
2. Consider any P3 on vertices u, v and w (vu, uw ∈ E), either put v or u,w
into VC. We construct a Bounded Search Tree by branching out at each node
with (G−v, k−1) and (G−{u,w}, k−2) for each P3 until k = 0 or no P3 left.

The remaining graph at each leaf node of the search tree is a disjoint
union of isolated vertices and edges. We put one endpoint of each edge into
VC to form a solution, answer “No” if k < E for all leaf nodes.

f(k) ≤ f(k − 1) + f(k − 2) +O(1) → f(k) ≤ 1.618k

3. By the following lemma, if there is an induced P3 (vu, uw ∈ E and
vw /∈ E), we must perform one of delete uv, delete uw or add vw.

Lemma A graph G is a disjoint union of complete graphs iff it has no
induced subgraph P3 (vu, uw ∈ E and vw /∈ E).

Construct a Bounded Search Tree by branching out at each node if there
is an induced P3 with (G− uv, k − 1),(G− uw, k − 1) and (G+ vw, k − 1),
until k = 0 or no induced P3 left. Answer “Y es” if some leaf node has no
induced P3, otherwise answer “No”.

f(k) ≤ 3f(k − 1) +O(1) → f(k) ≤ 3k

4. For each edge e = uv ∈ E′, a minimum vertex cover may contain u,
v or both. Consider each the 3k possible subsets S of E′, we put S into
vertex cover and see that G has a k-VC iff the bipartite graph G− S has a
(k − |S|)-VC.

Since maximum matching equals minimum vertex cover in bipartite
graphs, we can use Hopcroft–Karp algorithm and total time is O(3k

√
nm).

5. If a graph G has more than 2k edges, it always has a cut with k edges,
so answer ”Yes”; otherwise, G has at most 2k edges and thus at most 4k
vertices which is a O(k) kernel.

Proof: Suppose G has more than 2k edges, let [S1, S2] be a largeset cut.
For any vertex v ∈ S1, if v has more neighbours in S1 than in S2, then
put v into S2 and we get a larger cut. Similar argument holds for v ∈ S2.
Therefore, any vertex has more edges incident to it in the cut than not and
the cut has at least m/2 edges.
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6. Reduce to Vertex Cover Problem: Construct a graph G by adding a
vertex v for each point in S and an edge uv if dist(u, v) < d. The answer is
“Y es” iff G has a vertex cover of size at most k.

7. Put all points intersecting > k lines into P . Then any point intersects
≤ k lines. If there are > k2 lines uncovered, the answer is “No”; otherwise,
we have a kernel of O(k2) lines.

If we require each line covered by two points, then k points can cover at
most C2

k lines. If |L| > C2
k , then answer is “No”; otherwise, the instance

itself is a O(k2) kernel.

8. We give an FPT reduction from k-CLIQUE problem. Let (G, k) be an
instance of k-CLIQUE, we construct a graph G′ by subdividing each edge
uv ∈ E with a new vertex w. Denote the set of new vertices as Y and the
original vertex set of G as X, then X and Y are the two parts of bipartite
graph G′.

We show G has a k-clique iff G′ has k′ = k+C2
k vertices inducing k(k−1)

edges. Suppose G has a clique S of size k, then S and new vertices for each
edge of clique S induces k(k−1) edges in G′. Conversely, suppose S′ is a set
of k′ vertices such that G′[S′] has k(k − 1) edges. Since d(w) ≤ 2 for each
w ∈ Y , we can see that S′ ∩Y ≥ C2

k and S′ ∩X ≤ k. The vertices in S′ ∩X
has total degree k(k − 1), so it is a clique of size k in original graph G.

9. We give an FPT reduction from k-CLIQUE problem. Let (G, k) be an
instance of k-CLIQUE, we construct a graph G′ as follows. Denote degree
of vertex v as d(v) maximum degree of G as ∆. Add a (kn + 1)-clique S
and for each v ∈ G connect v with arbitrary ∆− d(v) vertices in S.

Now we show G′ has k vertices covering at most k∆−C2
k edges iff (G, k)

is an yes-instance of k-CILQUE. Suppose G has a clique C of size k, then C
covers exactly k∆− C2

k edges in G′. On the other hand, suppose C ′ covers
k∆− C2

k edges in G′, we can see that C ′ ∩ S = ∅ because any v ∈ S covers
at least kn edges. Note that d(v) = k∆ for each v ∈ G. Therefore, C ′ ∈ G
and is a clique.
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