd Subgraph

• Eulerian Subgraph

• Connected Odd Subgraph.

Proof. These problems are clearly in NP. The NP-hardness of the first four problems follows from the facts that, when k
is not regarded as a parameter, k-Exact Odd Set is NP-complete and our fpt-reductions (Theorems 4.2, 4.3 and 4.5) for
W[1]-hardness of their corresponding parametric dual problems are actually polynomial reductions.

The NP-hardness of Eulerian Subgraph follows from the facts that an n-vertex cubic graph contains a Hamiltonian cycle
iff it has an Eulerian subgraph of size n, and that the Hamiltonian Cycle problem is NP-complete for cubic graphs (see
problem [GT37] in [9]).

For Connected Odd Subgraph, we use the following reduction from Hamiltonian Cycle on cubic graphs to establish its
NP-hardness. Given an n-vertex cubic graph G , we construct a graph G ′ by adding, for each vertex v of G , a new vertex
v ′ and edge v v ′ . Set k = 2n. Note that G ′ has n vertices of degree 4 and we need to remove n/2 edges from G ′ to get a
connected odd subgraph with 2n edges. From the above observation, it is easy to show that G contains a Hamiltonian cycle
iff G ′ has a connected odd subgraph with k edges. �
5. Concluding remarks

We have studied the complexity of parameterized subgraph problems concerning even and odd subgraphs, and settled
the fixed-parameter tractability for 12 out of our 16 problems. For the 4 remaining problems, we propose the following
conjecture.

Conjecture 5.1. For the following four problems, the first one is FPT and the other three are W[1]-hard:

• k-Edge Connected Odd Subgraph

• k-Vertex Eulerian Subgraph
4

• (m − k)-Edge Eulerian Subgraph

• (m − k)-Edge Connected Odd Subgraph.

Because the main purpose of this paper is to determine the fixed-parameter tractability of our subgraph problems, we
have not paid too much attention to the efficiency of our FPT algorithms and we believe that many of our FPT algorithms
can be improved.

4 There is a slightly different definition for Eulerian graphs that allows an Eulerian graph to contain isolated vertices. For this definition, we can make
some minor changes to our FPT algorithm for k-Vertex Even Subgraph to get an FPT algorithm for k-Vertex Eulerian Subgraph.
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In terms of the tools we have used in designing our FPT algorithms, color-coding seems effective for our k-edge subgraph
problems and their duals because of linear orderings of edges in trails, and random separation works very well when we
can use Ramsey numbers to bound vertex degrees. We feel that this approach of using random separation will be helpful
in obtaining FPT algorithms for other problems on general graphs: seek special (and maybe easy) solutions when the graph
has vertices of large degree and use random separation to obtain hard solutions when all vertex degrees are bounded by
a function of k. It is also interesting to see if we can come up with FPT algorithms without using Ramsey numbers, which
will most likely improve the running times of our algorithms.

For FPT problems, a natural question is whether they admit polynomial kernels. Following the work of Bodlaender et
al. [3], we have the following result for 4 subgraph problems concerning connected subgraphs because these problems are
easily seen to be compositional and their corresponding unparameterized problems are NP-complete by Theorem 4.6.

Theorem 5.2. None of the following four problems has a polynomial kernel, unless the polynomial hierarchy collapses to the 3rd level:

• k-Edge Eulerian Subgraph

• k-Edge Connected Odd Subgraph

• k-Vertex Eulerian Subgraph

• k-Vertex Connected Odd Subgraph.

It is certainly interesting to know if our other FPT problems admit polynomial kernels. For the two problems that we
have solved by kernelization, we make the following two conjectures.

Conjecture 5.3. k-Edge Odd Subgraph has a kernel with O (k) vertices.

Conjecture 5.4. k-Vertex Odd Subgraph has a polynomial kernel.

We also note that the subgraph problems in the paper have many variations. For instance, instead of subgraphs with
k vertices/edges, we can consider subgraphs with at least (or at most) k vertices/edges. These problems may behave quite
differently from their corresponding k-vertex/edge subgraph problems: some become trivial, some are easily solvable using
FPT algorithms for k-vertex/edge subgraphs, and some seem quite difficult. We will discuss these problems in a forthcom-
ing paper [6]. We may also consider the problems of finding k-vertex/edge subgraphs to maximize the numbers of even
vertices/edges, and we leave these problems to the reader to ponder.

Finally we conclude our paper with the following conjecture on two unparameterized problems.

Conjecture 5.5. Both Even Subgraph and Odd Subgraph are NP-complete.
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