
1. (a) 27. Apply blue rule and red rule when there is an unique edge to
color, then the blue edges are in any MST and the red edges are not. We
regard each subtree as a mega node, then we get the simplified graph (the
right one).

(b) No. The edge xy is colored blue and it must be in any MST of G.

(c) 7. If w(uv) = 7, then uv is the lightest edge in the cut [{u}, V −u] and
this will reduce mst(G) by 1. When w(uv) = 8, showmst(G) = mst(G+uv).

2. Continue from Case 2 in the notes. When e is colored red. If e is not
contained in T , then we are done. Otherwise, e ∈ T amd we will construct
a new MST T ′ that satisfies the color invariant.

Let u, v be two ends of e. The removal of e vertices of G into two subtrees
and we denote the subtree containing u as T1 and the other containing v as
T2.

Consider the cycle to which the red rule is used to color e, there is an-
other edge e′ on this cycle such that its two ends u′ and v′ belongs to T1

and T2 respectively.

Note that e′ is neither blue (every blue edge is in T ) nor red (red rule
is used for cycles without red edge), and w(e) ≥ w(e′). Therefore, T ′ =
T − e+ e′ is an MST satisfying the color invariant.

3. (a) Incorrect. If a cut [V ′, V − V ′] has two edges e1, e2, the algorithm
may add both edges into T which violates the blue rule.

1



(b) Correct. Contracting an edge e = {u, v} removes every cut [V ′, V −
V ′] with u ∈ V ′ and v ∈ V −V ′ and keeps all cuts with both u and v on the
same side. Blue rule does the same.

(c) Incorrect. In the following example, the algorithm may delete edge
cd for the cut X. But observe that 6 = mst(G) < mst(G− cd) = 8.

(d) Incorrect. Consider the same example in (c), the algorithm may first
pick a and add ab into T , and then pick c and add cd into T . Now every
vertex incident to some blue edges, the algorithm output a disconnected T .

4. (a) Addition of edge uv: the edge uv and the u − v path in T forms a
cycle without red edge, we can apply red rule. This takes O(m+ n) time.

(b) Deletion of an edge uv: if uv /∈ T , we are done; otherwise, the dele-
tion of uv break T into two trees T1, T2 where u ∈ T1 and v ∈ T2. There
exists exactly one cut [V (T1), V (T2)] without blue edges, and we apply Blue
Rule to it. This takes O(m+ n) time.

(c) Change weight of edge uv: delete uv and then add it back.

5. Constructing G∗ by adding a new vertex s′ and for each source s ∈ G,
add a new edge s′s with weight 0. Clearly there is no negative cycle in
dag G∗ and we can set h(v) = dG∗(s′, v) for all v ∈ V . The single source
shortest path of G∗ from s′ can be calculated in O(m+ n) time for dag G∗

2



as follows. First, topologically sort the vertices and then in this order set
dist(v) = min(dist(u) + w(uv)) for each uv ∈ E(G∗) and dist(s′) = 0.

6. Yes. First, Dijkstra’s algorithm still terminates. When calculatiug dis-
tance via a negative edge with tail s, because there is no negative cycle
d(s) = 0 will not change.

Next, we show that d(u) = δ(s, u) for each u added to S. Denote the
distance of the shorteste distance from s to u as δ(s, u). When running
Disjkstra’s algorithm, once u as added to S, d(u) is unchanged and should
be δ(s, u).

Suppose u is the first vertex added to S for which δ(s, u) ̸= d(u). Let p
be the shortest (s, u)-path, p must contains a negative edge e. Since every
negative edge has s as tail, we partition the path p into p1 and p2 where p1
starts with the first vertex of p and ends with the tail of e, and p2 contains
the rest. Since G has no negative cycle, we can see p2 is a shorter (s, u)-path
than p. This is a contradiction, so u doesn’t exist.

3


