
Theoretical Computer Science 795 (2019) 275–284
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Two edge-disjoint paths with length constraints ✩

Leizhen Cai 1, Junjie Ye 2

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2017
Received in revised form 20 May 2019
Accepted 3 July 2019
Available online 8 July 2019
Communicated by G.F. Italiano

Keywords:
Edge-disjoint paths
Random partition
FPT algorithm
Kernelization

We consider the problem of finding, for two pairs (s1, t1) and (s2, t2) of vertices in an 
undirected graph, an (s1, t1)-path P1 and an (s2, t2)-path P2 such that P1 and P2 share 
no edges and the length of each Pi satisfies constraint Li , where Li ∈ {≤ ki, = ki, ≥ ki, ∗}
with Li = “ ∗ ” indicating no length constraint on Pi .
We regard k1 and k2 as parameters and investigate the parameterized complexity of the 
above problem when at least one of P1 and P2 has a length constraint. For the 9 different 
cases of (L1, L2), we obtain FPT algorithms for 7 of them by using random partition backed 
by some structural results. On the other hand, we prove that the problem admits no 
polynomial kernel for all 9 cases unless N P ⊆ coN P/poly.

© 2019 Published by Elsevier B.V.

1. Introduction

Disjoint paths in graphs are fundamental and have been studied extensively in the literature. Given p pairs of terminal 
vertices (si, ti) for 1 ≤ i ≤ p in an undirected graph G , the classical Edge-Disjoint Paths problem asks whether G contains p
pairwise edge-disjoint paths Pi between si and ti for all 1 ≤ i ≤ p. The problem is NP-complete as shown by Even et al. [13], 
but is solvable in time O (mn) by network flow [22] if all vertices si (resp., ti) are the same vertex s (resp., t). When we 
regard p as a parameter, a celebrated result of Robertson and Seymour [23] on vertex-disjoint paths can be used to obtain 
an FPT algorithm for Edge-Disjoint Paths. On the other hand, Bodlaender et al. [6] have shown that the vertex-disjoint 
variation of Edge-Disjoint Paths admits no polynomial kernel unless N P ⊆ coN P/poly.

In this paper, we study Edge-Disjoint Paths with length constraint Li on each (si, ti)-path Pi and focus on the problem 
for two pairs of terminal vertices. The length constraint Li ∈ {≤ ki, = ki, ≥ ki, ∗} indicates that the length of Pi needs to 
satisfy Li . In particular, we use Li = “ ∗ ” to denote that the path Pi has no length constraint. We regard k1 and k2 as 
parameters, and study the parameterized complexity of the following problem.

Edge-Disjoint (L1, L2)-Paths

Instance: Graph G = (V , E), two pairs (s1, t1) and (s2, t2) of vertices with si �= ti for i = 1, 2.
Question: Does G contain (s1, t1)-paths P1 and (s1, t1)-paths P2 such that P1 and P2 share no edge and the length 

of Pi satisfies Li ?

✩ An earlier version was published in Proceedings of the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science, Istanbul, Turkey, 
2016, pp. 62–73.
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Table 1
Running times of FPT algorithms for Edge-Disjoint (L1, L2)-Paths under 9 different length con-
straints, where r = k1 log(k1 + k2) + k2.

|P2| = ∗ |P2| ≥ k2 |P2| = k2 |P2| ≤ k2

|P1| ≤ k1 2O (k1 log k1)m log n 2O (r)m logn O (5.24k1+k2 m log3 n) O (2.01k1+k2 m logn)

|P1| = k1 2O (k1 log k1)m log3 n 2O (r)m log3 n O (5.24k1+k2 m log3 n)

|P1| ≥ k1 open open

For instance, Edge-Disjoint (= k1, ∗)-Paths requires that |P1| = k1 but P2 has no length constraint. In this paper, we 
focus on Edge-Disjoint (L1, L2)-Paths where at least one path has a length constraint. Without loss of generality, we may 
assume that P1 always has a length constraint, i.e., L1 ∈ {≤ k1, = k1, ≥ k1}. This gives us 9 different length constraints for
Edge-Disjoint (L1, L2)-Paths, excluding symmetric cases.

Related Work. Edge-Disjoint (L1, L2)-Paths has been studied under the framework of classical complexity. Ohtsuki [21], 
Seymour [24], Shiloah [26], and Thomasssen [27] independently gave polynomial-time algorithms for Edge-Disjoint 
(∗, ∗)-Paths. Tragoudas and Varol [28] proved the NP-completeness of Edge-Disjoint (≤ k1, ≤ k2)-Paths, and Eilam-
Tzoreff [12] showed the NP-completeness of Edge-Disjoint (≤ k1, ∗)-Paths even when k1 equals the (s1, t1)-distance. 
For Edge-Disjoint (L1, L2)-Paths with L1 ∈ {= k1, ≥ k1} (same for L2 ∈ {= k1, ≥ k1}), we can easily establish their NP-
completeness by reductions from the classical Hamiltonian Path problem.

As for the parameterized complexity, there are a few results in connection with our Edge-Disjoint (L1, L2)-Paths. Golo-
vach and Thilikos [19] obtained an 2O (pl)m log n-time algorithm for Edge-Disjoint Paths when every path has length at 
most l. For a single pair (s, t) of vertices, an (s, t)-path of length exactly l can be found in time O (2.619lm log2 n) [14,
25], O ∗(2.5961l) [31] or O ∗(2.554l) [29]. Note that the related problem of finding a path of length l can be solved in 
time O (2.619ln log2 n) [14,25]. For the problem of finding an (s, t)-path of length at least l, Bodlaender [3] derived an 
O (22l(2l)!n + m)-time algorithm; Gabow and Nie [17] designed an ll2O (l)mn log n-time algorithm; and FPT algorithms of 
Fomin et al. [14] for cycles and paths can be adapted to yield an 8l+o(l)m log2 n-time algorithm. Furthermore, Fomin et 
al. [15] obtained an O ∗(4.884k)-time algorithm. Recently, Araujo et al. [2] have studied vertex-disjoint (s, t)-paths with 
length constraints in digraphs.

Our Contributions. In this paper, we investigate the parameterized complexity of Edge-Disjoint (L1, L2)-Paths for the 9 
different length constraints and obtain FPT algorithms for 7 of them (see Table 1 for a summary).

In particular, we use random partition in a nontrivial way to obtain FPT algorithms for Edge-Disjoint (= k1, ∗)-Paths and
Edge-Disjoint (= k1, ≥ k2)-Paths. This is achieved by bounding the number of some special edges, called “nearby-edges”, in 
the two paths P1 and P2 by a function of k1 and k2. We also consider polynomial kernels and prove that all 9 cases admit 
no polynomial kernel unless N P ⊆ coN P/poly, which easily extends to variations of edge/vertex-disjoint (L1, L2)-paths 
problems for undirected/directed graphs.

In the rest of the paper, we fix notation and give definitions in Section 2, present FPT algorithms for 7 cases in Section 3, 
and show the nonexistence of polynomial kernels in Section 4. We conclude with some open problems in Section 5.

2. Notation and definitions

Unless specified otherwise, all graphs G = (V , E) in the paper are simple undirected connected graphs, and we use m
and n, respectively, for the numbers of edges and vertices of G . For two vertices u and v in G , their distance is denoted by 
d(u, v). We use d(v, P ) to denote the distance between a vertex v and a path P , i.e., d(v, P ) = minu∈V (P ) d(v, u). For two 
vertices u, v on a path P , we use P [u, v] to denote the (u, v)-section of P , i.e., (u, v)-path in P ; and P−1[u, v] to denote 
P [u, v] in reverse order. We refer to [30] for basic definitions of graph theory.

For simplicity, we write O (2.01 f (k)) for 2 f (k)+o( f (k)) as the latter is O ((2 + ε) f (k)) for any constant ε > 0. In particular, 
2kkO (log k) = 2k+O (log2 k) = O (2.01k).

For an instance (I, k) of a parameterized problem �, the main input I is encoded with some finite alphabet � and 
parameter k ∈ N is encoded in unary. Problem � is fixed-parameter tractable (FPT in short) [11] if there is an algorithm 
that solves every instance (I, k) in time f (k)|I|O (1) for some computable function f . In this paper, kernels for � refer to 
generalized kernels defined below.

Definition 1. (see [4]) A generalized kernelization from a parameterized problem � to another parameterized problem �′ is 
an algorithm that takes time polynomial in |I| + k for input (I, k) ∈ � and outputs an instance (I ′, k′) ∈ �′ such that
(a) (I, k) is a yes-instance of � if and only if (I ′, k′) is a yes-instance of �′ , and
(b) both |I ′| and k′ are bounded above by a computable function g(k).
The output (I ′, k′) is a kernel, and a polynomial kernel if g(k) is a polynomial.

The above definition is naturally generalized to polynomial compressions by relaxing the target problem �′ to any problem 
(instead of parameterized problem), i.e., language L ⊆ �∗ .
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Definition 2. (see [5]) Let � be a parameterized problem and L ⊆ �∗ a language. A polynomial compression from � to L is 
an algorithm that takes time polynomial in |I| + k for input (I, k) ∈ � and outputs a string y ∈ �∗ such that
(a) (I, k) is a yes-instance of � if and only if y ∈ L, and
(b) the length of y is bounded above by a polynomial of k.

For simplicity in discussions, we call a parameterized problem incompressible when it admits no polynomial compression 
(hence no polynomial kernel) under the assumption that NP � coNP/poly.

For the purpose of derandomization, we need the following concepts of universal sets [1] and perfect hash functions [7]. 
A family of binary vectors of length l forms (l, s)-universal sets if for every subset of size s of the indices, all 2s configurations 
appear in the family. A family of functions from {1, 2, . . . , l} to {1, 2, . . . , d} is an (l, d, s)-perfect hash family if for any subset 
S ⊆ {1, 2, . . . , l} of size s, there is a function in the family that is one-to-one on S . Here d is a power of 2 between 
s(s − 1)/2 + 2 and 2s(s − 1) + 4.

3. FPT algorithms

One natural tool for finding edge-disjoint (L1, L2)-paths in a graph G is to use random partition: Randomly partition edges 
of G to form two graphs G1 and G2 , and then independently find, for each i ∈ {1, 2}, path Pi in Gi to satisfy length constraint Li .

This approach yields a randomized FPT algorithm when Edge-Disjoint (L1, L2)-Paths satisfies the following two condi-
tions:

C1. Graph G admits a solution (P1, P2) such that the probability of “G1 contains P1 and G2 contains P2” is bounded below 
by a function of k1 and k2.

C2. It takes FPT time to find paths P1 in G1 and P2 in G2.

Indeed, straightforward applications of the above method yield FPT algorithms for Edge-Disjoint (L1, L2)-Paths when 
Li ∈ {≤ ki, = ki} for i ∈ {1, 2}. Note that we can also obtain FPT algorithms for these three cases of (L1, L2) by using much 
involved representative sets based on Lemma 5.2 of Fomin et al. [14].

Theorem 1. Edge-Disjoint (L1, L2)-Paths can be solved in O (2.01k1+k2m logn) time for (L1, L2) = (≤ k1, ≤ k2), and
O (5.24k1+k2m log3 n) time for (L1, L2) = (≤ k1, = k2) or (= k1, = k2).

Proof. For any solution (P1, P2) of Edge-Disjoint (L1, L2)-Paths and a random edge partition of G into two graphs G1 and 
G2, the probability that G1 contains P1 and G2 contains P2 is at least 1/2k1+k2 for all three cases of (L1, L2). Since it takes 
O (m) time by BFS and O (2.619lm log2 n) time by an algorithm of Fomin et al. [14] to find an (s, t)-path of length at most 
l and exactly l, respectively, between two given vertices s and t , this random partition method gives us a randomized FPT 
algorithm with success probability at least 1/2k1+k2 .

For derandomization, we use a family of (m, r)-universal sets, where r = k1 + k2, of size 2rr O (log r) log m [20]. Since

2rr O (log r) log m · m = 2r+O (log2 r)m log n = O (2.01rm log n)

and

2rr O (log r) log m · (2.619k1 + 2.619k2)m log2 n = O (5.24rm log3 n),

we obtain the claimed time bounds in the theorem. �
For other cases of (L1, L2), a random edge-partition of G does not, unfortunately, guarantee condition C1 because of 

possible long paths in a solution. To cope with such cases, we define some special edges called nearby-edges and then use 
random partition on such edges to ensure condition C1 by limiting their numbers in some solutions by polynomials of k1
and k2.

Definition 3. A vertex v is a nearby-vertex if min{d(v, s1), d(v, t1)} ≤ k1/2, and an edge is a nearby-edge if its two end-
vertices are both nearby-vertices.

In the next two subsections, we rely on random partition of nearby-edges to obtain FPT algorithms to solve Edge-Disjoint 
(L1, L2)-Paths for the following four cases of (L1, L2): (≤ k1, ∗), (= k1, ∗), (≤ k1, ≥ k2) and (= k1, ≥ k2).

We note that such a nontrivial way of applying random partition was initially used by Cai et al. [9] in two examples of 
their random separation method for graphs of bounded degeneracy, and was also used later by Cygan et al. [10] for Eulerian 
deletion.
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3.1. One short and one unconstrained

To obtain FPT algorithms for Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1, ∗) or (= k1, ∗), we first give an upper 
bound on the number of nearby-edges in a special solution.

Lemma 1. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G = (V , E), P1 an (s1, t1)-path of length at most k1, and P2 a 
minimum-length (s2, t2)-path edge-disjoint from P1. Then

1. all edges in P1 are nearby-edges, and
2. P2 contains at most (k1 + 1)2 nearby-vertices and (k1 + 1)2 − 1 nearby-edges.

Proof. Statement 1 is obvious and we focus on Statement 2. For this purpose, we call a vertex a P1-near vertex if its distance 
to P1 is at most k1/2, and show first that P2 contains at most (k1 + 1)2 P1-near vertices.

Consider an arbitrary vertex x in P1 and define

N∗
x = {v : v is a P1-near vertex in P2 and d(v, x) = d(v, P1)},

where d(v, P1) is the minimum distance between v and any vertex of P1. In other words, for each v ∈ N∗
x , x is a vertex in 

P1 closest to v .
Order vertices in N∗

x along P2 from s2 to t2 and denote the first and last vertices by xs and xt respectively. In G , let P s

be a shortest (xs, x)-path and Pt a shortest (x, xt)-path. Then both P s and Pt are edge-disjoint from P1 as x is a vertex in 
P1 closest to both xs and xt , and therefore P s Pt is an (xs, xt)-walk edge-disjoint from P1. Note that P s Pt contains at most 
k1 edges as both P s and Pt have at most k1/2 edges.

If the (xs, xt)-section of P2 contains more than k1 edges, then we can replace it by P s Pt to obtain an (s2, t2)-walk that is 
edge-disjoint from P1 and shorter than P2, contradicting the minimality of P2. Therefore, the (xs, xt)-section of P2 contains 
at most k1 edges, implying that it contains at most k1 + 1 P1-near vertices, i.e., |N∗

x | ≤ k1 + 1. Since P1 has at most k1 + 1
vertices and every P1-near vertex in P2 belongs to N∗

x for some vertex x in P1, we see that P2 contains at most (k1 + 1)2

P1-near vertices.
Since s1 and t1 are vertices of P1, every nearby-vertex is a P1-near vertex. Therefore P2 contains at most (k1 + 1)2

nearby-vertices, and hence at most (k1 + 1)2 − 1 nearby-edges. �
The above corollary lays the ground for the following randomized FPT algorithm using random partition of nearby-edges 

to solve Edge-Disjoint (≤ k1, ∗)-Paths. The algorithm also works for Edge-Disjoint (= k1, ∗)-Paths by changing “length 
≤ k1” to “length k1” in Step 3.

Algorithm 1. Edge-Disjoint (≤ k1, ∗)-Paths.

1. Find all nearby-edges by two rounds of BFS, one from s1 and the other from t1.
2. Randomly color each nearby-edge by color 1 or 2 with probability 1/2, and color all remaining edges of G by color 2. 

Let Gi (i = 1, 2) be the graph consisting of edges of color i.
3. Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2 in G2. Return (P1, P2) as a solution if both P1

and P2 exist, and “No” otherwise.

We remark that for both problems in the following theorem, our derandomized version of Algorithm 1 actually finds a 
solution with minimum total length of the two paths whenever G admits a solution.

Theorem 2. Edge-Disjoint (≤ k1, ∗)-Paths can be solved in 2O (k1 log k1)m logn time, and Edge-Disjoint (= k1, ∗)-Paths can be 
solved in 2O (k1 log k1)m log3 n time.

Proof. We focus on Edge-Disjoint (≤ k1, ∗)-Paths as our analysis also works for Edge-Disjoint (= k1, ∗)-Paths with one 
minor change. First we show that Algorithm 1 finds a solution in O (m) time with probability > 1/2k1+(k1+1)2

when G
admits a solution, and then we derandomize the algorithm to obtain the claimed time bounds.

Let (P1, P2) be a solution of G that minimizes the length of P2. By Lemma 1, we see that P1 is entirely inside G1 with 
probability ≥ 1/2k1 and P2 is entirely inside G2 with probability > 1/2(k1+1)2

. Since it takes O (m) time by BFS to find a 
shortest (s, t)-path between two vertices s and t , Algorithm 1 has probability > 1/2k1+(k1+1)2

to find a solution in O (m)

time.
We now discuss derandomization of Algorithm 1. Let m′ be the number of nearby-edges and r = k1 + (k1 + 1)2. We can 

use standard (m′, r)-universal sets to derandomize it and obtain a deterministic FPT algorithm with running time

2rr O (log r) logn · m′ = O (2.01k2
1m logn).
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We can reduce O (2.01k2
1 ) in running time to 2O (k1 log k1) by using an (m′, d, r)-perfect hash family for derandomization, 

where d is a power of 2 between r(r − 1)/2 + 2 and 2r(r − 1) + 4. Note that such a number exists as 2r(r − 1) + 4 ≥
2(r(r − 1)/2 + 2). Bshouty [7] has shown that an (m′, d, r)-perfect hash family of size

O

(
d2r2 logm′

(d − r(r − 1)/2 − 1)2

)
= O (r6 log m′)

can be constructed in linear time. In Step 2 of Algorithm 1, we want to separate P1 from P2 by making P1 color 1 and P2

color 2. Instead of random colorings, we try each pair ( f , F ), where f is a function in an (m′, d, r)-perfect hash family and 
F is a subset of {1, 2, . . . , d} with |F | = k1. We first identify the set of nearby-edges with {1, 2, . . . , m′}. Given a particular 
pair ( f , F ), we color a nearby-edge e by color 1 if f (e) ∈ F , and color all other edges color 2. By the definition of perfect 
hash family, if there is a solution (P1, P2), there will be a function f that is one-to-one on the set of nearby-edges in 
E(P1) ∪ E(P2) and a subset F such that f (e) ∈ F if e ∈ E(P1) and f (e) /∈ F if e is a nearby-edge in E(P2). Since an 
(m′, d, r)-perfect hash family has size O (r6 log m′) and can be constructed in linear time, there are

O (r6 logm′) ·
(

d

k1

)
= 2O (k1 log k1) log m′

choices for pairs ( f , F ). It follows that the total running time for the deterministic algorithm is

2O (k1 log k1) log m′ · m = 2O (k1 log k1)m log n.

For Edge-Disjoint (= k1, ∗)-Paths, Step 3 takes more time as it takes time O (2.619k1 m log2 n) to find an (s1, t1)-path P1

of length k1. Therefore our deterministic FPT algorithm for Edge-Disjoint (= k1, ∗)-Paths runs in time

2O (k1 log k1) log m′ · 2.619k1m log2 n = 2O (k1 log k1)m log3 n. �
3.2. One short and one long

We now consider Edge-Disjoint (L1, L2)-Paths when (L1, L2) is (≤ k1, ≥ k2) or (= k1, ≥ k2). These two cases are more 
complicated because of length lower bound on (s2, t2)-paths. Fortunately, we can still put a good bound on the number of 
nearby-edges in some special solutions, which enables us to use random partition on nearby-edges to obtain FPT algorithms 
for these two cases as well. The proof of the following lemma is more involved than that of Lemma 1.

Lemma 2. Let (s1, t1) and (s2, t2) be two pairs of vertices in a graph G = (V , E), P1 an (s1, t1)-path of length at most k1, and P2 a 
minimum-length (s2, t2)-path that is edge-disjoint from P1 and has length at least k2. Then

1. all edges in P1 are nearby-edges, and
2. P2 contains at most k2

1 + 3k1 + 2k2 + 3 nearby-vertices and k2
1 + 3k1 + 2k2 + 2 nearby-edges.

Proof. Statement (1) is obvious by definition and we focus on Statement (2). For path P2 , let s∗ be its (k2 + 1)-th vertex 
and we use s∗ to divide P2 into P s

2 = P2[s2, s∗] and P t
2 = P2[s∗, t2]. Obviously P s

2 can have at most k2 + 1 nearby-vertices 
as it has k2 + 1 vertices only. For nearby-vertices in P t

2, we arrange them into two groups and then determine the size of 
each group separately.

Consider an arbitrary nearby-vertex v . By definition, v has a path Q of length at most k1/2 to s1 or t1. Let v∗ be the 
first vertex in P1 or P s

2 when we travel along Q from v . Since s1 and t1 are vertices of P1, v∗ always exists and any such 
v∗ is called a docking vertex of v . We call v a near-P1 vertex (resp., near-P s

2 vertex) if it has a docking vertex in P1 (resp., 
P s

2). Therefore every nearby-vertex is either near-P1, near-P s
2, or both.

We also call the (v, v∗)-section Q [v, v∗] of Q a docking path. It is important to note that a docking path Q [v, v∗] has 
length at most k1/2 and Q [v, v∗]\v∗ is always vertex-disjoint from both P1 and P s

2.
We are ready to put a bound on the number of near-P1 vertices in P t

2. For this purpose, we define for each vertex 
x ∈ V (P1)\V (P s

2) the following set of near-P1 vertices:

D(x) = {v : v is a near-P1 vertex in P t
2 and x is a docking vertex of v .}

Following the same arguments for N∗
x in the proof of Lemma 1, we can use docking paths Q [xs, x] and Q −1[xt, x], re-

spectively, as paths P s and Pt in that proof to show that |D(x)| ≤ k1 + 1. Therefore P t
2 contains at most (k1 + 1)2 near-P1

vertices as |V (P1)\V (P s
2)| ≤ k1 + 1.

Next we consider the number of near-P s
2 vertices in P t

2. Suppose that P t
2 contains at least k1 + k2 + 2 near-P s

2 vertices. 
Let y be the (
k1/2� + 2)-th near-P s

2 vertex in P t
2. Then there is a docking path Q from some docking vertex y′ of y in P s

2
to vertex y. Let z be the last vertex of P t that also appears in Q , and note that z lies in P2[y, t2]. Denote the (k2 + 1)-th 
2
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Fig. 1. Two possible cases for the intersection of Q and Pt
2.

last vertex of P2 by t∗ , and we consider two cases. For convenience, we call an (s2, t2)-path a valid (s2, t2)-path if it is 
edge-disjoint from P1 and has length at least k2.

Case 1. Vertex z is in P2[y, t∗] (see the top part of Fig. 1).
Since Q is edge-disjoint from P1 and vertex-disjoint from P s

2\y′ , we can obtain from P2 an (s2, t2)-path P by replac-
ing P2[y′, z] with Q [y′, z]. Clearly |P | is a valid (s2, t2)-path as it contains P2[t∗, t2] which has length k. However, since 
|P2[s∗, y]| ≥ 
k1/2� + 1 by the definition of y, we see that |P2[y′, z]| > |Q [y′, z]| as |Q | ≤ k1/2 and therefore |P | < |P2|, 
which is impossible by the minimality of P2.

Case 2. Vertex z is in P2[t∗, t2] (see the bottom part of Fig. 1).
Since Q is edge-disjoint from P1, we can obtain from P2 an (s2, t2)-walk W edge-disjoint from P1 by replacing P2[y, z]

with Q −1[z, y], which implies a valid (s2, t2)-path P as the first k2 + 1 vertices of W are exactly vertices of P s
2. However 

|Q [z, y]| < k1/2 and |P2[y, z]| ≥ k1/2, and hence |P | ≤ |W | < |P2|, which is again impossible by the minimality of P2.
Since both cases lead to a contradiction to the minimality of P2, we see that P t

2 can contain at most k1 + k2 + 1 near-P s
2

vertices. Together with at most (k1 + 1)2 near-P1 vertices in P t
2 and k2 + 1 vertices in P s

2, we conclude that P2 contains at 
most k2

1 + 3k1 + 2k2 + 3 nearby-vertices, and hence at most k2
1 + 3k1 + 2k2 + 2 nearby-edges. �

The above corollary enables us to obtain a randomized FPT for Edge-Disjoint (≤ k1, ≥ k2) by replacing Step 3 of Algo-
rithm 1 as follows:

Step 3: Find an (s1, t1)-path P1 of length ≤ k1 in G1, and an (s2, t2)-path P2 of length ≥ k2 in G2. Return (P1, P2) as a 
solution if both P1 and P2 exist, and “No” otherwise.

We remark that for both problems in the following theorem, our derandomized algorithm actually finds a solution with 
minimum total length of the two paths whenever G admits a solution.

Theorem 3. Both Edge-Disjoint (≤ k1, ≥ k2)-Paths and Edge-Disjoint (= k1, ≥ k2)-Paths can be solved in
2O (k1 log(k1+k2)+k2)m log3 n time.

Proof. We focus on Edge-Disjoint (≤ k1, ≥ k2)-Paths as our analysis also works for Edge-Disjoint (= k1, ≥ k2)-Paths with 
one minor change. Let (P1, P2) be a solution of G that minimizes the length of P2. By Lemma 2, we see that P1 is entirely 
inside G1 with probability ≥ 1/2k1 and P2 is entirely inside G2 with probability ≥ 1/2k2

1+3k1+2k2+2. Since an (s2, t2)-path 
P2 of length ≥ k2 in G2 can be found in time 8k2+o(k2)m log2 n [14], our randomized algorithm runs in the same amount of 
time with success probability ≥ 1/2k2

1+4k1+2k2+2.
For derandomization, let m′ be the number of nearby-edges of G and set r = k2

1 + 4k1 + 2k2 + 2. Let d be a power of 2 
between r(r − 1)/2 + 2 and 2r(r − 1) + 4. Similarly to Algorithm 1, we use an (m′, d, r)-perfect hash family to derandomize 
our algorithm and obtain a deterministic FPT algorithm for Edge-Disjoint (≤ k1, ≥ k2)-Paths with running time

O (r6 log m′) ·
(

d

k1

)
· 8k2+o(k2)m log2 n = 2O (k1 log(k1+k2)+k2)m log3 n.

For Edge-Disjoint (= k1, ≥ k2)-Paths, Step 3 finds in G1 an (s1, t1)-path P1 of length k1 (instead of length ≤ k1) in 
O (2.619k1m log2 n) time [14]. Therefore we obtain a deterministic FPT algorithm for the problem with running time

O (r6 log m′) ·
(

d

k1

)
· O (2.619k1m log2 n + 8k2+o(k2)m log2 n)

= 2O (k1 log(k1+k2)+k2)m log3 n. �
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4. Incompressibility of disjoint-paths problems

Having obtained FPT algorithms to solve seven Edge-Disjoint (L1, L2)-Paths problems, we show in this section the nonex-
istence of polynomial kernels for Edge-Disjoint (L1, L2)-Paths.

Theorem 4. For each of the nine different length constraints (L1, L2), Edge-Disjoint (L1, L2)-Paths admits no polynomial compres-
sion (hence no polynomial kernel) unless N P ⊆ coN P/poly, even when the two terminal pairs are identical.

Remark. The above theorem also holds for digraphs, and for corresponding vertex-disjoint versions on both undirected 
graphs and digraphs, which can be shown easily by standard reductions for undirected/directed graphs.

4.1. Tools for incompressibility

Our tools for incompressibility are polynomial parameter transformation (ppt-reduction in short) and relaxed-composition.

Definition 4. (see [5,6]) A ppt-reduction from a parameterized problem � to another parameterized problem �′ is an algo-
rithm that, for input (I, k) ∈ �, takes time polynomial in |I| + k and outputs an instance (I ′, k′) ∈ �′ such that
(a) (I, k) is a yes-instance of � if and only if (I ′, k′) is a yes-instance of �′ , and
(b) parameter k′ is bounded by a polynomial of k.

Theorem 5. (see [5]) If there is a ppt-reduction from a parameterized problem � to another parameterized problem �′, then �′
admits no polynomial compression (hence no polynomial kernel) whenever � admits no polynomial compression.

Relaxed-composition algorithms were defined by Cai and Cai [8] to form a relaxation of composition algorithms intro-
duced by Bodlaender et al. [4] in their pioneer work on the nonexistence of polynomial kernels, and a clipped version of 
cross-composition [5] without polynomial equivalence relations.

Definition 5. (see [8]) A relaxed-composition algorithm for a parameterized problem � takes p instances (I1, k), . . . , (I p, k) ∈
� as input and, in time polynomial in 

∑p
i=1 |Ii | + k, outputs an instance (I ′, k′) ∈ � such that

(a) (I ′, k′) is a yes-instance of � if and only if some (Ii, k) is a yes-instance of �, and
(b) k′ is polynomial in maxp

i |Ii | + log p.

Note that relaxed-composition algorithms relax the requirement in composition algorithms [4] for parameter k′ from 
polynomial in k to polynomial in maxp

i=1 |Ii | + log p. As observed by Cai and Cai [8], Bodlaender et al. [4], together with a 
result of Fortnow and Santhanam [16], implicitly proved the following theorem.

Theorem 6. (see [4,5,16]) If an NP-complete parameterized problem admits a relaxed-composition algorithm, then it has no polyno-
mial compression (hence no polynomial kernel), unless NP ⊆ coNP/poly.

4.2. One long or of exact length

We start with incompressibility of Edge-Disjoint (L1, L2)-Paths when at least one path is long or of exact length, i.e., 
when the length constraints (L1, L2) are (≤ k1, = k2), (≤ k1, ≥ k2), (= k1, = k2), (= k1, ≥ k2), (= k1, ∗), (≥ k1, ≥ k2), or 
(≥ k1, ∗).

First we show that the following two path problems are incompressible by relaxed-compositions, and then give simple 
ppt-reductions from these two problems to our problems under the above seven length constraints (L1, L2).

Long Path: For two given vertices s and t in a graph G , does G contain an (s, t)-path of length at least k?

Exact-Length Path: For two given vertices s and t in a graph G , does G contain an (s, t)-path of length exactly k?

Note that Long Path and Exact-Length Path are both NP-complete by a simple reduction from the classical Hamiltonian 
Path problem ([GT39] in [18]).

Lemma 3. Neither Exact-Length Path nor Long Path admits polynomial compression unless N P ⊆ coN P/poly.

Proof. For a collection of graphs with terminals si and ti for the i-th graph Gi , we construct a graph G ′ by merging all si
into one new terminal s and all ti into one new terminal t . Clearly, G ′ contains an (s, t)-path of length k (resp., ≥ k) if and 
only if one of Gi contains an (si, ti)-path of length k (resp., ≥ k). By Theorem 6, this relaxed-composition establishes the 
lemma. �
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Fig. 2. Construction of graph G for relaxed-composition of two instances, where each dashed line indicates a path of length k1 + 4. Graph G has exactly 
two possible solutions as shown in the figure.

The above lemma enables us to use the following straightforward ppt-reduction from either Exact-Length Path or Long 
Path to establish the incompressibility of the seven cases of length constraints for Edge-Disjoint (L1, L2)-Paths:

For a graph G with two vertices s and t , we add a path on l − 1 new vertices from s to t to form a new graph G ′ with 
two identical terminal pairs (s, t).

It is obvious that G contains an (s, t)-path of length k if and only if G ′ contains two edge-disjoint (s, t)-paths one of 
length l and the other length k. Therefore we can set l to either k1 or k2 and use the above construction as a ppt-reduction 
from Exact-Length Path or Long Path to settle seven cases in Theorem 4.

4.3. Two short paths

Now we consider the remaining two cases of length constraints (≤ k1, ≤ k2) and (≤ k1, ∗). The ppt-reductions for the 
other seven cases do not work as finding an (s, t)-path of length at most k is polynomial time solvable. Here we will give 
relaxed-composition algorithms to establish the incompressibility of Edge-Disjoint (L1, L2)-Paths for these two cases.

Lemma 4. Edge-Disjoint (≤ k1, ≤ k2)-Paths admits no polynomial compression (hence no polynomial kernel) unless NP ⊆
coNP/poly, even when two terminal pairs are identical.

Proof. Let I be a collection of p instances each with the same parameters k1, k2. We will construct a relaxed-composition 
of I to establish the lemma. For this purpose, we first consider two arbitrary instances I ′ = (G ′, k1, k2, (s′, t′)) and I ′′ =
(G ′′, k1, k2, (s′′, t′′)) of the problem with identical terminal pairs, and construct from them an instance, denoted I ′ ⊕ I ′′ , such 
that I ′ ⊕ I ′′ is a yes-instance if and only if one of I ′ and I ′′ is a yes-instance.

For instance I ′ ⊕ I ′′ , we construct a graph G with two identical terminal pairs (s, t), and set parameters of I ′ ⊕ I ′′ to 
k1 + 4, k2 + 3(k1 + 4) + 1 as follows (see Fig. 2).

1. Take graphs G ′ and G ′′ , add vertices xs and xt , and a terminal pair (s, t).
2. Add edge sxs , a path of length k1 + 4 connecting s and s′′ , edges xss′ and xss′′ , and a path of length k1 + 4 connecting 

xs and s′ .
3. Add edge txt , a path of length k1 + 4 connecting t and t′ , edges xtt′ and xtt′′ , and a path of length k1 + 4 connecting xt

and t′′ .

To see that I ′ ⊕ I ′′ satisfies the required property, we consider possible solutions of (P1, P2) in G . As shown in Fig. 2, P1
can be formed in exactly two different ways, and each forces a unique P2. Therefore there are exactly two possible solutions 
(P1, P2) for G and it is easily checked that they have required lengths if and only if their sections inside G ′ (resp., G ′′) are 
bounded above by k1 and k2.
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With the construction of I ′ ⊕ I ′′ in hand, we can easily use the following divide-and-conquer Algorithm RC(I) to com-
pute a relaxed-composition of I . We may assume that |I| = 2d for some integer d, as we can always add some dummy 
no-instances to I .

Algorithm RC(I).
Input: A collection I of 2d instances all having the same parameter values.
Output: A relaxed-composition of RC(I).

If I contains two instances I ′ and I ′′ only
then return I ′ ⊕ I ′′
else evenly split I into {I ′,I ′′} and return RC(I ′) ⊕ RC(I ′′).

Since |I ′| = |I ′′| = 2d−1, RC(I ′) and RC(I ′′) have the same parameter values. Therefore Algorithm RC(I) correctly 
returns an instance that is a yes-instance if and only if at least one instance in I is a yes-instance.

Let k(d)
1 , k(d)

2 be the two parameters of RC(I). Then we have k(0)
1 = k1, k(0)

2 = k2, and{
k(d)

1 = k(d−1)
1 + 4

k(d)
2 = k(d−1)

2 + 3(k(d−1)
1 + 4) + 1.

This yields k(d)
1 = k1 + 4d and k(d)

2 = k2 + 3dk1 + d(6d + 7).
Note that both parameters are upper bounded by a polynomial in n + log p as d = log p and k1, k2 ≤ n. Also the construc-

tion of I ′ ⊕ I ′′ takes time linear in |I ′| +|I ′′|, and hence the algorithm constructs a relaxed-composition of I in time linear in 
the total length of instances in I . Since the problem Edge-Disjoint (≤ k1, ≤ k2)-Paths is NP-complete [28], it follows from 
Theorem 6 that the problem admits no polynomial compression (hence no polynomial kernel) unless N P ⊆ coN P/poly. �

The proof of the above lemma also works for Edge-Disjoint (≤ k1, ∗)-Paths by discarding the second parameter, and 
therefore the problem admits no polynomial compression (hence no polynomial kernel) unless NP ⊆ coNP/poly.

5. Concluding remarks

We have obtained FPT algorithms to solve Edge-Disjoint (L1, L2)-Paths for seven of the nine different cases of length 
constraints (L1, L2). On the other hand, we have also established the nonexistence of polynomial kernels for all nine cases, 
which also easily extends to variations of edge/vertex-disjoint (L1, L2)-paths problems for undirected/directed graphs.

There are still many interesting problems in connection with the work of this paper, and here we highlight a few of 
them.

Problem 1. Determine parameterized complexities of Edge-Disjoint (≥ k1, ∗)-Paths and Edge-Disjoint (≥ k1, ≥ k2)-Paths.

Since Edge-Disjoint (≥ k1, ∗)-Paths is equivalent to Edge-Disjoint (≥ k1, ≥ k2)-Paths for k2 = 1, an FPT algorithm for the 
latter problem is also an FPT algorithm for the former one.

We may also consider edge-disjoint paths when solution paths (P1, P2) need to satisfy additional properties, and the 
following problem is related to vertex-disjoint variation.

Problem 2. Determine the parameterized complexity of Edge-Disjoint (≤ k1, ≤ k2)-Paths when we also want to minimize 
the number of vertices shared by solution paths (P1, P2).

Of course, we can consider edge-disjoint paths with length constraints for digraphs, which appear to be harder than 
these problems on undirected graphs. Note that it is straightforward to obtain FPT algorithms by random partition for 
(L1, L2) being (≤ k1, ≤ k2), (= k1, ≤ k2) or (= k1, = k2), but structural properties similar to Lemma 1 or Lemma 2 seem 
unlikely for digraphs.

Problem 3. For digraphs, determine the parameterized complexity of Edge-Disjoint (L1, L2)-Paths.

Finally, we can also study vertex-disjoint paths problems with length constraints for both undirected and directed graphs.

Problem 4. Determine the parameterized complexity of Vertex-Disjoint (L1, L2)-Paths for undirected/directed graphs.
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