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1. Kernelization formalizes the idea of efficient data reduction and is a useful tool for
obtaining FPT algorithms. A kernelization is a polynomial algorithm that transforms
each instance (I, k) of a parameterized problem to an equivalent instance (I ′, k′) that
satisfies (a) |I ′| ≤ g(k) for some function g(k) and (b) k ′ ≤ k. We call the reduced
instance (I ′, k′) a kernel.

When a parameterized problem has a kernel and is decidable, we can use exhaustive
search on the kernel to solve the problem in nO(1) + f(k) time.

2. Theorem: A parameterized problem is FPT iff it admits a kernel and is decidable.

Let f(k)nc be the running time of an FPT algorithm. If f(k) ≤ nc then the algorithm
runs in time n2c which is polynomial time. Otherwise n ≤ f(k)1/c and the instance
itself is a kernel.

However, kernel sizes for different FPT problems vary a lot, some are linear, some
polynomial, and some exponential.

3. It seems difficult to formalize the idea of efficient data reduction under traditional
complexity. For instance, reducing I to I ′ with |I ′| = |I|−1 in polynomial time would
imply that I is solvable in polynomial time.

4. An easy way to obtain a kernel is to show that the problem is polynomial-time solvable
when |I| ≥ g(k) for some function g(k).

5. 4k kernel for Independent k-Set on planar graphs.

By the 4-color theorem, an n-vertex planar graph G always contains an independent
set of size ≥ k when n ≥ 4k. Otherwise (G, k) is a kernel with less than 4k vertices.

6. O(2k) kernel for (n − k)-Dominating Set.

We use the following result of Ore: A graph with no isolated vertices has a dominating

set of size ≤ bn/2c.

1



CSCI5320-19S-LO8 2

If k < n/2 then n − k > n/2, and the answer is always yes. Otherwise, n ≤ 2k and
(G, k) is a kernel with ≤ 2k vertices.

7. O(k2) kernel for k-Edge Odd Subgraph (Cai and Yang 2010)

Are there k edges E ′ in G such that every vertex of G[E ′] has an odd degree?

Easy if there is a vertex of degree ≥ k + 1. Otherwise G has a matching M with k
edges if G has ≥ k(2k − 1) edges, and M forms a solution. This implies a kernel with
O(k2) vertices and edges.

Open Problem: Does k-Edge Odd Subgraph admit a kernel with O(k) vertices?

8. Reduction rule: Many kernelization algorithms are based on reduction rules.

9. k-Vertex Cover: Kernel with k2 vertices.

Rule 1: If v is an isolated vertex, then delete v from G.

Rule 2: If d(v) = 1, then add the neighbor u of v to the solution, delete u from G,
and decrease k by 1.

Rule 3: If d(v) > k, then add v to the solution, delete v from G, and decrease k by 1.

We obtain a graph G′ and a parameter k′ after repeatedly applying the above 3
reduction rules. If G′ has more than kk′ edges then G has no k-vertex cover, else
(G′, k′) is a kernel with ≤ k2 vertices and ≤ k2 edges.

10. k2 kernel for Covering Points By Lines

Are there ≤ k lines that cover all points in a given set S of points?

Observation: It suffices to consider lines L passing through pairs of points in S.

Rule 1: If a line l ∈ L covers at least k +1 points, remove it from L, remove all points
covered by l from S, and decrease k by 1.

After repeatedly applying Rule 1, every line covers ≤ k points. No solution if S
contains more than k2 points, and otherwise we obtain a kernel with k2 points.

11. k(k + 2) kernel for Arc Reversal For Tournament

Is it possible to reverse ≤ k arcs in a tournament G (i.e., a digraph obtained from an
orientation of a complete graph) to make it a dag?

Rule 1: If arc e is contained in ≥ k + 1 triangles, reverse e and reduce k by 1.

Rule 2: If a vertex v is not contained in any triangle, then delete v.

Correctness for Rule 1 is obvious. For Rule 2, let X (resp., Y ) be out-neighbors (resp.
in-neighbors) of v. Then no arc goes from X to Y , and we reverse arcs in G[X] and
G[Y ] only. Since every arc is contained in at least one triangle and at most k triangles,
the reduced Yes-instance contains at most k(k + 2) vertices.

12. O(k3) kernel for Hitting Set For Triples.

Given a collection C of triples from a ground set S, we want to determine whether
there are ≤ k elements S ′ in S that hit every triple in C.
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Rule 1: If a pair {x, y} is contained in more then k triples, then delete all these triples
and add {x, y} to C.

Note that in this case, either x or y must be in the hitting set.

Apply Rule 1 until it no longer applies, and then apply the following Rule 2 repeatedly.

Rule 2: If an element z is contained in more than k2 pairs and triples, then delete all
these pairs and triples, add z to the hitting set and reduce k by 1.

Note that in this case, z must be in the hitting set.

Answer ”No” if C has more than k3 pairs and triples, and otherwise we have a O(k3)
kernel.

13. O(2k) kernel for Edge Clique Cover (Gramm et. al. 2006)

Does G contain ≤ k complete graphs (cliques) that cover all edges?

Rule 1. Remove isolated vertices.

Rule 2. If there is a component with a single edge, remove it and reduce k by 1.

Rule 2. If there is an edge uv satisfying N [u] = N [v], remove vertex u.

Let G be a graph with more than 2k vertices that has a clique cover C1, . . . , Ck. Assign
each vertex v a binary vector xv of length k where the i-th bit is 1 iff v is contained
in clique Ci. Since there are only 2k different vectors of length k, some pair u, v of
vertices satisfy xu = xv. If xu = xv = 0 then Rule 1 applies. Otherwise u and v are
contained in same cliques, implying that u and v are connected and share the same
neighborhood, Rule 2 applies if uv forms a component, and otherwise Rule 3 applies.

14. 2k kernel for k-Vertx Cover

For a graph G = (V,E), the minimum vertex cover problem can be formulated as
an ILP: min

∑
v∈V xv subject to xu + xv ≥ 1 for each edge and xv ∈ {0, 1} for each

vertex.

We can obtain an LP-relaxation as follows: min
∑

v∈V xv subject to xu + xv ≥ 1 for
each edge and 0 ≤ xv ≤ 1 for each vertex.

For an optimal LP solution of G, let

V0 = {v ∈ V : xv < 1/2},

V1/2 = {v ∈ V : xv = 1/2},

and
V1 = {v ∈ V : xv > 1/2}.
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Theorem (Nemhauser and Trotter 1975) Every graph G contains a minimum vertex
cover V ′ satisfying V1 ⊆ V ′ ⊆ V1

⋃
V1/2.

Proof. Let {xv : v ∈ V } be an optimal LP solution of G. We prove that G contains
a minimum vertex cover V ′ ⊆ V1

⋃
V1/2 and leave the V1 ⊆ V ′ part as an exercise.

Let A = V ′ ∩ V0 and B = V1 − V ′, and set ε = min{xv − 1/2 : v ∈ B}. Suppose
A 6= ∅. If |A| < |B|, we can obtain a smaller LP solution by decreasing xv by ε for
each vertex v ∈ B and increasing xu by ε for each vertex u ∈ A. Therefore |A| ≥ |B|
by the optimality of the LP solution, and (V ′ − A) ∪ B is a required vertex cover of
G.

The above theorem can be used to obtain a 2k kernel as follows: Let G′ = G[V1/2]
and k′ = k − |V1|. As the size of any vertex cover of G is at least |V1/2|/2, G has no
k-vertex cover if |V1/2| > 2k′. Otherwise (G′, k′) is a kernel with ≤ 2k vertices.

Question: Is there an ε > 0 so that k-Vertx Cover admits a kernel with at most
(2 − ε)k vertices?


