
Theoretical Computer Science 795 (2019) 275–284
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Two edge-disjoint paths with length constraints ✩

Leizhen Cai 1, Junjie Ye 2

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2017
Received in revised form 20 May 2019
Accepted 3 July 2019
Available online 8 July 2019
Communicated by G.F. Italiano

Keywords:
Edge-disjoint paths
Random partition
FPT algorithm
Kernelization

We consider the problem of finding, for two pairs (s1, t1) and (s2, t2) of vertices in an
undirected graph, an (s1, t1)-path P1 and an (s2, t2)-path P2 such that P1 and P2 share
no edges and the length of each Pi satisfies constraint Li , where Li ∈ {≤ ki, = ki, ≥ ki, ∗}
with Li = “ ∗ ” indicating no length constraint on Pi .
We regard k1 and k2 as parameters and investigate the parameterized complexity of the
above problem when at least one of P1 and P2 has a length constraint. For the 9 different
cases of (L1, L2), we obtain FPT algorithms for 7 of them by using random partition backed
by some structural results. On the other hand, we prove that the problem admits no
polynomial kernel for all 9 cases unless N P ⊆ coN P/poly.

© 2019 Published by Elsevier B.V.

1. Introduction

Disjoint paths in graphs are fundamental and have been studied extensively in the literature. Given p pairs of terminal
vertices (si, ti) for 1 ≤ i ≤ p in an undirected graph G , the classical Edge-Disjoint Paths problem asks whether G contains p
pairwise edge-disjoint paths Pi between si and ti for all 1 ≤ i ≤ p. The problem is NP-complete as shown by Even et al. [13],
but is solvable in time O (mn) by network flow [22] if all vertices si (resp., ti) are the same vertex s (resp., t). When we
regard p as a parameter, a celebrated result of Robertson and Seymour [23] on vertex-disjoint paths can be used to obtain
an FPT algorithm for Edge-Disjoint Paths. On the other hand, Bodlaender et al. [6] have shown that the vertex-disjoint
variation of Edge-Disjoint Paths admits no polynomial kernel unless N P ⊆ coN P/poly.

In this paper, we study Edge-Disjoint Paths with length constraint Li on each (si, ti)-path Pi and focus on the problem
for two pairs of terminal vertices. The length constraint Li ∈ {≤ ki, = ki, ≥ ki, ∗} indicates that the length of Pi needs to
satisfy Li . In particular, we use Li = “ ∗ ” to denote that the path Pi has no length constraint. We regard k1 and k2 as
parameters, and study the parameterized complexity of the following problem.

Edge-Disjoint (L1, L2)-Paths

Instance: Graph G = (V , E), two pairs (s1, t1) and (s2, t2) of vertices with si �= ti for i = 1, 2.
Question: Does G contain (s1, t1)-paths P1 and (s1, t1)-paths P2 such that P1 and P2 share no edge and the length

of Pi satisfies Li ?

✩ An earlier version was published in Proceedings of the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science, Istanbul, Turkey,
2016, pp. 62–73.

E-mail addresses: lcai@cse.cuhk.edu.hk (L. Cai), junjie.ye@polyu.edu.hk (J. Ye).
1 Partially supported by GRF grant CUHK410212 of the Research Grants Council of Hong Kong.
2 Present address: Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR, China.
https://doi.org/10.1016/j.tcs.2019.07.009
0304-3975/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.tcs.2019.07.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:lcai@cse.cuhk.edu.hk
mailto:junjie.ye@polyu.edu.hk
https://doi.org/10.1016/j.tcs.2019.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.07.009&domain=pdf

276 L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284
Table 1
Running times of FPT algorithms for Edge-Disjoint (L1, L2)-Paths under 9 different length con-
straints, where r = k1 log(k1 + k2) + k2.

|P2| = ∗ |P2| ≥ k2 |P2| = k2 |P2| ≤ k2

|P1| ≤ k1 2O (k1 log k1)m log n 2O (r)m logn O (5.24k1+k2 m log3 n) O (2.01k1+k2 m logn)

|P1| = k1 2O (k1 log k1)m log3 n 2O (r)m log3 n O (5.24k1+k2 m log3 n)

|P1| ≥ k1 open open

For instance, Edge-Disjoint (= k1, ∗)-Paths requires that |P1| = k1 but P2 has no length constraint. In this paper, we
focus on Edge-Disjoint (L1, L2)-Paths where at least one path has a length constraint. Without loss of generality, we may
assume that P1 always has a length constraint, i.e., L1 ∈ {≤ k1, = k1, ≥ k1}. This gives us 9 different length constraints for
Edge-Disjoint (L1, L2)-Paths, excluding symmetric cases.

Related Work. Edge-Disjoint (L1, L2)-Paths has been studied under the framework of classical complexity. Ohtsuki [21],
Seymour [24], Shiloah [26], and Thomasssen [27] independently gave polynomial-time algorithms for Edge-Disjoint
(∗, ∗)-Paths. Tragoudas and Varol [28] proved the NP-completeness of Edge-Disjoint (≤ k1, ≤ k2)-Paths, and Eilam-
Tzoreff [12] showed the NP-completeness of Edge-Disjoint (≤ k1, ∗)-Paths even when k1 equals the (s1, t1)-distance.
For Edge-Disjoint (L1, L2)-Paths with L1 ∈ {= k1, ≥ k1} (same for L2 ∈ {= k1, ≥ k1}), we can easily establish their NP-
completeness by reductions from the classical Hamiltonian Path problem.

As for the parameterized complexity, there are a few results in connection with our Edge-Disjoint (L1, L2)-Paths. Golo-
vach and Thilikos [19] obtained an 2O (pl)m log n-time algorithm for Edge-Disjoint Paths when every path has length at
most l. For a single pair (s, t) of vertices, an (s, t)-path of length exactly l can be found in time O (2.619lm log2 n) [14,
25], O ∗(2.5961l) [31] or O ∗(2.554l) [29]. Note that the related problem of finding a path of length l can be solved in
time O (2.619ln log2 n) [14,25]. For the problem of finding an (s, t)-path of length at least l, Bodlaender [3] derived an
O (22l(2l)!n + m)-time algorithm; Gabow and Nie [17] designed an ll2O (l)mn log n-time algorithm; and FPT algorithms of
Fomin et al. [14] for cycles and paths can be adapted to yield an 8l+o(l)m log2 n-time algorithm. Furthermore, Fomin et
al. [15] obtained an O ∗(4.884k)-time algorithm. Recently, Araujo et al. [2] have studied vertex-disjoint (s, t)-paths with
length constraints in digraphs.

Our Contributions. In this paper, we investigate the parameterized complexity of Edge-Disjoint (L1, L2)-Paths for the 9
different length constraints and obtain FPT algorithms for 7 of them (see Table 1 for a summary).

In particular, we use random partition in a nontrivial way to obtain FPT algorithms for Edge-Disjoint (= k1, ∗)-Paths and
Edge-Disjoint (= k1, ≥ k2)-Paths. This is achieved by bounding the number of some special edges, called “nearby-edges”, in
the two paths P1 and P2 by a function of k1 and k2. We also consider polynomial kernels and prove that all 9 cases admit
no polynomial kernel unless N P ⊆ coN P/poly, which easily extends to variations of edge/vertex-disjoint (L1, L2)-paths
problems for undirected/directed graphs.

In the rest of the paper, we fix notation and give definitions in Section 2, present FPT algorithms for 7 cases in Section 3,
and show the nonexistence of polynomial kernels in Section 4. We conclude with some open problems in Section 5.

2. Notation and definitions

Unless specified otherwise, all graphs G = (V , E) in the paper are simple undirected connected graphs, and we use m
and n, respectively, for the numbers of edges and vertices of G . For two vertices u and v in G , their distance is denoted by
d(u, v). We use d(v, P) to denote the distance between a vertex v and a path P , i.e., d(v, P) = minu∈V (P) d(v, u). For two
vertices u, v on a path P , we use P [u, v] to denote the (u, v)-section of P , i.e., (u, v)-path in P ; and P−1[u, v] to denote
P [u, v] in reverse order. We refer to [30] for basic definitions of graph theory.

For simplicity, we write O (2.01 f (k)) for 2 f (k)+o(f (k)) as the latter is O ((2 + ε) f (k)) for any constant ε > 0. In particular,
2kkO (log k) = 2k+O (log2 k) = O (2.01k).

For an instance (I, k) of a parameterized problem �, the main input I is encoded with some finite alphabet � and
parameter k ∈ N is encoded in unary. Problem � is fixed-parameter tractable (FPT in short) [11] if there is an algorithm
that solves every instance (I, k) in time f (k)|I|O (1) for some computable function f . In this paper, kernels for � refer to
generalized kernels defined below.

Definition 1. (see [4]) A generalized kernelization from a parameterized problem � to another parameterized problem �′ is
an algorithm that takes time polynomial in |I| + k for input (I, k) ∈ � and outputs an instance (I ′, k′) ∈ �′ such that
(a) (I, k) is a yes-instance of � if and only if (I ′, k′) is a yes-instance of �′ , and
(b) both |I ′| and k′ are bounded above by a computable function g(k).
The output (I ′, k′) is a kernel, and a polynomial kernel if g(k) is a polynomial.

The above definition is naturally generalized to polynomial compressions by relaxing the target problem �′ to any problem
(instead of parameterized problem), i.e., language L ⊆ �∗ .

L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284 277
Definition 2. (see [5]) Let � be a parameterized problem and L ⊆ �∗ a language. A polynomial compression from � to L is
an algorithm that takes time polynomial in |I| + k for input (I, k) ∈ � and outputs a string y ∈ �∗ such that
(a) (I, k) is a yes-instance of � if and only if y ∈ L, and
(b) the length of y is bounded above by a polynomial of k.

For simplicity in discussions, we call a parameterized problem incompressible when it admits no polynomial compression
(hence no polynomial kernel) under the assumption that NP � coNP/poly.

For the purpose of derandomization, we need the following concepts of universal sets [1] and perfect hash functions [7].
A family of binary vectors of length l forms (l, s)-universal sets if for every subset of size s of the indices, all 2s configurations
appear in the family. A family of functions from {1, 2, . . . , l} to {1, 2, . . . , d} is an (l, d, s)-perfect hash family if for any subset
S ⊆ {1, 2, . . . , l} of size s, there is a function in the family that is one-to-one on S . Here d is a power of 2 between
s(s − 1)/2 + 2 and 2s(s − 1) + 4.

3. FPT algorithms

One natural tool for finding edge-disjoint (L1, L2)-paths in a graph G is to use random partition: Randomly partition edges
of G to form two graphs G1 and G2 , and then independently find, for each i ∈ {1, 2}, path Pi in Gi to satisfy length constraint Li .

This approach yields a randomized FPT algorithm when Edge-Disjoint (L1, L2)-Paths satisfies the following two condi-
tions:

C1. Graph G admits a solution (P1, P2) such that the probability of “G1 contains P1 and G2 contains P2” is bounded below
by a function of k1 and k2.

C2. It takes FPT time to find paths P1 in G1 and P2 in G2.

Indeed, straightforward applications of the above method yield FPT algorithms for Edge-Disjoint (L1, L2)-Paths when
Li ∈ {≤ ki, = ki} for i ∈ {1, 2}. Note that we can also obtain FPT algorithms for these three cases of (L1, L2) by using much
involved representative sets based on Lemma 5.2 of Fomin et al. [14].

Theorem 1. Edge-Disjoint (L1, L2)-Paths can be solved in O (2.01k1+k2m logn) time for (L1, L2) = (≤ k1, ≤ k2), and
O (5.24k1+k2m log3 n) time for (L1, L2) = (≤ k1, = k2) or (= k1, = k2).

Proof. For any solution (P1, P2) of Edge-Disjoint (L1, L2)-Paths and a random edge partition of G into two graphs G1 and
G2, the probability that G1 contains P1 and G2 contains P2 is at least 1/2k1+k2 for all three cases of (L1, L2). Since it takes
O (m) time by BFS and O (2.619lm log2 n) time by an algorithm of Fomin et al. [14] to find an (s, t)-path of length at most
l and exactly l, respectively, between two given vertices s and t , this random partition method gives us a randomized FPT
algorithm with success probability at least 1/2k1+k2 .

For derandomization, we use a family of (m, r)-universal sets, where r = k1 + k2, of size 2rr O (log r) log m [20]. Since

2rr O (log r) log m · m = 2r+O (log2 r)m log n = O (2.01rm log n)

and

2rr O (log r) log m · (2.619k1 + 2.619k2)m log2 n = O (5.24rm log3 n),

we obtain the claimed time bounds in the theorem. �
For other cases of (L1, L2), a random edge-partition of G does not, unfortunately, guarantee condition C1 because of

possible long paths in a solution. To cope with such cases, we define some special edges called nearby-edges and then use
random partition on such edges to ensure condition C1 by limiting their numbers in some solutions by polynomials of k1
and k2.

Definition 3. A vertex v is a nearby-vertex if min{d(v, s1), d(v, t1)} ≤ k1/2, and an edge is a nearby-edge if its two end-
vertices are both nearby-vertices.

In the next two subsections, we rely on random partition of nearby-edges to obtain FPT algorithms to solve Edge-Disjoint
(L1, L2)-Paths for the following four cases of (L1, L2): (≤ k1, ∗), (= k1, ∗), (≤ k1, ≥ k2) and (= k1, ≥ k2).

We note that such a nontrivial way of applying random partition was initially used by Cai et al. [9] in two examples of
their random separation method for graphs of bounded degeneracy, and was also used later by Cygan et al. [10] for Eulerian
deletion.

278 L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284
3.1. One short and one unconstrained

To obtain FPT algorithms for Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1, ∗) or (= k1, ∗), we first give an upper
bound on the number of nearby-edges in a special solution.

Lemma 1. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G = (V , E), P1 an (s1, t1)-path of length at most k1, and P2 a
minimum-length (s2, t2)-path edge-disjoint from P1. Then

1. all edges in P1 are nearby-edges, and
2. P2 contains at most (k1 + 1)2 nearby-vertices and (k1 + 1)2 − 1 nearby-edges.

Proof. Statement 1 is obvious and we focus on Statement 2. For this purpose, we call a vertex a P1-near vertex if its distance
to P1 is at most k1/2, and show first that P2 contains at most (k1 + 1)2 P1-near vertices.

Consider an arbitrary vertex x in P1 and define

N∗
x = {v : v is a P1-near vertex in P2 and d(v, x) = d(v, P1)},

where d(v, P1) is the minimum distance between v and any vertex of P1. In other words, for each v ∈ N∗
x , x is a vertex in

P1 closest to v .
Order vertices in N∗

x along P2 from s2 to t2 and denote the first and last vertices by xs and xt respectively. In G , let P s

be a shortest (xs, x)-path and Pt a shortest (x, xt)-path. Then both P s and Pt are edge-disjoint from P1 as x is a vertex in
P1 closest to both xs and xt , and therefore P s Pt is an (xs, xt)-walk edge-disjoint from P1. Note that P s Pt contains at most
k1 edges as both P s and Pt have at most k1/2 edges.

If the (xs, xt)-section of P2 contains more than k1 edges, then we can replace it by P s Pt to obtain an (s2, t2)-walk that is
edge-disjoint from P1 and shorter than P2, contradicting the minimality of P2. Therefore, the (xs, xt)-section of P2 contains
at most k1 edges, implying that it contains at most k1 + 1 P1-near vertices, i.e., |N∗

x | ≤ k1 + 1. Since P1 has at most k1 + 1
vertices and every P1-near vertex in P2 belongs to N∗

x for some vertex x in P1, we see that P2 contains at most (k1 + 1)2

P1-near vertices.
Since s1 and t1 are vertices of P1, every nearby-vertex is a P1-near vertex. Therefore P2 contains at most (k1 + 1)2

nearby-vertices, and hence at most (k1 + 1)2 − 1 nearby-edges. �
The above corollary lays the ground for the following randomized FPT algorithm using random partition of nearby-edges

to solve Edge-Disjoint (≤ k1, ∗)-Paths. The algorithm also works for Edge-Disjoint (= k1, ∗)-Paths by changing “length
≤ k1” to “length k1” in Step 3.

Algorithm 1. Edge-Disjoint (≤ k1, ∗)-Paths.

1. Find all nearby-edges by two rounds of BFS, one from s1 and the other from t1.
2. Randomly color each nearby-edge by color 1 or 2 with probability 1/2, and color all remaining edges of G by color 2.

Let Gi (i = 1, 2) be the graph consisting of edges of color i.
3. Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2 in G2. Return (P1, P2) as a solution if both P1

and P2 exist, and “No” otherwise.

We remark that for both problems in the following theorem, our derandomized version of Algorithm 1 actually finds a
solution with minimum total length of the two paths whenever G admits a solution.

Theorem 2. Edge-Disjoint (≤ k1, ∗)-Paths can be solved in 2O (k1 log k1)m logn time, and Edge-Disjoint (= k1, ∗)-Paths can be
solved in 2O (k1 log k1)m log3 n time.

Proof. We focus on Edge-Disjoint (≤ k1, ∗)-Paths as our analysis also works for Edge-Disjoint (= k1, ∗)-Paths with one
minor change. First we show that Algorithm 1 finds a solution in O (m) time with probability > 1/2k1+(k1+1)2

when G
admits a solution, and then we derandomize the algorithm to obtain the claimed time bounds.

Let (P1, P2) be a solution of G that minimizes the length of P2. By Lemma 1, we see that P1 is entirely inside G1 with
probability ≥ 1/2k1 and P2 is entirely inside G2 with probability > 1/2(k1+1)2

. Since it takes O (m) time by BFS to find a
shortest (s, t)-path between two vertices s and t , Algorithm 1 has probability > 1/2k1+(k1+1)2

to find a solution in O (m)

time.
We now discuss derandomization of Algorithm 1. Let m′ be the number of nearby-edges and r = k1 + (k1 + 1)2. We can

use standard (m′, r)-universal sets to derandomize it and obtain a deterministic FPT algorithm with running time

2rr O (log r) logn · m′ = O (2.01k2
1m logn).

L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284 279
We can reduce O (2.01k2
1) in running time to 2O (k1 log k1) by using an (m′, d, r)-perfect hash family for derandomization,

where d is a power of 2 between r(r − 1)/2 + 2 and 2r(r − 1) + 4. Note that such a number exists as 2r(r − 1) + 4 ≥
2(r(r − 1)/2 + 2). Bshouty [7] has shown that an (m′, d, r)-perfect hash family of size

O

(
d2r2 logm′

(d − r(r − 1)/2 − 1)2

)
= O (r6 log m′)

can be constructed in linear time. In Step 2 of Algorithm 1, we want to separate P1 from P2 by making P1 color 1 and P2

color 2. Instead of random colorings, we try each pair (f , F), where f is a function in an (m′, d, r)-perfect hash family and
F is a subset of {1, 2, . . . , d} with |F | = k1. We first identify the set of nearby-edges with {1, 2, . . . , m′}. Given a particular
pair (f , F), we color a nearby-edge e by color 1 if f (e) ∈ F , and color all other edges color 2. By the definition of perfect
hash family, if there is a solution (P1, P2), there will be a function f that is one-to-one on the set of nearby-edges in
E(P1) ∪ E(P2) and a subset F such that f (e) ∈ F if e ∈ E(P1) and f (e) /∈ F if e is a nearby-edge in E(P2). Since an
(m′, d, r)-perfect hash family has size O (r6 log m′) and can be constructed in linear time, there are

O (r6 logm′) ·
(

d

k1

)
= 2O (k1 log k1) log m′

choices for pairs (f , F). It follows that the total running time for the deterministic algorithm is

2O (k1 log k1) log m′ · m = 2O (k1 log k1)m log n.

For Edge-Disjoint (= k1, ∗)-Paths, Step 3 takes more time as it takes time O (2.619k1 m log2 n) to find an (s1, t1)-path P1

of length k1. Therefore our deterministic FPT algorithm for Edge-Disjoint (= k1, ∗)-Paths runs in time

2O (k1 log k1) log m′ · 2.619k1m log2 n = 2O (k1 log k1)m log3 n. �
3.2. One short and one long

We now consider Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1, ≥ k2) or (= k1, ≥ k2). These two cases are more
complicated because of length lower bound on (s2, t2)-paths. Fortunately, we can still put a good bound on the number of
nearby-edges in some special solutions, which enables us to use random partition on nearby-edges to obtain FPT algorithms
for these two cases as well. The proof of the following lemma is more involved than that of Lemma 1.

Lemma 2. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G = (V , E), P1 an (s1, t1)-path of length at most k1, and P2 a
minimum-length (s2, t2)-path that is edge-disjoint from P1 and has length at least k2. Then

1. all edges in P1 are nearby-edges, and
2. P2 contains at most k2

1 + 3k1 + 2k2 + 3 nearby-vertices and k2
1 + 3k1 + 2k2 + 2 nearby-edges.

Proof. Statement (1) is obvious by definition and we focus on Statement (2). For path P2 , let s∗ be its (k2 + 1)-th vertex
and we use s∗ to divide P2 into P s

2 = P2[s2, s∗] and P t
2 = P2[s∗, t2]. Obviously P s

2 can have at most k2 + 1 nearby-vertices
as it has k2 + 1 vertices only. For nearby-vertices in P t

2, we arrange them into two groups and then determine the size of
each group separately.

Consider an arbitrary nearby-vertex v . By definition, v has a path Q of length at most k1/2 to s1 or t1. Let v∗ be the
first vertex in P1 or P s

2 when we travel along Q from v . Since s1 and t1 are vertices of P1, v∗ always exists and any such
v∗ is called a docking vertex of v . We call v a near-P1 vertex (resp., near-P s

2 vertex) if it has a docking vertex in P1 (resp.,
P s

2). Therefore every nearby-vertex is either near-P1, near-P s
2, or both.

We also call the (v, v∗)-section Q [v, v∗] of Q a docking path. It is important to note that a docking path Q [v, v∗] has
length at most k1/2 and Q [v, v∗]\v∗ is always vertex-disjoint from both P1 and P s

2.
We are ready to put a bound on the number of near-P1 vertices in P t

2. For this purpose, we define for each vertex
x ∈ V (P1)\V (P s

2) the following set of near-P1 vertices:

D(x) = {v : v is a near-P1 vertex in P t
2 and x is a docking vertex of v .}

Following the same arguments for N∗
x in the proof of Lemma 1, we can use docking paths Q [xs, x] and Q −1[xt, x], re-

spectively, as paths P s and Pt in that proof to show that |D(x)| ≤ k1 + 1. Therefore P t
2 contains at most (k1 + 1)2 near-P1

vertices as |V (P1)\V (P s
2)| ≤ k1 + 1.

Next we consider the number of near-P s
2 vertices in P t

2. Suppose that P t
2 contains at least k1 + k2 + 2 near-P s

2 vertices.
Let y be the (
k1/2� + 2)-th near-P s

2 vertex in P t
2. Then there is a docking path Q from some docking vertex y′ of y in P s

2
to vertex y. Let z be the last vertex of P t that also appears in Q , and note that z lies in P2[y, t2]. Denote the (k2 + 1)-th
2

280 L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284
Fig. 1. Two possible cases for the intersection of Q and Pt
2.

last vertex of P2 by t∗ , and we consider two cases. For convenience, we call an (s2, t2)-path a valid (s2, t2)-path if it is
edge-disjoint from P1 and has length at least k2.

Case 1. Vertex z is in P2[y, t∗] (see the top part of Fig. 1).
Since Q is edge-disjoint from P1 and vertex-disjoint from P s

2\y′ , we can obtain from P2 an (s2, t2)-path P by replac-
ing P2[y′, z] with Q [y′, z]. Clearly |P | is a valid (s2, t2)-path as it contains P2[t∗, t2] which has length k. However, since
|P2[s∗, y]| ≥
k1/2� + 1 by the definition of y, we see that |P2[y′, z]| > |Q [y′, z]| as |Q | ≤ k1/2 and therefore |P | < |P2|,
which is impossible by the minimality of P2.

Case 2. Vertex z is in P2[t∗, t2] (see the bottom part of Fig. 1).
Since Q is edge-disjoint from P1, we can obtain from P2 an (s2, t2)-walk W edge-disjoint from P1 by replacing P2[y, z]

with Q −1[z, y], which implies a valid (s2, t2)-path P as the first k2 + 1 vertices of W are exactly vertices of P s
2. However

|Q [z, y]| < k1/2 and |P2[y, z]| ≥ k1/2, and hence |P | ≤ |W | < |P2|, which is again impossible by the minimality of P2.
Since both cases lead to a contradiction to the minimality of P2, we see that P t

2 can contain at most k1 + k2 + 1 near-P s
2

vertices. Together with at most (k1 + 1)2 near-P1 vertices in P t
2 and k2 + 1 vertices in P s

2, we conclude that P2 contains at
most k2

1 + 3k1 + 2k2 + 3 nearby-vertices, and hence at most k2
1 + 3k1 + 2k2 + 2 nearby-edges. �

The above corollary enables us to obtain a randomized FPT for Edge-Disjoint (≤ k1, ≥ k2) by replacing Step 3 of Algo-
rithm 1 as follows:

Step 3: Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2 of length ≥ k2 in G2. Return (P1, P2) as a
solution if both P1 and P2 exist, and “No” otherwise.

We remark that for both problems in the following theorem, our derandomized algorithm actually finds a solution with
minimum total length of the two paths whenever G admits a solution.

Theorem 3. Both Edge-Disjoint (≤ k1, ≥ k2)-Paths and Edge-Disjoint (= k1, ≥ k2)-Paths can be solved in
2O (k1 log(k1+k2)+k2)m log3 n time.

Proof. We focus on Edge-Disjoint (≤ k1, ≥ k2)-Paths as our analysis also works for Edge-Disjoint (= k1, ≥ k2)-Paths with
one minor change. Let (P1, P2) be a solution of G that minimizes the length of P2. By Lemma 2, we see that P1 is entirely
inside G1 with probability ≥ 1/2k1 and P2 is entirely inside G2 with probability ≥ 1/2k2

1+3k1+2k2+2. Since an (s2, t2)-path
P2 of length ≥ k2 in G2 can be found in time 8k2+o(k2)m log2 n [14], our randomized algorithm runs in the same amount of
time with success probability ≥ 1/2k2

1+4k1+2k2+2.
For derandomization, let m′ be the number of nearby-edges of G and set r = k2

1 + 4k1 + 2k2 + 2. Let d be a power of 2
between r(r − 1)/2 + 2 and 2r(r − 1) + 4. Similarly to Algorithm 1, we use an (m′, d, r)-perfect hash family to derandomize
our algorithm and obtain a deterministic FPT algorithm for Edge-Disjoint (≤ k1, ≥ k2)-Paths with running time

O (r6 log m′) ·
(

d

k1

)
· 8k2+o(k2)m log2 n = 2O (k1 log(k1+k2)+k2)m log3 n.

For Edge-Disjoint (= k1, ≥ k2)-Paths, Step 3 finds in G1 an (s1, t1)-path P1 of length k1 (instead of length ≤ k1) in
O (2.619k1m log2 n) time [14]. Therefore we obtain a deterministic FPT algorithm for the problem with running time

O (r6 log m′) ·
(

d

k1

)
· O (2.619k1m log2 n + 8k2+o(k2)m log2 n)

= 2O (k1 log(k1+k2)+k2)m log3 n. �

L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284 281
4. Incompressibility of disjoint-paths problems

Having obtained FPT algorithms to solve seven Edge-Disjoint (L1, L2)-Paths problems, we show in this section the nonex-
istence of polynomial kernels for Edge-Disjoint (L1, L2)-Paths.

Theorem 4. For each of the nine different length constraints (L1, L2), Edge-Disjoint (L1, L2)-Paths admits no polynomial compres-
sion (hence no polynomial kernel) unless N P ⊆ coN P/poly, even when the two terminal pairs are identical.

Remark. The above theorem also holds for digraphs, and for corresponding vertex-disjoint versions on both undirected
graphs and digraphs, which can be shown easily by standard reductions for undirected/directed graphs.

4.1. Tools for incompressibility

Our tools for incompressibility are polynomial parameter transformation (ppt-reduction in short) and relaxed-composition.

Definition 4. (see [5,6]) A ppt-reduction from a parameterized problem � to another parameterized problem �′ is an algo-
rithm that, for input (I, k) ∈ �, takes time polynomial in |I| + k and outputs an instance (I ′, k′) ∈ �′ such that
(a) (I, k) is a yes-instance of � if and only if (I ′, k′) is a yes-instance of �′ , and
(b) parameter k′ is bounded by a polynomial of k.

Theorem 5. (see [5]) If there is a ppt-reduction from a parameterized problem � to another parameterized problem �′, then �′
admits no polynomial compression (hence no polynomial kernel) whenever � admits no polynomial compression.

Relaxed-composition algorithms were defined by Cai and Cai [8] to form a relaxation of composition algorithms intro-
duced by Bodlaender et al. [4] in their pioneer work on the nonexistence of polynomial kernels, and a clipped version of
cross-composition [5] without polynomial equivalence relations.

Definition 5. (see [8]) A relaxed-composition algorithm for a parameterized problem � takes p instances (I1, k), . . . , (I p, k) ∈
� as input and, in time polynomial in

∑p
i=1 |Ii | + k, outputs an instance (I ′, k′) ∈ � such that

(a) (I ′, k′) is a yes-instance of � if and only if some (Ii, k) is a yes-instance of �, and
(b) k′ is polynomial in maxp

i |Ii | + log p.

Note that relaxed-composition algorithms relax the requirement in composition algorithms [4] for parameter k′ from
polynomial in k to polynomial in maxp

i=1 |Ii | + log p. As observed by Cai and Cai [8], Bodlaender et al. [4], together with a
result of Fortnow and Santhanam [16], implicitly proved the following theorem.

Theorem 6. (see [4,5,16]) If an NP-complete parameterized problem admits a relaxed-composition algorithm, then it has no polyno-
mial compression (hence no polynomial kernel), unless NP ⊆ coNP/poly.

4.2. One long or of exact length

We start with incompressibility of Edge-Disjoint (L1, L2)-Paths when at least one path is long or of exact length, i.e.,
when the length constraints (L1, L2) are (≤ k1, = k2), (≤ k1, ≥ k2), (= k1, = k2), (= k1, ≥ k2), (= k1, ∗), (≥ k1, ≥ k2), or
(≥ k1, ∗).

First we show that the following two path problems are incompressible by relaxed-compositions, and then give simple
ppt-reductions from these two problems to our problems under the above seven length constraints (L1, L2).

Long Path: For two given vertices s and t in a graph G , does G contain an (s, t)-path of length at least k?

Exact-Length Path: For two given vertices s and t in a graph G , does G contain an (s, t)-path of length exactly k?

Note that Long Path and Exact-Length Path are both NP-complete by a simple reduction from the classical Hamiltonian
Path problem ([GT39] in [18]).

Lemma 3. Neither Exact-Length Path nor Long Path admits polynomial compression unless N P ⊆ coN P/poly.

Proof. For a collection of graphs with terminals si and ti for the i-th graph Gi , we construct a graph G ′ by merging all si
into one new terminal s and all ti into one new terminal t . Clearly, G ′ contains an (s, t)-path of length k (resp., ≥ k) if and
only if one of Gi contains an (si, ti)-path of length k (resp., ≥ k). By Theorem 6, this relaxed-composition establishes the
lemma. �

282 L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284
Fig. 2. Construction of graph G for relaxed-composition of two instances, where each dashed line indicates a path of length k1 + 4. Graph G has exactly
two possible solutions as shown in the figure.

The above lemma enables us to use the following straightforward ppt-reduction from either Exact-Length Path or Long
Path to establish the incompressibility of the seven cases of length constraints for Edge-Disjoint (L1, L2)-Paths:

For a graph G with two vertices s and t , we add a path on l − 1 new vertices from s to t to form a new graph G ′ with
two identical terminal pairs (s, t).

It is obvious that G contains an (s, t)-path of length k if and only if G ′ contains two edge-disjoint (s, t)-paths one of
length l and the other length k. Therefore we can set l to either k1 or k2 and use the above construction as a ppt-reduction
from Exact-Length Path or Long Path to settle seven cases in Theorem 4.

4.3. Two short paths

Now we consider the remaining two cases of length constraints (≤ k1, ≤ k2) and (≤ k1, ∗). The ppt-reductions for the
other seven cases do not work as finding an (s, t)-path of length at most k is polynomial time solvable. Here we will give
relaxed-composition algorithms to establish the incompressibility of Edge-Disjoint (L1, L2)-Paths for these two cases.

Lemma 4. Edge-Disjoint (≤ k1, ≤ k2)-Paths admits no polynomial compression (hence no polynomial kernel) unless NP ⊆
coNP/poly, even when two terminal pairs are identical.

Proof. Let I be a collection of p instances each with the same parameters k1, k2. We will construct a relaxed-composition
of I to establish the lemma. For this purpose, we first consider two arbitrary instances I ′ = (G ′, k1, k2, (s′, t′)) and I ′′ =
(G ′′, k1, k2, (s′′, t′′)) of the problem with identical terminal pairs, and construct from them an instance, denoted I ′ ⊕ I ′′ , such
that I ′ ⊕ I ′′ is a yes-instance if and only if one of I ′ and I ′′ is a yes-instance.

For instance I ′ ⊕ I ′′ , we construct a graph G with two identical terminal pairs (s, t), and set parameters of I ′ ⊕ I ′′ to
k1 + 4, k2 + 3(k1 + 4) + 1 as follows (see Fig. 2).

1. Take graphs G ′ and G ′′ , add vertices xs and xt , and a terminal pair (s, t).
2. Add edge sxs , a path of length k1 + 4 connecting s and s′′ , edges xss′ and xss′′ , and a path of length k1 + 4 connecting

xs and s′ .
3. Add edge txt , a path of length k1 + 4 connecting t and t′ , edges xtt′ and xtt′′ , and a path of length k1 + 4 connecting xt

and t′′ .

To see that I ′ ⊕ I ′′ satisfies the required property, we consider possible solutions of (P1, P2) in G . As shown in Fig. 2, P1
can be formed in exactly two different ways, and each forces a unique P2. Therefore there are exactly two possible solutions
(P1, P2) for G and it is easily checked that they have required lengths if and only if their sections inside G ′ (resp., G ′′) are
bounded above by k1 and k2.

L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284 283
With the construction of I ′ ⊕ I ′′ in hand, we can easily use the following divide-and-conquer Algorithm RC(I) to com-
pute a relaxed-composition of I . We may assume that |I| = 2d for some integer d, as we can always add some dummy
no-instances to I .

Algorithm RC(I).
Input: A collection I of 2d instances all having the same parameter values.
Output: A relaxed-composition of RC(I).

If I contains two instances I ′ and I ′′ only
then return I ′ ⊕ I ′′
else evenly split I into {I ′,I ′′} and return RC(I ′) ⊕ RC(I ′′).

Since |I ′| = |I ′′| = 2d−1, RC(I ′) and RC(I ′′) have the same parameter values. Therefore Algorithm RC(I) correctly
returns an instance that is a yes-instance if and only if at least one instance in I is a yes-instance.

Let k(d)
1 , k(d)

2 be the two parameters of RC(I). Then we have k(0)
1 = k1, k(0)

2 = k2, and{
k(d)

1 = k(d−1)
1 + 4

k(d)
2 = k(d−1)

2 + 3(k(d−1)
1 + 4) + 1.

This yields k(d)
1 = k1 + 4d and k(d)

2 = k2 + 3dk1 + d(6d + 7).
Note that both parameters are upper bounded by a polynomial in n + log p as d = log p and k1, k2 ≤ n. Also the construc-

tion of I ′ ⊕ I ′′ takes time linear in |I ′| +|I ′′|, and hence the algorithm constructs a relaxed-composition of I in time linear in
the total length of instances in I . Since the problem Edge-Disjoint (≤ k1, ≤ k2)-Paths is NP-complete [28], it follows from
Theorem 6 that the problem admits no polynomial compression (hence no polynomial kernel) unless N P ⊆ coN P/poly. �

The proof of the above lemma also works for Edge-Disjoint (≤ k1, ∗)-Paths by discarding the second parameter, and
therefore the problem admits no polynomial compression (hence no polynomial kernel) unless NP ⊆ coNP/poly.

5. Concluding remarks

We have obtained FPT algorithms to solve Edge-Disjoint (L1, L2)-Paths for seven of the nine different cases of length
constraints (L1, L2). On the other hand, we have also established the nonexistence of polynomial kernels for all nine cases,
which also easily extends to variations of edge/vertex-disjoint (L1, L2)-paths problems for undirected/directed graphs.

There are still many interesting problems in connection with the work of this paper, and here we highlight a few of
them.

Problem 1. Determine parameterized complexities of Edge-Disjoint (≥ k1, ∗)-Paths and Edge-Disjoint (≥ k1, ≥ k2)-Paths.

Since Edge-Disjoint (≥ k1, ∗)-Paths is equivalent to Edge-Disjoint (≥ k1, ≥ k2)-Paths for k2 = 1, an FPT algorithm for the
latter problem is also an FPT algorithm for the former one.

We may also consider edge-disjoint paths when solution paths (P1, P2) need to satisfy additional properties, and the
following problem is related to vertex-disjoint variation.

Problem 2. Determine the parameterized complexity of Edge-Disjoint (≤ k1, ≤ k2)-Paths when we also want to minimize
the number of vertices shared by solution paths (P1, P2).

Of course, we can consider edge-disjoint paths with length constraints for digraphs, which appear to be harder than
these problems on undirected graphs. Note that it is straightforward to obtain FPT algorithms by random partition for
(L1, L2) being (≤ k1, ≤ k2), (= k1, ≤ k2) or (= k1, = k2), but structural properties similar to Lemma 1 or Lemma 2 seem
unlikely for digraphs.

Problem 3. For digraphs, determine the parameterized complexity of Edge-Disjoint (L1, L2)-Paths.

Finally, we can also study vertex-disjoint paths problems with length constraints for both undirected and directed graphs.

Problem 4. Determine the parameterized complexity of Vertex-Disjoint (L1, L2)-Paths for undirected/directed graphs.

Declaration of Competing Interest

None declared.

284 L. Cai, J. Ye / Theoretical Computer Science 795 (2019) 275–284
Acknowledgements

The authors are grateful to the reviewers for their constructive suggestions.

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[2] J. Araújo, V.A. Campos, A.K. Maia, I. Sau, A. Silva, On the complexity of finding internally vertex-disjoint long directed paths, in: Latin American

Symposium on Theoretical Informatics, Springer, 2018, pp. 66–79.
[3] H.L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms 14 (1) (1993) 1–23.
[4] H.L. Bodlaender, R.G. Downey, M.R. Fellows, D. Hermelin, On problems without polynomial kernels, J. Comput. Syst. Sci. 75 (8) (2009) 423–434.
[5] H.L. Bodlaender, B.M. Jansen, S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math. 28 (1) (2014) 277–305.
[6] H.L. Bodlaender, S. Thomassé, A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theor. Comput. Sci. 412 (35) (2011) 4570–4578.
[7] N.H. Bshouty, Linear time constructions of some d-restriction problems, in: Proceedings of the 9th International Conference on Algorithms and Com-

plexity, Springer, 2015, pp. 74–88.
[8] L. Cai, Y. Cai, Incompressibility of H-free edge modification problems, Algorithmica 71 (3) (2014) 731–757.
[9] L. Cai, S.M. Chan, S.O. Chan, Random separation: a new method for solving fixed-cardinality optimization problems, in: Proceedings of the 2nd Inter-

national Workshop on Parameterized and Exact Computation, in: Lecture Notes in Computer Science, vol. 4169, Springer, 2006, pp. 239–250.
[10] M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk, I. Schlotter, Parameterized complexity of Eulerian deletion problems, Algorithmica 68 (1) (2014) 41–61.
[11] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[12] T. Eilam-Tzoreff, The disjoint shortest paths problem, Discrete Appl. Math. 85 (2) (1998) 113–138.
[13] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (4) (1976) 691–703.
[14] F.V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Efficient computation of representative families with applications in parameterized and exact algo-

rithms, J. ACM 63 (4) (2016) 29.
[15] F.V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, M. Zehavi, Long directed (s, t)-path: FPT algorithm, Inf. Process. Lett. (2018).
[16] L. Fortnow, R. Santhanam, Infeasibility of instance compression and succinct PCPs for NP, J. Comput. Syst. Sci. 77 (1) (2011) 91–106.
[17] H.N. Gabow, S. Nie, Finding long paths, cycles and circuits, in: Algorithms and Computation, Springer, 2008, pp. 752–763.
[18] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[19] P.A. Golovach, D.M. Thilikos, Paths of bounded length and their cuts: parameterized complexity and algorithms, Discrete Optim. 8 (1) (2011) 72–86.
[20] M. Naor, L.J. Schulman, A. Srinivasan, Splitters and near-optimal derandomization, in: Proceedings of the 36th Annual Symposium on Foundations of

Computer Science, IEEE, 1995, pp. 182–191.
[21] T. Ohtsuki, The two disjoint path problem and wire routing design, in: Proceedings of the 17th Symposium of Research Institute of Electric Communi-

cation on Graph Theory and Algorithms, Springer-Verlag, 1980, pp. 207–216.
[22] J.B. Orlin, Max flows in O(nm) time, or better, in: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, ACM, 2013,

pp. 765–774.
[23] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1) (1995) 65–110.
[24] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (3) (1980) 293–309.
[25] H. Shachnai, M. Zehavi, Representative families: a unified tradeoff-based approach, J. Comput. Syst. Sci. 82 (3) (2016) 488–502.
[26] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM 27 (3) (1980) 445–456.
[27] C. Thomassen, 2-linked graphs, Eur. J. Comb. 1 (4) (1980) 371–378.
[28] S. Tragoudas, Y.L. Varol, Computing disjoint paths with length constraints, in: Proceedings of the 23rd International Workshop on Graph-Theoretic

Concepts in Computer Science, Springer, 1997, pp. 375–389.
[29] D. Tsur, Faster deterministic parameterized algorithm for k-path, arXiv preprint arXiv:1808 .04185, 2018.
[30] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001.
[31] M. Zehavi, Mixing color coding-related techniques, in: Proceedings of the 23rd Annual European Symposium on Algorithms, Springer, 2015,

pp. 1037–1049.

http://refhub.elsevier.com/S0304-3975(19)30435-9/bib616C6F6E31393935636F6C6F72s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib617261756A6F32303138636F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib617261756A6F32303138636F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib626F646C61656E646572313939336C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib626F646C61656E6465723230303970726F626C656D73s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib626F646C61656E646572323031346B65726E656C697A6174696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib626F646C61656E646572323031316B65726E656Cs1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6273686F757479323031356C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6273686F757479323031356C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib63616932303134696E636F6D70726573736962696C697479s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6361693230303672616E646F6Ds1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6361693230303672616E646F6Ds1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib637967616E32303134706172616D65746572697A6564s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib646F776E657931393939706172616D65746572697A6564s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib65696C616D313939386469736A6F696E74s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6576656E31393736636F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib666F6D696E32303136656666696369656E74s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib666F6D696E32303136656666696369656E74s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib666F6D696E323031386C6F6E67s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib666F72746E6F7732303131696E666561736962696C697479s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6761626F773230303866696E64696E67s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib676172657932303032636F6D707574657273s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib676F6C6F76616368323031317061746873s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6E616F723139393573706C697474657273s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6E616F723139393573706C697474657273s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6F687473756B693139383074776Fs1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6F687473756B693139383074776Fs1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6F726C696E323031336D6178s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib6F726C696E323031336D6178s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib726F62657274736F6E313939356772617068s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7365796D6F7572313938306469736A6F696E74s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib73686163686E616932303136726570726573656E746174697665s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7368696C6F61636831393830706F6C796E6F6D69616Cs1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib74686F6D617373656E3139383032s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib747261676F7564617331393937636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib747261676F7564617331393937636F6D707574696E67s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7473757232303138666173746572s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7765737432303031696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7A6568617669323031356D6978696E67s1
http://refhub.elsevier.com/S0304-3975(19)30435-9/bib7A6568617669323031356D6978696E67s1

	Two edge-disjoint paths with length constraints
	1 Introduction
	2 Notation and deﬁnitions
	3 FPT algorithms
	3.1 One short and one unconstrained
	3.2 One short and one long

	4 Incompressibility of disjoint-paths problems
	4.1 Tools for incompressibility
	4.2 One long or of exact length
	4.3 Two short paths

	5 Concluding remarks
	Acknowledgements
	References

