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1. Parameterized intractability: Similar to the theory of NP-completeness, the theory
of parameterized intractability is built on complete classes formed by reductions from
seed problems.

2. SHORT TURING MACHINE ACCEPTANCE: W/[1]-complete but FPT for fixed alphabet.

Given a nondeterministic Turing Machine M, string x and integer & (in unary), determine
whether M accepts x in < k steps.

The problem is the seed problem for the basic intractable class W[1]-complete, analogous
to that TURING MACHINE ACCEPTANCE is the seed problem for NPC.

3. FPT-reduction: An FPT-reduction (a.k.a. parameterized many-one reduction) from a
parameterized problem II to another parameterized problem II’ is a function that maps
instance (I,k) € Il to (I', k") € I" such that

(a) (I,k) is an yes-instance iff (I’, k') is,

(b) the function is computable in time f(k)|7]°™), and

(c) k' < g(k) for some computable function g(k).
Many polynomial reductions for NPC are not FPT-reductions because of (c), and most
FPT-reductions in practice are polynomial reductions satisfying (c).
Fact: II' € FPT = II € FPT and therefore II ¢ FPT = II' ¢ FPT. Furthermore,

FPT-reductions are transitive.

4. Basic class W([1]: A parameterized problem II € WT1] if there is an FPT-reduction
from II to SHORT TURING MACHINE ACCEPTANCE, W/1/-hard if every problem in W/[1]
admits an FPT-reduction to II, and W/1]-complete if II is W[1]-hard and II € W[1].

5. Basic W[1]-complete problems: SHORT TURING MACHINE ACCEPTANCE, WEIGHTED
q-CNF SATISFIABILITY for each fixed ¢ > 2. k-CLIQUE, INDEPENDENT k-SET and SET
PACKING.
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. WEIGHTED ¢-CNF SATISFIABILITY: Does a CNF formula with each clause having no

more than ¢ literals admit a satisfying truth assignment with weight k7

SET PACKING: Does a collection C' of sets contain & mutually disjoint sets?

. IT € W11} if there is an FPT-reduction from II to WEIGHTED 2-CNF SATISFIABILITY.

For instance, INDEPENDENT k-SET € W[1] as its instance can be expressed as a weight-k
truth assignment for the 2-CNF expression A, ¢ p(Ti V T5).

. INDUCED TREE is W[1]-hard (Cai)

Does G contain k vertices V' such that G[V'] is a tree?

FPT-reduction from INDEPENDENT k-SET. Construct (G', k') from (G, k) of INDEPEN-
DENT k-SET by adding a (k — 1)-star K ,_; and connecting the center of the star to
every vertex of GG, and setting k' = 2k.

. SET PACKING is W[1]-hard

FPT-reduction from INDEPENDENT k-SET. For each vertex v of G, let E, be the set of
edges incident with v. The collection of sets is {E, : v € V'}.

MAXIMUM k-VERTEX COVER is W[1]-hard (Cai 2000) (a.k.a. PARTIAL VERTEX COVER)
Does GG contain k vertices that cover at least [ edges?

FPT-reduction from INDEPENDENT k-SET. Attach A — d(v) leaves to each vertex v,
where A is the maximum degree of G. Set | = kA.

MAXIMUM k-VERTEX MULTICOMPONENT CUT is W[1]-hard (Cai 2006)

Does GG contain k vertices whose removal results in at least [ components?

FPT-reduction from k-CLIQUE. Subdivide each edge of G = (V| E). Add a (k+1)-clique
K and add all possible edges between K and V. Set [ = (’5) + 1.

Open Problem MAXIMUM k-EDGE MULTICOMPONENT CUT: Does G contain k edges

whose removal results in at least [ components?

W]1]-hardness of VERTEX COLOURING on split+kv graphs (Cai 2003)

We give an FPT-reduction from INDEPENDENT k-SET. Let G = (V, E) be an arbitrary

instance of INDEPENDENT k-SET. For convenience, we assume V = {vq,va,...,0,}.

Construct from G a split+kv graph G’ = (V' E’) as follows (see Figure 1 for an example):
(a) Set V! =V UE UV, where Vj is a set of k new vertices disjoint from V U E.

(b) Connect every pair of vertices in V' to form a complete graph on V', and connect
every pair of vertices in V}, to form a complete graph on V.

(c) For each vertex v;v; € E, connect it with every vertex but v; and v; in V.

(d) Connect every vertex in Vi with every vertex in E.
The construction clearly takes polynomial time. We now show that G contains an inde-
pendent set of size k iff G’ is n-colourable.
Suppose that G contains an independent set I of size k. Then V — I is a vertex cover in

G of size n — k, and we can construct a vertex n-colouring of G’ as follows:

(a) Colour vertex v; € V' by colour 1.
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Figure 1: The construction of G’, where k = 2 and I = {v1,v4} is an independent set in G.
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(b) Arbitrarily colour the k vertices in Vj by the k colours used for vertices in the
independent set I of V.

(c) For each vertex v;v; € E, since V — I is a vertex cover of G, at least one of v; and
v; is in V' — I. This implies that at least one of the colours used for vertices v; and
v; (i.e., colours ¢ or j) is not used for vertices in Vj,. Therefore colour vertex v;v;
by colour ¢ if v; € V — I and colour j otherwise.

Conversely, suppose that f is an n-colouring of G’. Without loss of generality, we may
assume that f(v;) = i for each vertex v; € V. Then for each vertex v;v; € E of G,
f(vivj) equals either i or j since v;v; is adjacent to every vertex but v; and v; in V. Let
Zy be the set of k colours used for V. Then S = {1,2,...,n} — Zj equals the set of
colours used for the vertices in F since every vertex in Vj is adjacent to every vertex in
E. From this, we deduce that {v; : i € S} share at least one vertex with each vertex in
E. Therefore {v; : i € S} is a vertex cover of size n — k in G, and hence V —{v; : i € S}
is an independent set of size k in G. 11

W-hierarchy: FPT C W[1]CW[2] C--- CW[t] C---.

For ¢t > 2, a parameterized problem II € Wt] is there is an FPT-reduction from II to
WEIGHTED t-NORMALIZED SATISFIABILITY.

A Boolean expression is t-normalized if it is of the form A\ A--- with t — 1 alterna-
tions of A and \/. A 2-normalized expression is the same as a CNF expression. The
WEIGHTED t-NORMALIZED SATISFIABILITY problem asks whether a Boolean expression
in t-normalized form has a satisfying truth assignment with weight k.

Basic W[2]-complete problems: WEIGHTED CNF SATISFIABILITY, DOMINATING
k-SET, HITTING SET, SET COVER.

HitTING SET is W([2]-hard.

Reduction from DOMINATING k-SET: The collection of sets is {N[v] : v € V'}.



16. W[2]-hardness of Cy-FREE CONTRACTION (Cai and Guo 2013)

First we note that we can destroy an induced 4-cycle C' in two ways: either contract an
edge of C' or an edge in a 2-path between two non-consecutive vertices of C' to create a
chord for C.

We give an FPT-reduction from DOMINATING SET. For this purpose we construct, for a
graph G with V(G) = {v1,---,v,}, a graph G’ in polynomial time as follows:

(a) Create an independent set X = {x1,---,2,} and a clique Y = {y1, -, yn}.
(b) For each vertex v; of G, add edge x;y;.

For each edge v;v; of G, add edges z;y; and z;y;.

Add a new vertex u and connect it with every vertex in clique Y.

For each vertex z;, add a 2-path Q); between z; and wu.

It is easy to verify the following properties of G’, which are useful to establish a connection
between dominating sets in G and edge contactions in G’ to make it Cy-free:

a) G'[X UY U {u}] is a split graph, and hence Cj-free for all [ > 4.

)
b)

(

(b) For every edge z;y; in G', (x;,y;,u) and @Q; form an induced 4-cycle.
(¢) G’ contains no induced cycle larger than 4.
(

(

d) Contracting edge y;u destroys all induced 4-cycles containing y;.

e) Contracting edges in @; destroy induced 4-cycles containing z; only.

By Property (c), we need only show that G has a dominating set with < k vertices iff G’
contains < k edges whose contraction yields a Cy-free graph.

Suppose that S is a dominating set of G with < k vertices. We contract edges {uy; : v; €
S} in G’ into u* to obtain a graph G*. Since S is a dominating set of G, u* is adjacent to
all vertices in X. Therefore for every vertex x;, every induced 4-cycle through x; contains
chord x;u* in G*, implying that the largest induced cycle in G* has size 3 and hence G*
is Cy-free.

Conversely, suppose that G’ contains at most k edges E’ whose contraction results in a
Cy-free graph. Consider an arbitrary vertex x;. If £’ contains any edge in Q);, we can use
Properties (d) and (e) to replace it with edge y;u to obtain another solution. Therefore
we can do so for every vertex z; to obtain a solution E* from E’ such that |E*| < |E/|
and, for every vertex x;, E* contains an edge incident with some vertex y ;) € Ner(z;).
Let Y = {ys4) : 1 < i <n}. Then |Y'| < |E'| <k, Y' CY, and every ; is adjacent to
some vertex in Y'. Therefore Y’ dominates all vertices in X, and hence {v; : y; € Y'} is
a dominating set of G with < k vertices. I



