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1.

Kernelization formalizes the idea of efficient data reduction and is a useful tool for
obtaining FPT algorithms. A kernelization is a polynomial algorithm that transforms
each instance (I, k) of a parameterized problem to an equivalent instance (I’, k") that
satisfies (a) |I'| < g(k) for some function g(k) and (b) k¥’ < k. We call the reduced
instance (I', k') a kernel.

When a parameterized problem has a kernel and is decidable, we can use exhaustive
search on the kernel to solve the problem in n®® + f(k) time.

. Theorem: A parameterized problem is FPT iff it admits a kernel and is decidable.

Let f(k)n® be the running time of an FPT algorithm. If f(k) < n° then the algorithm
runs in time n2¢ which is polynomial time. Otherwise n < f(k)Y/¢ and the instance
itself is a kernel.

However, kernel sizes for different FPT problems vary a lot, some are linear, some
polynomial, and some exponential.

. It seems difficult to formalize the idea of efficient data reduction under traditional

complexity. For instance, reducing I to I’ with |I’| = |I| —1 in polynomial time would
imply that I is solvable in polynomial time.

An easy way to obtain a kernel is to show that the problem is polynomial-time solvable
when |I]| > g(k) for some function g(k).
4k kernel for INDEPENDENT k-SET on planar graphs.

By the 4-color theorem, an n-vertex planar graph G always contains an independent
set of size > k when n > 4k. Otherwise (G, k) is a kernel with less than 4k vertices.

. O(2k) kernel for (n — k)-DOMINATING SET.

We use the following result of Ore: A graph with no isolated vertices has a dominating
set of size < |n/2].
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If K < n/2then n —k > n/2, and the answer is always yes. Otherwise, n < 2k and
(G, k) is a kernel with < 2k vertices.

O(k?) kernel for k-EDGE ODD SUBGRAPH (Cai and Yang 2010)

Are there k edges E’ in G such that every vertex of G[E’] has an odd degree?

Easy if there is a vertex of degree > k + 1. Otherwise G has a matching M with &
edges if G has > k(2k — 1) edges, and M forms a solution. This implies a kernel with
O(k?) vertices and edges.

Open Problem: Does k-EDGE ODD SUBGRAPH admit a kernel with O(k) vertices?

. Reduction rule: Many kernelization algorithms are based on reduction rules.

. k-VERTEX COVER: Kernel with k? vertices.

Rule 1: If v is an isolated vertex, then delete v from G.

Rule 2: If d(v) = 1, then add the neighbor u of v to the solution, delete u from G,
and decrease k by 1.

Rule 3: If d(v) > k, then add v to the solution, delete v from G, and decrease k by 1.
We obtain a graph G’ and a parameter k' after repeatedly applying the above 3
reduction rules. If G’ has more than kk’ edges then G has no k-vertex cover, else
(G',K') is a kernel with < k? vertices and < k2 edges.

k? kernel for COVERING POINTS By LINES

Are there < k lines that cover all points in a given set S of points?

Observation: It suffices to consider lines L passing through pairs of points in S.

Rule 1: If a line [ € L covers at least k -+ 1 points, remove it from L, remove all points
covered by [ from S, and decrease k by 1.

After repeatedly applying Rule 1, every line covers < k points. No solution if §
contains more than k2 points, and otherwise we obtain a kernel with k2 points.
k(k + 2) kernel for ARC REVERSAL FOR TOURNAMENT

Is it possible to reverse < k arcs in a tournament G (i.e., a digraph obtained from an
orientation of a complete graph) to make it a dag?

Rule 1: If arc e is contained in > k + 1 triangles, reverse e and reduce k by 1.
Rule 2: If a vertex v is not contained in any triangle, then delete v.

Correctness for Rule 1 is obvious. For Rule 2, let X (resp., Y) be out-neighbors (resp.
in-neighbors) of v. Then no arc goes from X to Y, and we reverse arcs in G[X]| and
G[Y] only. Since every arc is contained in at least one triangle and at most k triangles,
the reduced Yes-instance contains at most k(k + 2) vertices.

O(k?) kernel for HITTING SET FOR TRIPLES.

Given a collection C of triples from a ground set S, we want to determine whether
there are < k elements S’ in S that hit every triple in C.
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Rule 1: If a pair {x,y} is contained in more then k triples, then delete all these triples
and add {z,y} to C.

Note that in this case, either x or y must be in the hitting set.
Apply Rule 1 until it no longer applies, and then apply the following Rule 2 repeatedly.

Rule 2: If an element z is contained in more than k2 pairs and triples, then delete all
these pairs and triples, add z to the hitting set and reduce k by 1.

Note that in this case, z must be in the hitting set.

Answer "No” if C' has more than k3 pairs and triples, and otherwise we have a O(k?)
kernel.

O(2%) kernel for EDGE CLIQUE COVER (Gramm et. al. 2006)

Does G contain < k complete graphs (cliques) that cover all edges?

Rule 1. Remove isolated vertices.

Rule 2. If there is a component with a single edge, remove it and reduce k by 1.
Rule 2. If there is an edge uv satisfying N[u] = N|[v], remove vertex u.

Let G be a graph with more than 2% vertices that has a clique cover C,. .., C}. Assign
each vertex v a binary vector x, of length k where the i-th bit is 1 iff v is contained
in clique Cj. Since there are only 2% different vectors of length k, some pair u,v of
vertices satisfy x, = z,. If z, = x, = 0 then Rule 1 applies. Otherwise u and v are
contained in same cliques, implying that u and v are connected and share the same
neighborhood, Rule 2 applies if uv forms a component, and otherwise Rule 3 applies.

2k kernel for k-VERTX COVER

For a graph G = (V, E), the minimum vertex cover problem can be formulated as
an ILP: min )", oy @, subject to x,, + x, > 1 for each edge and z, € {0,1} for each
vertex.

We can obtain an LP-relaxation as follows: min o , subject to x, + 2, > 1 for
each edge and 0 < z,, <1 for each vertex.

For an optimal LP solution of G, let
Ww={veV iz, <1/2},

Vip={veV:z,=1/2},

and
Vi={veV iz, >1/2}.
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Theorem (Nemhauser and Trotter 1975) Every graph G contains a minimum vertex
cover V' satisfying Vi C V' C ViU Vys.

Proof. Let {z, : v € V} be an optimal LP solution of G. We prove that G contains
a minimum vertex cover V' C V; JV; /2 and leave the V; C V' part as an exercise.

Let A=V'NnVpand B =V, — V', and set ¢ = min{z, —1/2 : v € B}. Suppose
A # 0. If |A| < |BJ, we can obtain a smaller LP solution by decreasing z,, by € for
each vertex v € B and increasing x,, by € for each vertex u € A. Therefore |A| > |B|
by the optimality of the LP solution, and (V' — A) U B is a required vertex cover of
G. 1

The above theorem can be used to obtain a 2k kernel as follows: Let G' = G[V) 5]
and &' = k — |[Vi]. As the size of any vertex cover of G is at least |V;5|/2, G has no
k-vertex cover if |V} 5| > 2k'. Otherwise (G, k') is a kernel with < 2k vertices.

Question: Is there an € > 0 so that k-VERTX COVER admits a kernel with at most
(2 — €)k vertices?



