
Lecture Outline 9
Topics in Graph Algorithms (CSCI5320-16S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

March 16, 2016

Keywords: Parameterized intractability, FPT-reduction, W[1]-complete, and W[2]-complete.

1. Parameterized intractability: Similar to the theory of NP-completeness, the theory
of parameterized intractability is built on complete classes formed by reductions from
seed problems.

2. Short Turing Machine Acceptance: W[1]-complete but FPT for fixed alphabet.

Given a nondeterministic Turing Machine M , string x and integer k (in unary), determine
whether M accepts x in ≤ k steps.

The problem is the seed problem for the basic intractable class W[1]-complete, analogous
to that Turing Machine Acceptance is the seed problem for NPC.

3. FPT-reduction: An FPT-reduction (a.k.a. parameterized many-one reduction) from a
parameterized problem Π to another parameterized problem Π′ is a function that maps
instance (I, k) ∈ Π to (I ′, k′) ∈ Π′ such that

(a) (I, k) is an yes-instance iff (I ′, k′) is,

(b) the function is computable in time f(k)|I|O(1), and

(c) k′ ≤ g(k) for some computable function g(k).

Many polynomial reductions for NPC are not FPT-reductions because of (c), and most
FPT-reductions in practice are polynomial reductions satisfying (c).

Fact: Π′ ∈ FPT =⇒ Π ∈ FPT and therefore Π 6∈ FPT =⇒ Π′ 6∈ FPT. Furthermore,
FPT-reductions are transitive.

4. Basic class W[1]: A parameterized problem Π ∈ W [1] if there is an FPT-reduction
from Π to Short Turing Machine Acceptance, W[1]-hard if every problem in W[1]
admits an FPT-reduction to Π, and W[1]-complete if Π is W[1]-hard and Π ∈ W [1].

5. Basic W[1]-complete problems: Short Turing Machine Acceptance, Weighted

q-CNF Satisfiability for each fixed q ≥ 2. k-Clique, Independent k-Set and Set

Packing.
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6. Weighted q-CNF Satisfiability: Does a CNF formula with each clause having no
more than q literals admit a satisfying truth assignment with weight k?

Set Packing: Does a collection C of sets contain k mutually disjoint sets?

7. Π ∈ W [1] if there is an FPT-reduction from Π to Weighted 2-CNF Satisfiability.
For instance, Independent k-Set ∈ W [1] as its instance can be expressed as a weight-k
truth assignment for the 2-CNF expression

∧

vivj∈E(xi ∨ xj).

8. Induced Tree is W[1]-hard (Cai)

Does G contain k vertices V ′ such that G[V ′] is a tree?

FPT-reduction from Independent k-Set. Construct (G′, k′) from (G, k) of Indepen-

dent k-Set by adding a (k − 1)-star K1,k−1 and connecting the center of the star to
every vertex of G, and setting k′ = 2k.

9. Set Packing is W[1]-hard

FPT-reduction from Independent k-Set. For each vertex v of G, let Ev be the set of
edges incident with v. The collection of sets is {Ev : v ∈ V }.

10. Maximum k-Vertex Cover is W[1]-hard (Cai 2000) (a.k.a. Partial Vertex Cover)

Does G contain k vertices that cover at least l edges?

FPT-reduction from Independent k-Set. Attach ∆ − d(v) leaves to each vertex v,
where ∆ is the maximum degree of G. Set l = k∆.

11. Maximum k-Vertex Multicomponent Cut is W[1]-hard (Cai 2006)

Does G contain k vertices whose removal results in at least l components?

FPT-reduction from k-Clique. Subdivide each edge of G = (V,E). Add a (k+1)-clique
K and add all possible edges between K and V . Set l =

(k
2

)

+ 1.

Open Problem Maximum k-Edge Multicomponent Cut: Does G contain k edges
whose removal results in at least l components?

12. W[1]-hardness of Vertex Colouring on split+kv graphs (Cai 2003)

We give an FPT-reduction from Independent k-Set. Let G = (V,E) be an arbitrary
instance of Independent k-Set. For convenience, we assume V = {v1, v2, . . . , vn}.
Construct from G a split+kv graph G′ = (V ′, E′) as follows (see Figure 1 for an example):

(a) Set V ′ = V ∪ E ∪ Vk, where Vk is a set of k new vertices disjoint from V ∪ E.

(b) Connect every pair of vertices in V to form a complete graph on V , and connect
every pair of vertices in Vk to form a complete graph on Vk.

(c) For each vertex vivj ∈ E, connect it with every vertex but vi and vj in V .

(d) Connect every vertex in Vk with every vertex in E.

The construction clearly takes polynomial time. We now show that G contains an inde-
pendent set of size k iff G′ is n-colourable.

Suppose that G contains an independent set I of size k. Then V − I is a vertex cover in
G of size n − k, and we can construct a vertex n-colouring of G′ as follows:

(a) Colour vertex vi ∈ V by colour i.
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Figure 1: The construction of G′, where k = 2 and I = {v1, v4} is an independent set in G.

(b) Arbitrarily colour the k vertices in Vk by the k colours used for vertices in the
independent set I of V .

(c) For each vertex vivj ∈ E, since V − I is a vertex cover of G, at least one of vi and
vj is in V − I. This implies that at least one of the colours used for vertices vi and
vj (i.e., colours i or j) is not used for vertices in Vk. Therefore colour vertex vivj

by colour i if vi ∈ V − I and colour j otherwise.

Conversely, suppose that f is an n-colouring of G′. Without loss of generality, we may
assume that f(vi) = i for each vertex vi ∈ V . Then for each vertex vivj ∈ E of G′ ,
f(vivj) equals either i or j since vivj is adjacent to every vertex but vi and vj in V . Let
Zk be the set of k colours used for Vk. Then S = {1, 2, . . . , n} − Zk equals the set of
colours used for the vertices in E since every vertex in Vk is adjacent to every vertex in
E. From this, we deduce that {vi : i ∈ S} share at least one vertex with each vertex in
E. Therefore {vi : i ∈ S} is a vertex cover of size n− k in G, and hence V − {vi : i ∈ S}
is an independent set of size k in G.

13. W-hierarchy: FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t] ⊆ · · ·.

For t ≥ 2, a parameterized problem Π ∈ W [t] is there is an FPT-reduction from Π to
Weighted t-Normalized Satisfiability.

A Boolean expression is t-normalized if it is of the form
∧ ∨ ∧

· · · with t − 1 alterna-
tions of

∧

and
∨

. A 2-normalized expression is the same as a CNF expression. The
Weighted t-Normalized Satisfiability problem asks whether a Boolean expression
in t-normalized form has a satisfying truth assignment with weight k.

14. Basic W[2]-complete problems: Weighted CNF Satisfiability, Dominating

k-Set, Hitting Set, Set Cover.

15. Hitting Set is W[2]-hard.

Reduction from Dominating k-Set: The collection of sets is {N [v] : v ∈ V }.
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16. W[2]-hardness of C4-Free Contraction (Cai and Guo 2013)

First we note that we can destroy an induced 4-cycle C in two ways: either contract an
edge of C or an edge in a 2-path between two non-consecutive vertices of C to create a
chord for C.

We give an FPT-reduction from Dominating Set. For this purpose we construct, for a
graph G with V (G) = {v1, · · · , vn}, a graph G′ in polynomial time as follows:

(a) Create an independent set X = {x1, · · · , xn} and a clique Y = {y1, · · · , yn}.

(b) For each vertex vi of G, add edge xiyi.

(c) For each edge vivj of G, add edges xiyj and xjyi.

(d) Add a new vertex u and connect it with every vertex in clique Y .

(e) For each vertex xi, add a 2-path Qi between xi and u.

It is easy to verify the following properties of G′, which are useful to establish a connection
between dominating sets in G and edge contactions in G′ to make it C4-free:

(a) G′[X ∪ Y ∪ {u}] is a split graph, and hence Cl-free for all l ≥ 4.

(b) For every edge xiyj in G′, (xi, yj, u) and Qi form an induced 4-cycle.

(c) G′ contains no induced cycle larger than 4.

(d) Contracting edge yiu destroys all induced 4-cycles containing yi.

(e) Contracting edges in Qi destroy induced 4-cycles containing xi only.

By Property (c), we need only show that G has a dominating set with ≤ k vertices iff G ′

contains ≤ k edges whose contraction yields a C4-free graph.

Suppose that S is a dominating set of G with ≤ k vertices. We contract edges {uyi : vi ∈
S} in G′ into u∗ to obtain a graph G∗. Since S is a dominating set of G, u∗ is adjacent to
all vertices in X. Therefore for every vertex xi, every induced 4-cycle through xi contains
chord xiu

∗ in G∗, implying that the largest induced cycle in G∗ has size 3 and hence G∗

is C4-free.

Conversely, suppose that G′ contains at most k edges E ′ whose contraction results in a
C4-free graph. Consider an arbitrary vertex xi. If E′ contains any edge in Qi, we can use
Properties (d) and (e) to replace it with edge yiu to obtain another solution. Therefore
we can do so for every vertex xi to obtain a solution E∗ from E′ such that |E∗| ≤ |E′|
and, for every vertex xi, E∗ contains an edge incident with some vertex yf(i) ∈ NG′(xi).
Let Y ′ = {yf(i) : 1 ≤ i ≤ n}. Then |Y ′| ≤ |E′| ≤ k, Y ′ ⊆ Y , and every xi is adjacent to
some vertex in Y ′. Therefore Y ′ dominates all vertices in X, and hence {vi : yi ∈ Y ′} is
a dominating set of G with ≤ k vertices.


