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Abstract. For a given graph property Π (i.e., a collection Π of graphs),
the Π-Contraction problem is to determine whether the input graph
G can be transformed into a graph satisfying property Π by contracting
at most k edges, where k is a parameter. In this paper, we mainly focus
on the parameterized complexity of Π-Contraction problems for Π
being H-free (i.e., containing no induced subgraph isomorphic to H) for
various fixed graphs H .

We show that Clique Contraction (equivalently, P3-Free Con-

traction for connected graphs) is FPT (fixed-parameter tractable) but
admits no polynomial kernel unless NP ⊆ coNP/poly, and prove that
Chordal Contraction (equivalently, {Cl : l ≥ 4}-Free Contrac-

tion) is W[2]-hard. We completely characterize the parameterized com-
plexity of H-Free Contraction for all fixed 3-connected graphs H :
FPT but no polynomial kernel unless NP ⊆ coNP/poly if H is a com-
plete graph, and W[2]-hard otherwise. We also show that H-Free Con-

traction is W[2]-hard whenever H is a fixed cycle Cl for some l ≥ 4 or
a fixed path Pl for some odd l ≥ 5.

1 Introduction

Edge contraction is a fundamental operation in graph theory, and plays a crucial
role in the celebrated graph minor theory. An edge contraction in a graph iden-
tifies two endpoints of an edge, and eliminates loop and multiple edges in the
resulting graph. For a given graph propertyΠ (i.e., a collectionΠ of graphs), the
Π-Contraction problem asks whether the input graph can be modified into
a Π-graph, i.e. a graph satisfying property Π , by at most k edge contractions.

The complexity of edge contraction problems has been studied in the litera-
ture, but does not receive as much attention as graph modification problems in
terms of vertex and edge addition/deletion. Watanabe et al. [15] and Asano and
Hirata [1,2] proved that Π-Contraction is NP-complete if Π is finitely charac-
terized by 3-connected forbidden subgraphs, or Π is hereditary on contractions
and is determined by biconnected components.
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Recently, researchers have studied edge contraction problems from the per-
spective of parameterized complexity. Heggernes et al. [11] have obtained an
FPT algorithm for Bipartite Contraction that asks whether a graph can be
modified into a bipartite graph by at most k edge contractions. Later Heggernes
et al. [10] presented a 4.98knO(1) time algorithm for Tree Contraction and a
2k+o(k)+nO(1) time algorithm for Path Contraction. Golovach et al. [7] con-
sidered Π-Contraction for Π being the class of graphs of minimum degree at
least d and showed that the problem is FPT when both d and k are parameters,
but W[1]-hard when only k is the parameter and NP-complete when d = 14.
Furthermore, Golovach et al. [8] showed that Planar Contraction is FPT.

In this paper, we focus on the parameterized complexity of the following
H-Free Contraction problems, where a graph is H-free if it contains no
induced copy of H , i.e., an induced subgraph isomorphic to H . We note that
several important graph classes (e.g., cographs, triangle-free graphs, and claw-
free graphs) are characterized by H-freeness.

H-Free Contraction

Instance: Graph G, positive integer k as parameter.
Question: Can we obtain an H-free graph from G by at most k edge

contractions?

It is easy to see that whenever H is a fixed complete graph Kt, H-Free

Contraction is FPT as the only way to destroy a copy of Kt is to contract
some edges in the copy, which implies an FPT algorithm by the bounded search
tree method. However, the situation for H other than complete graphs is very
complicated as contractions can occur for edges not involved in any induced
copies of H . In this paper, we try to determine the parameterized complexity
of H-Free Contraction in terms of the structure of H , and we have made
important progress towards this goal by the following results:

• Clique Contraction (equivalently, P3-Free Contraction for connected
graphs) is FPT but admits no polynomial kernel unless NP ⊆ coNP/poly,
and Pl-Free Contraction is W[2]-hard for every fixed path Pl with odd
l ≥ 5.

• C3-Free Contraction is FPT but admits no polynomial kernel unless
NP ⊆ coNP/poly, and Cl-Free Contraction is W[2]-hard for every fixed
cycle Cl with l ≥ 4.

• Chordal Contraction is W[2]-hard, which is in contrast to that both
Chordal Completion and Chordal Deletion are FPT [3, 12, 13].

• For every fixed 3-connected graph H , H-Free Contraction is W[2]-hard
whenever H is not a complete graph. Otherwise, it is FPT but admits no
polynomial kernel unless NP ⊆ coNP/poly.

Our FPT algorithm forClique Contraction first finds a large “seed clique”
in the input graph, and then uses a branch-and-search algorithm to contract
other edges into the clique. This idea is useful for other edge contraction prob-
lems such as Split Contraction, which will appear in our future paper. For
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the W[2]-hardness proofs, all FPT reductions in this paper are from the classi-
cal Dominating Set problem that takes an integer k as parameter, and asks
whether an input graph G contains a dominating k-set, i.e., at most k vertices
V ′ s.t. every vertex in V (G)− V ′ is adjacent to some vertex in V ′.

All graphs in the paper are simple, finite, and undirected. For a graph G, we
denote its vertex set and edge set by V (G) and E(G) respectively. A graph is
chordal if it has no induced cycle of size greater than 3. For an integer t, Kt is
a complete graph on t vertices, Ct is a cycle on t vertices, and Pt is a path on t
vertices. The contraction of edge uv in G removes u and v from G, and replaces
them by a new vertex adjacent to precisely those vertices that were adjacent to
at least one of u or v. For a set of edges F ⊆ E(G), we use G/F to denote the
graph obtained from G by sequentially contracting all edges in F . If a graph
H with vertex set {h1, · · · , hl} can be obtained from graph G by a sequence of
edge contractions, then G is contractible to H . In this case, G has a H-witness
structure: a partition of V (G) into l sets W (h1), · · · ,W (hl), called witness sets,
such that each W (hi) induces a connected subgraph of G and for any two W (hi)
and W (hj), there is an edge between W (hi) and W (hj) in G iff hihj ∈ E(H).
We obtain H from G by contracting vertices in each W (hi) into a single vertex.

2 Path-Free Contraction

We start with Pl-Free Contraction problems for fixed l ≥ 3. Since edge con-
tractions preserve the connectedness of a graph and a graph is a complete graph
iff it is P3-free and connected, P3-Free Contraction for connected graphs is
equivalent to Clique Contraction that asks whether we can transform the
input graph into a clique (i.e., complete graph) by contracting at most k edges.

We note that transforming a n-vertex graph G into a clique by contracting
k edges is equivalent to finding a (n− k)-clique minor of G as an edge contrac-
tion reduces the number of vertices by one. Thus Clique Contraction is a
parametric dual of Maximum Clique Minor that takes as input a graph G
and an integer h, and asks whether G contains a clique Kh as a minor. Maxi-

mum Clique Minor is NP-complete as shown by Eppstein [6], and FPT when
parameterized by h following a celebrated result on graph minors by Robert-
son and Seymour [14]. The NP-completeness of Clique Contraction directly
follows from that of Maximum Clique Minor. Here we present an FPT algo-
rithm for Clique Contraction, which combines bounded search tree with a
kernelization of the problem from the second author’s PhD dissertation [9].

Theorem 1. Clique Contraction can be solved in O(27kk2k+5 + m) time,
but admits no polynomial kernel unless NP ⊆ coNP/poly.

Proof. For a vertex set A, we denote by E[A] the set of edges whose both end-
points are in A. For any two disjoint vertex sets B and C, we use E[B,C] to
denote the set of edges whose one endpoint is in B and the other is in C.

Since each edge contraction affects only two vertices, a n-vertex graph G
must contain a clique of (n − 2k) vertices Vc in order for G to be contractible
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to a clique by at most k contractions. We start by using an FPT algorithm for
Vertex Cover to find such vertex set Vc. Next, we construct a bounded search
tree and consider all possible edges in the solution set. In the search tree, we
branch out by contracting edges of E(G − Vc), edges of E[Vc, V (G) − Vc], and
edges of E[Vc] in sequence. See Fig. 1 for an illustration. Note that the number
of edges in E[Vc, V (G) − Vc] or E[Vc] might be very large. However, we do not
need to consider all edges. The trick is to compress the possible choices into a
special set of edges whose size is bounded by a function of k. Our algorithm
consists of the following steps:

1. Determine whether there is a set Vc of n− 2k vertices that induces a clique
in G. If yes, find Vc and let Vk = V (G)− Vc; otherwise, return “NO”.

2. We construct a search tree and label the root by the input instance (G, k).
We branch out at the root by contracting every possible set of at most k
edges in E[Vk] and label the new node of the tree by the resulting instance
(G′, k′), where k′ is the number of remaining edge contractions.

3. For each node (G′, k′) obtained in Step 2, we assume that vertices of Vk are
contracted into vertices V ′

k in G′. We branch out by every possible partition
V ′
k = (Vp, R) (Vp corresponds to the subset of V ′

k consisting of vertices not
involved in edge contractions). Let T = {v ∈ Vc | ∃w ∈ Vp, wv /∈ E(G′)}. If
|R| > k′ or |T | > 2k′, discard this node.
We continue to branch by contracting every possible set of |R| edges in
E[R, T ] that covers all vertices in R and label the new node of the tree by
the resulting instance (G′′, k′′). Here k′′ = k′ − |R|, and vertices in R are
merged into the large clique G′′[Vc].

4. For each node (G′′, k′′) obtained in Step 3, we arbitrarily choose a vertex
u ∈ Vc − T . We branch by contracting every k′′-subset of E[T ∪ {u}].

5. If there exists a leaf in this search tree labelled with a clique (in Step 4),
then return “YES”; otherwise, return “NO”.

Vk

Vc

Step 2

Vp
R

Vc
T

Step 3

Vp

Vc
T

u

Step 4

Fig. 1. Edges being considered for contractions (thick edges) in Step 2-4
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In Step 1, finding a (n − 2k)-clique is equivalent to finding a 2k-vertex cover
in the complement graph of G, which costs O(1.27382k + kn) time following a

known algorithm by Chen et. al. [4]. In Step 2, the root has at most
∑

k′
((|Vk|

2 )
k−k′

) ≤
∑

k′(2k2)k−k′
children. In Step 3, the total number of different partitions V ′

k =

(Vp, R) is 2|V
′
k| ≤ 22k, and for each partition we branch into at most |R||T | ≤ 2k′2

nodes. In Step 4, for each node we branch into atmost (
(|T |+1

2

)
)k

′′ ≤ (2k2)k
′
leaves.

Therefore the size of this search tree is bounded by
∑

k′(2k2)k−k′
22k2k′2(2k2)k

′
=

O(23kk2k+3), and each node of the tree takes O(m) time to generate. Thus, the
total running time of our branching algorithm is O(1.27382k + kn)+O(23kk2k+3)
O(m) = O(23kk2k+3m). Following a general result in the second author’s PhD dis-
sertation [9],CliqueContraction has a kernel ofO(22kk) vertices,which canbe
constructed in linear time. Combining this exponential kernel with our branching
algorithm, we obtain an FPT algorithm running in time O(27kk2k+5 +m).

For the correctness of the algorithm, it is easy to see that (G, k) has a solu-
tion when our algorithm outputs “YES”. On the other hand, suppose that G
contains a solution set S of size k. Our branching algorithm indeed simulates
the procedure of contracting S in G. First after contracting edges S ∩ E[Vk],
vertex set Vk is modified into a set V ′

k = Vp ∪ R where Vp consists of vertices
that are not involved in any edges of S \E[Vk]. Note that T is the set of vertices
in Vc that are not adjacent to at least one vertex of Vp. To make G into a clique,
every vertex in T must be incident with some edge in S \ E[Vk], implying that
T ≤ 2k′ where k′ = |S \E[Vk]|. For an arbitrary vertex u ∈ Vc−T , we construct
an edge set S∗ from S by removing edges {xy ∈ S : x, y ∈ Vc−T } and replacing
every xy in S with x ∈ T and y ∈ Vc − T by xu. It can be shown that S∗ is
also a solution of (G, k), and by Step 4 there always be a leaf in the search tree
labelled with G/S∗, implying that the algorithm outputs “YES”. The complete
proof will be given in the full paper.

We now turn to the non-existence of polynomial kernels for Clique Con-

traction. Due to space limit, we will only sketch the main idea here and
give the complete proof in the full paper. First we show that the following
One-Sided Dominating Set problem admits no polynomial kernel unless
NP ⊆ coNP/poly: Given a bipartite graph G = (X,Y ;E) and an integer t with
|X | being the parameter, does X have a subset of at most t vertices that dom-
inates Y ? The NP-completeness of the unparameterized version of the problem
easily follows from that of Dominating Set, and we can show that One-Sided

Dominating Set is OR-compositional, implying that it admits no polynomial
kernel unless NP ⊆ coNP/poly. Note that this problem is different from Red-

Blue Dominating Set (defined by Dom et al. [5]) whose solution set is in Y
instead of X .

Next we give a polynomial parameter transformation from One-Sided Dom-

inating Set to Clique Contraction. The main idea of the transforma-
tion is as follows: First we construct a bipartite graph G′ = (X ′, Y ′;E′) from
G = (X,Y ;E) by adding |X | − t new vertices Z to X and make them adjacent
to every vertex of Y , and adding a new vertex w to Y and make it adjacent to
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every vertex of X (see Fig. 2). Note that each vertex in Z must combine with
some vertices in X to form a dominating set for Y ′ = Y ∪ {w}. It is easy to see
that X has a dominating t-set for Y iff X ′ can be partitioned into |X | − t + 1
disjoint dominating sets for Y ′.

Then we replace Y ′ by 2(|X ′| − t′) + 1 = 2|X | − 1 copies Y1, · · · , Y2|X|−1

of Y where t′ = |X | − t + 1, connect every a ∈ Yi to b ∈ X ′ iff ab ∈ E′ for
i = 1, · · · , 2|X | − 1, and make X ′ and Y1 ∪ · · · ∪ Y2|X|−1, respectively, into two
cliques to form graph G′′ (see Fig. 2). If X ′ can be partitioned into t′ disjoint
sets S1, · · · , St′ each of which dominates Y ′, then we can contract vertices in
each Si into a single vertex to make G′′ into a clique. The total number of edge
contractions we use is Σi(|Si| − 1) = (Σi|Si|) − t′ = |X ′| − t′. Conversely if G′′

contains |X ′| − t′ edges whose contractions yield a clique, then obviously there
exists some Yj whose vertices are not involved in edge contractions. It is easy
to see that vertices in each witness set of X ′ form a dominating set for Yj and
the number of different witness sets in X ′ is at least t′, implying that X ′ can be
partitioned into t′ disjoint dominating sets for Y ′.

X

Y

G

X

Y

Z

w

G′

· · ·

X ′

Y1 Y2|X|−1

G′′

Fig. 2. An example of the transformation from One-Sided Dominating Set to
Clique Contraction with t = 1

Since X has a dominating t-set for Y in G iff G′′ can be modified into a clique
by using |X ′| − t′ = |X | − 1 edge contractions, Clique Contraction admits
no polynomial kernel unless NP ⊆ coNP/poly. 	


Because P3-Free Contraction on connected graphs is equivalent toClique

Contraction, we immediately have the following result.

Corollary 2. P3-Free Contraction is FPT but admits no polynomial kernel
unless NP ⊆ coNP/poly.

On the other hand, Pl-Free Contraction is hard for every odd l ≥ 5.

Theorem 3. For every fixed odd l ≥ 5, Pl-Free Contraction is W[2]-hard.

Proof. First we note the following easy FPT reduction from Pl-Free Contrac-

tion to Pl+2-Free Contraction for every l ≥ 3: For any graph G and positive
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integer k, we construct a graph G′ by attaching k + 1 leaves to each vertex v of
G, i.e., adding k + 1 new vertices and connecting them to v with new edges. It
is easy to see that (G, k) is a yes-instance of Pl-Free Contraction iff (G′, k)
is a yes-instance of Pl+2-Free Contraction.

Therefore we need only prove the theorem for the base case l = 5.
For this purpose, we give an FPT reduction from Dominating Set to P5-Free

Contraction.
Given an instance (G, k) with V (G) = {v1, · · · , vn}, we construct in polyno-

mial time a graph G′ as follows (see Fig. 3 for an illustration):

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).
• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• Create a (k + 1)-clique {z1, · · · , zk+1}, where each zi is made adjacent to u

and has a new vertex wi attaching to it.

v1

v2 v3

v4

y1
y2 y3

y4

x1

x2 x3
x4

u

z1 z2
z3

w1 w2
w3

y1 y4

x1

x2 x3
x4

{u, y2, y3}

z1 z2
z3

w1 w2
w3

(a) (b) (c)

Fig. 3. (a) Graph G with dominating set {v2, v3}; (b) Graph G′ obtained from G; (c)
P5-free graph G∗ obtained from G′ by contracting {uy2, uy3}

We claim that G has a dominating k-set iff G′ can be made into P5-free by
contracting at most k edges.

Suppose that T is a dominating k-set in G. We contract k edges {uyi : vi ∈ T }
in G′ to obtain a graph G∗. Note that u is made adjacent to every vertex of
{x1, · · · , xn} in G∗. It is easy to see that G∗ contains no induced 5-path.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a P5-free graph. We show that there exists a dominating k-set in G.
We may assume k < n, otherwise G always has a dominating k-set. Observe
that at least one induced path (u, zr, wr) for some 1 ≤ r ≤ k + 1 survives after
contracting F , which implies that each induced 3-path from some xi to u must
be destroyed to make G′ P5-free. Thus distance dG′/F (u, xi) ≤ 1 for i = 1, · · · , n.

We now use F to obtain a dominating set of G. Let R = {xi : ∃v, vxi ∈ F}
and R∗ = {yi : xi ∈ R}. Let S be a set of vertices in {y1, · · · , yn} that are



104 L. Cai and C. Guo

finally in the same witness set with u in the graph G′/F . It is easy to see that
|R∗| + |S| = |R| + |S| ≤ |F | ≤ k. Since for each 1 ≤ i ≤ n, dG′/F (u, xi) ≤ 1,
vertex xi is either contained in R or adjacent to some vertex of S in G′. This
implies that R∗ ∪ S dominates {x1, · · · , xn}, and thus G has a dominating set
of at most k vertices. 	


The reduction in Theorem 3 does not work for even number l, and new ideas
are needed to deal with even l.

3 Cycle-Free Contraction

In this section, we consider contraction problems concerning cycles. We show that
Cl-Free Contraction is W[2]-hard for every fixed l ≥ 4, and the reduction
in our proof also implies that Chordal Contraction, which is the same as
{Cl : l ≥ 4}-Free Contraction, is also W[2]-hard. It is worth noting that
two related graph modification problems Chordal Completion and Chordal

Deletion are both FPT [3,12,13], which gives us some evidence that contraction
seems harder than edge and vertex addition/deletion.

Theorem 4. Cl-Free Contraction is FPT for l = 3, but W[2]-hard for every
fixed l ≥ 4.

Proof. For l = 3, the problem is the same as K3-Free Contraction which
can be easily solved in O(3kn3) time using bounded search tree.

For every fixed l ≥ 4, we provide an FPT reduction from Dominating Set

to Cl-Free Contraction.
Given a graph G with V (G) = {v1, · · · , vn}, we construct in polynomial time

a graph G′ as follows:

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).
• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• For each xi, create a length-2 path and a length-(l− 2) path whose two ends

are identified with u and xi, these two paths form an induced l-cycle Hi.

For convenience, we refer to these n induced l-cycles H1, · · · , Hn as u-cycles.
We claim that G has a dominating k-set iff G′ can be made into a Cl-free graph
by contracting at most k edges.

Suppose that T is a dominating k-set in G, we contract k edges {uyi : vi ∈
T } in G′. In the resulting graph G∗, u is made adjacent to all vertices of
{x1, · · · , xn}. Therefore all u-cycles are destroyed and the size of the largest
induced cycle in G∗ is l− 1, implying that G′ is Cl-free.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a Cl-free graph. In particular, all u-cycles are destroyed in G′/F . We
may assume k < n, otherwise G always has a dominating k-set.

We consider the intersection between F and u-cycles. Let Fi = F ∩ E(Hi)
for i = 1, · · · , n. Observe that the only u-cycle destroyed by contraction of Fi is
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Hi, which can also be destroyed by contracting xiyi. Thus for every Fi that is
non-empty, we replace Fi by a single edge {xiyi}, and then obtain a set F ∗ from
F whose contraction destroys all u-cycles in G′. Since none edge of F ∗ lies in
any u-cycle, then for each 1 ≤ i ≤ n, u is either made adjacent to xi or identified
with xi by contracting F ∗, i.e., dG′/F∗(u, xi) ≤ 1. Using the same argument in
Theorem 3, we can use F ∗ to obtain a dominating set of G containing at most
|F ∗| ≤ k vertices. 	


Our proof in Theorem 4 actually shows that Π-Contraction is W[2]-hard
for Π being the class of graphs without induced cycles of length ≥ l for any
fixed l ≥ 4. We note that for l = 3, Π coincides with forests, and the problem
becomes FPT as shown by Heggernes et al. [10]. For l = 4, Π is exactly the
class of chordal graphs, and thus we have the following theorem for Chordal

Contraction.

Theorem 5. Chordal Contraction is W[2]-hard.

4 H-Free for 3-Connected H

Asano and Hirata [1] showed that Π-Contraction is NP-complete whenever
Π is characterized by a finite forbidden set of 3-connected graphs. However, their
reduction is not an FPT reduction and not useful in dealing with the parameter-
ized complexity of H-Free Contraction. In this section, we fully characterize
the parameterized complexity of H-Free Contraction for 3-connected H .

Theorem 6. Let H be a fixed 3-connected graph. If H is a complete graph,
then H-Free Contraction is FPT but admits no polynomial kernel unless
NP ⊆ coNP/poly. Otherwise H-Free Contraction is W[2]-hard.

Proof. If H is a complete graph Kt with t ≥ 3, we can easily obtain an FPT

algorithm running in O(
(
t
2

)k
nt) time by bounded search tree as the only way

to destroy a copy of Kt is to contract some edges in the copy. To show that
the problem has no polynomial kernel, we introduce a constrained satisfiabil-
ity problem Restricted-1s-In-4 Sat, prove that it is NP-complete and OR-
compositional and thus admits no polynomial kernel unless NP ⊆ coNP/poly,
and then give a polynomial parameter transformation from it to our problem
Kt-Free Contraction. Due to space limit, we omit the lengthy proofs here,
which are available from the PhD dissertation (§5.2) of the second author [9].

For the W[2]-hardness part of the theorem, we consider two cases in terms of
the structure of H .

Case 1. H is not chordal. We give an FPT reduction fromDominating Set to
H-Free Contraction. For a graph G with V (G) = {v1, · · · , vn}, we construct
a graph G′ as follows (see Fig. 4 for an illustration):

• Create an independent set {x1, · · · , xn} and a clique {y1, · · · , yn}.
• Make xi adjacent to yj iff i = j or vivj ∈ E(G).



106 L. Cai and C. Guo

• Create a new vertex u and make it adjacent to every vertex of {y1, · · · , yn}.
• Replicate n copies H1, · · · , Hn of H . For each Hi, arbitrarily choose two

non-adjacent vertices s and t in its largest induced cycle, and identify u with
s, and xi with t.

v1

v2

x1 x2

y1 y2

u

H G G′

Fig. 4. An example of the reduction from Dominating Set to H-Free Contraction

when H is 3-connected and non-chordal

We claim that G has a dominating k-set iff G′ can be made into an H-free
graph by contracting at most k edges. Suppose that T is a dominating k-set in
G. We contract k edges {uyi : vi ∈ T } in G′ to obtain a graph G∗, where u is
made adjacent to all vertices of {x1, · · · , xn}. We show that G∗ is H-free.

Let l (≥ 4) be the size of the largest induced cycle in H , and t (≥ 1) be the
number of different induced l-cycles in H . If G∗ contains an induced subgraph
H∗ that is isomorphic to H , then H∗ also has t different induced Cl. Observe
that G∗ − (H1 ∪ · · · ∪ Hn) is chordal, and each Hi in G∗ contains at most
t − 1 induced Cl because u and xi is adjacent now. Thus there exists p �= q
such that V (H∗) ∩ V (Hp) �= ∅ and V (H∗) ∩ V (Hq) �= ∅, which implies that
xp, xq, u ∈ V (H∗). However, removal of u, xp will disconnect H∗, contradicting
to the fact that H∗ is 3-connected. Therefore G∗ is an H-free graph.

Conversely, suppose that G′ contains at most k edges F whose contraction
results in a H-free graph. Similar to the proof in Theorem 4, there exists a set
F ∗ of at most k edges such that contraction of F ∗ destroys all induced copies
H1, · · · , Hn of H , and none edge of F ∗ lies in these copies. We can use F ∗ to
obtain a dominating set of G containing at most |F ∗| ≤ k vertices.

Case 2. H is chordal. The reduction for Case 1 does not work for 3-connected
chordal H , because the constructed graph G′ is a chordal graph. We will modify
the reduction by subdividing the clique {y1, · · · , yn} ∪ {u} and forcing contrac-
tions to occur in a specified set of edges.

Given an arbitrary instance (G, k) of Dominating Set, we construct an in-
stance (G′, 2k) ofH-Free Contraction in FPT time. Let V (G) = {v1, · · · , vn}
and we construct graph G′ as follows:
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• Create two independent sets: {x1, · · · , xn} and {y1, · · · , yn}.
• Make xi adjacent to yj and mark this edge iff i = j or vivj ∈ E(G).
• Create a new vertex u.
• For every pair of vertices {a, b} in {y1, · · · , yn} ∪ {u}, create a degree-2

vertex wa,b which is made adjacent to a and b. All these vertices constitute
the subdivision of a (n+ 1)-vertex clique.

• Replicate n copies H1, · · · , Hn of H . For each Hi, arbitrarily choose two
non-adjacent vertices s and t, and identify u with s, and xi with t. Mark all
edges in Hi.

For every marked edge e, we will prevent it from being contracted. For this
purpose, we need the following operation of attaching an expanded-H to an edge
e of a graph: subdivide an edge uv of a copy of H by a vertex w, and identify
edge uw with edge e. Note that after this operation, the contraction of e will
generate a copy of H . We attach 2k + 1 vertex-disjoint expanded-H ’s to e to
prevent e from being contracted since contracting e will generate 2k+1 induced
copies of H that cannot be destroyed by 2k edge contractions. Thus we can only
contract edges in {awa,b, bwa,b : a, b ∈ {y1, · · · , yn} ∪ {u}}.

We claim that G has a dominating k-set iff G′ can be made into an H-free
graph by at most 2k edge contractions. Suppose that T is a dominating k-set in
G. We contract 2k edges {uwu,yi, yiwu,yi : vi ∈ T } of G to obtain a graph G∗.
Note that u is identified with {yi : vi ∈ T } in G∗ and therefore is adjacent to
every vertex of {x1, · · · , xn}, implying that H1, · · · , Hn are destroyed. We show
that G∗ is H-free.

Assume that G∗ contains an induced subgraph H∗ isomorphic to H . By the
3-connectivity of H∗, it is clear that H∗ is entirely inside the part of G′ before
attaching expanded-H ’s. Since the subgraph of G∗ induced by {x1, · · · , xn} ∪
{y1, · · · , yn}∪{u}∪{wa,b : a, b ∈ {y1, · · · , yn}∪{u}} is triangle-free,H∗ intersects
Hi for some 1 ≤ i ≤ n. If H∗ contains a vertex outside Hi, then deleting u and
xi will disconnect this 3-connected graph H∗, implying a contradiction. Thus,
the vertex set V (H∗) is exactly the set V (Hi). However, the subgraph induced
by V (Hi) in G∗ has one more edge uxi than H , contradicting to the fact that
H∗ is isomorphic to H . Therefore G∗ is an H-free graph.

Conversely, suppose that G′ contains at most 2k edges F whose contraction
results in an H-free graph. Note that subgraphs H1, · · · , Hn in G′ are destroyed
by contracting F , which implies that u is made adjacent to each xi in G′/F . Let
S be a set of vertices in {y1, · · · , yn} that are finally in the same witness set with
u in G′/F . We have 2|S| ≤ |F | and S dominates {x1, · · · , xn}, implying that G
has a dominating set of at most |S| ≤ k vertices. 	


5 Concluding Remarks

We have studied H-Free Contraction problems in an attempt to obtain a
dichotomy theorem for their parameterized complexity in terms of the structure
of H , and we believe that techniques in the paper will be useful for further study
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of Π-Contraction problems. There are many natural and interesting problems
about H-Free Contraction and Π-Contraction in general, and we will
now discuss some open problems and propose some conjectures.

Unlike edge and vertex addition/deletions, edge contraction changes the struc-
ture of a graph less locally, and we feel that this nature makes edge contraction
problems much more harder than edge and vertex modification problems. In
general, we believe that H-Free Contraction is fixed-parameter intractable
unless H has a very special structure which limits the change.

Conjecture 7. For any fixed connected graph H, H-Free Contraction is
W[2]-hard unless H is a complete graph or some graph with at most 5 vertices.

In light of the above conjecture, it will be important to determine whether H-

Free Contraction is FPT for small graphs, in particular for H being P4 and
K1,3. Note that K1,t-Free Contraction is W[2]-hard for every fixed t ≥ 4 [9].

Problem 8. Determine whether P4-Free Contraction (or Cograph Con-

traction) and Claw-Free Contraction are FPT.

In connection with Conjecture 7, a confirmation of the following conjecture
will be useful.

Conjecture 9. Let H ′ be an induced subgraph of H. Then H-Free Contrac-

tion is W[2]-hard whenever H ′
-Free Contraction is.

For Pl-Free Contraction with even l ≥ 6, we feel that it is useful to
investigate how to prevent an edge from being contracted in order to settle the
following conjecture.

Conjecture 10. For every fixed l ≥ 6, Pl-Free Contraction is W[2]-hard.

Let F be a family of forbidden graphs. The F-Free Contraction problem
asks whether we can contract at most k edges in G to obtain a graph that is
H-free for all H ∈ F . Our work on H-Free Contraction may shed light on
this general problem, and the following problem may serve as a good starting
point.

Problem 11. Is it true that {H1, H2}-Free Contraction is W[2]-hard when
both H1-Free Contraction and H2-Free Contraction are W[2]-hard, and
FPT when both are FPT?

Finally, we believe that FPT algorithms for Clique Contraction and Kt-

Free Contraction can be improved.

Problem 12. Design faster FPT algorithms for Clique Contraction and
Kt-Free Contraction.
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