Lecture Outline 9 Topics in Graph Algorithms (CSCI5320-16S)

CAI Leizhen Department of Computer Science and Engineering The Chinese University of Hong Kong lcai@cse.cuhk.edu.hk

March 16, 2016

Keywords: Parameterized intractability, FPT-reduction, W[1]-complete, and W[2]-complete.

- 1. **Parameterized intractability**: Similar to the theory of NP-completeness, the theory of parameterized intractability is built on complete classes formed by reductions from seed problems.
- 2. SHORT TURING MACHINE ACCEPTANCE: W[1]-complete but FPT for fixed alphabet.

Given a nondeterministic Turing Machine M, string x and integer k (in unary), determine whether M accepts x in $\leq k$ steps.

The problem is the seed problem for the basic intractable class W[1]-complete, analogous to that TURING MACHINE ACCEPTANCE is the seed problem for NPC.

- 3. **FPT-reduction**: An FPT-reduction (a.k.a. parameterized many-one reduction) from a parameterized problem Π to another parameterized problem Π' is a function that maps instance $(I, k) \in \Pi$ to $(I', k') \in \Pi'$ such that
 - (a) (I, k) is an yes-instance iff (I', k') is,
 - (b) the function is computable in time $f(k)|I|^{O(1)}$, and
 - (c) $k' \leq g(k)$ for some computable function g(k).

Many polynomial reductions for NPC are not FPT-reductions because of (c), and most FPT-reductions in practice are polynomial reductions satisfying (c).

Fact: $\Pi' \in \text{FPT} \implies \Pi \in \text{FPT}$ and therefore $\Pi \notin \text{FPT} \implies \Pi' \notin \text{FPT}$. Furthermore, FPT-reductions are transitive.

- 4. Basic class W[1]: A parameterized problem $\Pi \in W[1]$ if there is an FPT-reduction from Π to SHORT TURING MACHINE ACCEPTANCE, W[1]-hard if every problem in W[1] admits an FPT-reduction to Π , and W[1]-complete if Π is W[1]-hard and $\Pi \in W[1]$.
- 5. Basic W[1]-complete problems: SHORT TURING MACHINE ACCEPTANCE, WEIGHTED q-CNF SATISFIABILITY for each fixed $q \ge 2$. k-CLIQUE, INDEPENDENT k-SET and SET PACKING.

- 6. WEIGHTED q-CNF SATISFIABILITY: Does a CNF formula with each clause having no more than q literals admit a satisfying truth assignment with weight k? SET PACKING: Does a collection C of sets contain k mutually disjoint sets?
- 7. $\Pi \in W[1]$ if there is an FPT-reduction from Π to WEIGHTED 2-CNF SATISFIABILITY. For instance, INDEPENDENT k-SET $\in W[1]$ as its instance can be expressed as a weight-k truth assignment for the 2-CNF expression $\bigwedge_{v_i v_j \in E} (\overline{x_i} \vee \overline{x_j})$.
- 8. INDUCED TREE is W[1]-hard (Cai)

Does G contain k vertices V' such that G[V'] is a tree?

FPT-reduction from INDEPENDENT k-SET. Construct (G', k') from (G, k) of INDEPENDENT k-SET by adding a (k - 1)-star $K_{1,k-1}$ and connecting the center of the star to every vertex of G, and setting k' = 2k.

9. Set Packing is W[1]-hard

FPT-reduction from INDEPENDENT k-SET. For each vertex v of G, let E_v be the set of edges incident with v. The collection of sets is $\{E_v : v \in V\}$.

10. MAXIMUM k-VERTEX COVER is W[1]-hard (Cai 2000) (a.k.a. PARTIAL VERTEX COVER) Does G contain k vertices that cover at least l edges?

FPT-reduction from INDEPENDENT k-SET. Attach $\Delta - d(v)$ leaves to each vertex v, where Δ is the maximum degree of G. Set $l = k\Delta$.

11. MAXIMUM k-VERTEX MULTICOMPONENT CUT is W[1]-hard (Cai 2006)

Does G contain k vertices whose removal results in at least l components?

FPT-reduction from k-CLIQUE. Subdivide each edge of G = (V, E). Add a (k+1)-clique K and add all possible edges between K and V. Set $l = \binom{k}{2} + 1$.

Open Problem MAXIMUM k-EDGE MULTICOMPONENT CUT: Does G contain k edges whose removal results in at least l components?

12. W[1]-hardness of VERTEX COLOURING on split+kv graphs (Cai 2003)

We give an FPT-reduction from INDEPENDENT k-SET. Let G = (V, E) be an arbitrary instance of INDEPENDENT k-SET. For convenience, we assume $V = \{v_1, v_2, \ldots, v_n\}$. Construct from G a split+kv graph G' = (V', E') as follows (see Figure 1 for an example):

- (a) Set $V' = V \cup E \cup V_k$, where V_k is a set of k new vertices disjoint from $V \cup E$.
- (b) Connect every pair of vertices in V to form a complete graph on V, and connect every pair of vertices in V_k to form a complete graph on V_k .
- (c) For each vertex $v_i v_j \in E$, connect it with every vertex but v_i and v_j in V.
- (d) Connect every vertex in V_k with every vertex in E.

The construction clearly takes polynomial time. We now show that G contains an independent set of size k iff G' is *n*-colourable.

Suppose that G contains an independent set I of size k. Then V - I is a vertex cover in G of size n - k, and we can construct a vertex n-colouring of G' as follows:

(a) Colour vertex $v_i \in V$ by colour *i*.

Figure 1: The construction of G', where k = 2 and $I = \{v_1, v_4\}$ is an independent set in G.

- (b) Arbitrarily colour the k vertices in V_k by the k colours used for vertices in the independent set I of V.
- (c) For each vertex $v_i v_j \in E$, since V I is a vertex cover of G, at least one of v_i and v_j is in V I. This implies that at least one of the colours used for vertices v_i and v_j (i.e., colours i or j) is not used for vertices in V_k . Therefore colour vertex $v_i v_j$ by colour i if $v_i \in V I$ and colour j otherwise.

Conversely, suppose that f is an n-colouring of G'. Without loss of generality, we may assume that $f(v_i) = i$ for each vertex $v_i \in V$. Then for each vertex $v_i v_j \in E$ of G', $f(v_i v_j)$ equals either i or j since $v_i v_j$ is adjacent to every vertex but v_i and v_j in V. Let Z_k be the set of k colours used for V_k . Then $S = \{1, 2, \ldots, n\} - Z_k$ equals the set of colours used for the vertices in E since every vertex in V_k is adjacent to every vertex in E. From this, we deduce that $\{v_i : i \in S\}$ share at least one vertex with each vertex in E. Therefore $\{v_i : i \in S\}$ is a vertex cover of size n - k in G, and hence $V - \{v_i : i \in S\}$ is an independent set of size k in G.

13. W-hierarchy: FPT $\subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq W[t] \subseteq \cdots$.

For $t \geq 2$, a parameterized problem $\Pi \in W[t]$ is there is an FPT-reduction from Π to WEIGHTED *t*-NORMALIZED SATISFIABILITY.

A Boolean expression is t-normalized if it is of the form $\bigwedge \bigvee \bigwedge \cdots$ with t-1 alternations of \bigwedge and \bigvee . A 2-normalized expression is the same as a CNF expression. The WEIGHTED t-NORMALIZED SATISFIABILITY problem asks whether a Boolean expression in t-normalized form has a satisfying truth assignment with weight k.

- 14. Basic W[2]-complete problems: WEIGHTED CNF SATISFIABILITY, DOMINATING *k*-SET, HITTING SET, SET COVER.
- 15. HITTING SET is W[2]-hard.

Reduction from DOMINATING k-SET: The collection of sets is $\{N[v] : v \in V\}$.

16. W[2]-hardness of C_4 -FREE CONTRACTION (Cai and Guo 2013)

First we note that we can destroy an induced 4-cycle C in two ways: either contract an edge of C or an edge in a 2-path between two non-consecutive vertices of C to create a chord for C.

We give an FPT-reduction from DOMINATING SET. For this purpose we construct, for a graph G with $V(G) = \{v_1, \dots, v_n\}$, a graph G' in polynomial time as follows:

- (a) Create an independent set $X = \{x_1, \dots, x_n\}$ and a clique $Y = \{y_1, \dots, y_n\}$.
- (b) For each vertex v_i of G, add edge $x_i y_i$.
- (c) For each edge $v_i v_j$ of G, add edges $x_i y_j$ and $x_j y_i$.
- (d) Add a new vertex u and connect it with every vertex in clique Y.
- (e) For each vertex x_i , add a 2-path Q_i between x_i and u.

It is easy to verify the following properties of G', which are useful to establish a connection between dominating sets in G and edge contactions in G' to make it C_4 -free:

- (a) $G'[X \cup Y \cup \{u\}]$ is a split graph, and hence C_l -free for all $l \ge 4$.
- (b) For every edge $x_i y_j$ in G', (x_i, y_j, u) and Q_i form an induced 4-cycle.
- (c) G' contains no induced cycle larger than 4.
- (d) Contracting edge $y_i u$ destroys all induced 4-cycles containing y_i .
- (e) Contracting edges in Q_i destroy induced 4-cycles containing x_i only.

By Property (c), we need only show that G has a dominating set with $\leq k$ vertices iff G' contains $\leq k$ edges whose contraction yields a C₄-free graph.

Suppose that S is a dominating set of G with $\leq k$ vertices. We contract edges $\{uy_i : v_i \in S\}$ in G' into u^* to obtain a graph G^* . Since S is a dominating set of G, u^* is adjacent to all vertices in X. Therefore for every vertex x_i , every induced 4-cycle through x_i contains chord x_iu^* in G^* , implying that the largest induced cycle in G^* has size 3 and hence G^* is C_4 -free.

Conversely, suppose that G' contains at most k edges E' whose contraction results in a C_4 -free graph. Consider an arbitrary vertex x_i . If E' contains any edge in Q_i , we can use Properties (d) and (e) to replace it with edge $y_i u$ to obtain another solution. Therefore we can do so for every vertex x_i to obtain a solution E^* from E' such that $|E^*| \leq |E'|$ and, for every vertex x_i , E^* contains an edge incident with some vertex $y_{f(i)} \in N_{G'}(x_i)$. Let $Y' = \{y_{f(i)} : 1 \leq i \leq n\}$. Then $|Y'| \leq |E'| \leq k, Y' \subseteq Y$, and every x_i is adjacent to some vertex in Y'. Therefore Y' dominates all vertices in X, and hence $\{v_i : y_i \in Y'\}$ is a dominating set of G with $\leq k$ vertices.