Vertex Covers: Indirect Certificates and New FPT Algorithms

CAI Leizhen

CSE, CUHK
Outline

- Introduction
- Indirect certificates
- FPT algorithms
- Conclusion
Introduction

Vertex Cover (NP-complete)
Input: Graph $G = (V,E)$, parameter k.
Question: Does G contain k vertices that cover all edges?
Task: Compute 2^n

Direct: $O(n^2)$ time.
Repeated squaring: $O(n^{1.59})$ or $O(n \log^2 n \log \log n)$ time.

Input size: $O(\log n)$.
Question: Can we do it in polynomial time?
Answer: No, because output size $\Theta(n)$.
Parameterized Complexity

Input $I \rightarrow$ Algorithm $A \rightarrow$ Output O

Time complexity: classical $T(|I|) \rightarrow$ 2D-way $T(|I|, |O|)$

Parameterized complexity: $T(|I|, k)$

k: parameter of interest, typically $|O|$, solution size, or structural parameter (e.g., number of edge deletions to obtain a planar graph).
FPT Algorithms

FPT algorithm: $f(k)n^{O(1)}$ time.

$FPT = \text{fixed-parameter tractable}$

$k^k n$

$4^k k^2 n^2$

$2^k n$

$2^{\sqrt{k}} n$

$n^2 + 2^k$

$1.2738^k + kn$

To solve NP-hard problems effectively for relatively small k.
FPT Algorithms

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>$n = 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>n^k</td>
<td>10^{30}</td>
<td>10^{60}</td>
<td>10^{150}</td>
<td>10^{300}</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>$n^{0.8k}$</td>
<td>10^{24}</td>
<td>10^{48}</td>
<td>10^{120}</td>
<td>10^{240}</td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>$2^k n$</td>
<td>10^{6}</td>
<td>10^{9}</td>
<td>10^{18}</td>
<td>10^{33}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.2738^k + kn$</td>
<td>10^{4}</td>
<td>10^{4}</td>
<td>10^{5}</td>
<td>10^{10}</td>
<td></td>
</tr>
</tbody>
</table>

Vertex Cover, Clique, Independent Set:

No problem to obtain optimal solutions for graphs with 200 vertices!
Vertex Cover

Input: Graph $G = (V,E)$, parameter k.
Question: Does G contain k vertices that cover all edges?

Task: FPT algorithms for Vertex Cover.
FPT Algorithms for Vertex Cover

Graph minor

Fellow and Langston (1986) \(\rightarrow O(f(k)n^3) \)
f(k) astronomical

Johnson (1987) \(\rightarrow O(f(k)n^2) \)
f(k) \(\approx 2^{2500k} \)

Matching

Papadimitriou and Yannakakis (1993) \(\rightarrow O(3^k kn) \)
FPT algorithms for Vertex Cover

Bounded search tree

- For any edge uv, either u or v must be in a solution $\rightarrow O(2^k kn)$
- Path P_3 $\rightarrow O(1.618^k kn)$
- Vertex of degree at least 3 $\rightarrow O(1.5^k kn)$
- Chan, Kanj, and Xia (2010) $\rightarrow O(1.2738^k + kn)$
Ways to Finish 100M

倒走 拿大顶 飞滚 旋翻 单腿跳 滑雪型转步
西施步 玉环醉酒 扭臀步 太空漫游
凌波虚步 精神病人思路广 猫行 梦游 旋风腿
僵尸跳 济公步 比翼双飞 秧歌摆 小鲜肉步
开车 租人 趟泥步 倒撵猴 乘火箭 喷 打的
快闪 最少能 弹弓 风火轮 交叉迴旋

March 2, 2019
IC-LYCS 2019, Okinawa, Japan
Introduction: Motivations

大道至简 Greatest truth is simple

- Better understanding
- Training students
- Intellectually challenging

化腐朽为神奇 Do bad things in clever ways
New FPT Algorithm for Vertex Cover

Randomly mark each vertex, output N(M).

M: marked vertices.
N(M): neighbors of marked vertices.
Certificate for Vertex Cover

Vertex Cover belongs to class NP.

Natural certificate: solution, i.e., a k-vertex cover X.

Alternative certificate: subset of X with at most $k - \log n$ vertices.
Theorem 1. For any minimal vertex cover X of a graph $G = (V,E)$, $V - X$ contains at most $|X|$ vertices C such that $N(C) = X$.

Indirect Certificate
Indirect Certificate

[Diagram of a network with interconnected nodes]

March 2, 2019

IC-LYCS 2019, Okinawa, Japan
Indirect Certificate

Given indirect certificate C, we can obtain vertex cover X in linear time.

Therefore C can be used as a certificate to verify that G indeed has a k vertex cover.
FPT Algorithm using Indirect Certificate

Partition vertices of G into blue vertices B and red vertices R such that
- B contains vertex cover X, and
- R contains indirect certificate C.

Once we have such a (B,R)-partition, Theorem 1 guarantees that $N(R)$ is a required vertex cover.

How to produce such a (B,R)-partition?
Randomized FPT Algorithm

Algorithm VC-IC

Step 1. Randomly and independently color each vertex either red or blue with probability $\frac{1}{2}$ to form red vertices R.

Step 2. Return $N(R)$ as a solution.

Theorem 2. Algorithm VC-IC finds, with probability at least 4^{-k}, a k-vertex cover of G, if it exists, in $O(m + n)$ time.

Note: The algorithm can be derandomized by $(n, 2k)$-universal sets.
Semi-random Partition

Repeat the following until all vertices of G are coloured:

- Randomly choose an uncoloured vertex \(v \), colour it red or blue with probability \(p \) for red and probability \(1-p \) for blue, and

- colour all neighbours of \(v \) blue if \(v \) is coloured red.
Random Selection

Optimal value for p is 1.

Randomly choose a vertex v and declare it to be not in solution, and hence put all vertices of $N(v)$ into solution.
Random Selection

Algorithm VC-SRP

Step 1. Repeat the following until all vertices are coloured:

Randomly and uniformly choose an uncoloured vertex v, colour v red and all neighbours of v blue to form a (B,R)-partition of V.

Step 2. Output $N(R)$ as X.

Theorem 3. Algorithm VC-SRP finds, with probability at least 2^{-k}, a k-vertex cover of G, if it exists, in $O(m + n)$ time.
Theorem 4. Every yes-instance \((G,k)\) of Vertex Cover admits an indirect certificate \(C\) with at most \(k/3\) vertices.

Success probability better

\[
\text{VC-IC}: 2.1166^{-k} \\
\text{VC-SRP}: 1.6633^{-k}
\]
Smaller Indirect Certificate
Conclusion

- Indirect certificates are interesting in their own right.
- Potential to use indirect certificates to obtain FPT algorithms.