
Lecture Outline 7
Topics in Graph Algorithms (CSCI5320-18S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

March 8, 2018

Keywords: Parameterized complexity, FPT algorithms, k-Vertex Cover, and bounded
search tree.

1 Parameterized complexity

Parameterized complexity is a framework introduced by Downey and Fellows to deal with the
complexity of an intractable problem (e.g., NP-complete problem k-Vertex Cover that askes
whether a graph contains a vertex cover of size at most k, where k is regarded as a parameter)
with respect to both its input size |I| and a chosen parameter k. A parameterized problem

consists of a pair (I, k) where I is the input and k a parameter.

The key issue in parameterized complexity is to confine the exponential runtime of an
algorithm for a parameterized problem to its parameter k, and therefore solve the problem
efficiently when k is “small”, which can be very useful in practice. An FPT algorithm runs
in time f(k)|I|O(1) for some computable function f(k), where FPT stands for fixed-parameter
tractable. We also use FPT to denote the class of parameterized problems that admit FPT
algorithms.

Fact: An algorithm runs in time f(k)|I|O(1) for some f(k) iff it runs in time g(k) + |I|O(1) for
some g(k).

For instance, the k-Vertex Cover problem can be solved in time O(1.2738k + kn) by an
FPT algorithm of Chen, Kanj and Xia (2005), which makes the problem quickly solvable in
practice for n ≤ 1015 and k ≤ 150. We note that a straightforward exhaustive search algorithm
takes O(nkk2) time, which can hardly handle an instance with n = 100 and k = 10.

Downey and Fellows have also introduced a W-hierarchy

W[1] ⊆ W[2] ⊆ W[3] ⊆ · · ·

to capture fixed-parameter intractability, where class W[1] contains class FPT and can be
regarded as a parameterized version of the classical complexity class NP. A parameterized
problem that is W[t]-complete (or W[t]-hard) for any W[t] in the hierarchy is unlikely to be
fixed-parameter tractable and is thus fixed-parameter intractable. The relationship between
FPT and W[1] is akin to that between P and NP.

1

CSCI5320-18S-LO7 2

NP-hard problems behave quite differently in the framework of parameterized complexity.
For instance, k-Vertex Cover is FPT, but k-Clique is W[1]-complete and Dominating

k-Set is W[2]-complete. FPT algorithms are important and effective ways for solving NP-hard

problems in practice.

2 Forming parameterized problems

Parameter k tries to capture an aspect of a problem that most interests you, and FPT algo-
rithms attempt to solve intractable problems such as NP-hard problems effectively in practice
when parameter k is “small”.

There are many different ways to introduce the parameter k to form parameterized prob-
lems. For instance, we can form the following parameterized problems related to Vertex

Cover.

(a) Weighted case: Find a vertex cover of weight at most k in a weight graph G = (V,E;w)
with w : V → Z.

(b) Parametric dual: Find a vertex cover of size n−k. Equivalent to Independent k-Set.

(c) Fixed cardinality optimization: Find k vertices to cover the maximum number of edges.

(d) Combinatorial dual: Find a minimum set of vertices to cover at least k edges.

(e) Parameterized graphs: Vertex Cover on bipartite+kv graphs.

3 FPT algorithms for k-Vertex Cover

FPT algorithms for k-Vertex Cover: Diverse methods exist for designing FPT algorithms,
and the following 6 different FPT algorithms for k-Vertex Cover illustrate ideas in devel-
oping FPT algorithms. Note that if an n-vertex graph G admits a k-vertex cover, then it has
at most kn edges.

1. Algorithm 1: Fellows and Langston (1986) O(f(k)n3) with astronomical f(k).

The algorithm is based on a celebrated theorem of Robertson and Seymour: Any family
of graphs closed for minors is recognizable in O(n3) time. The family of graphs admitting
vertex covers of size at most k is closed for minors. A graph H is a minor of graph G if a
copy of H can be obtained from a subgraph of G by contracting edges in the subgraph.

2. Algorithm 2: Johnson (1987) O(f(k)n2) where f(k) ≈ 22500k

.

The algorithm uses the fact that if a graph admits a k-vertex cover then it has no
(2k + 1)-cycle as a minor. Then it combines the following three results:

(a) For any planar graph H, it takes O(n2) time to tell whether H is a minor of G

(Robertson and Seymour).

(b) If G does not contain a planar graph H as a minor, then G is a partial t-tree for t a
function of H.

(c) Vertex Cover on partial t-trees is solvable in O(f(t)n) time by complicated dy-
namic programming (Courcelle, Seese).

CSCI5320-18S-LO7 3

3. Algorithm 3: Papadimitriou and Yannakakis (1993) O(3kkn)

The algorithm uses a maximal matching as a starting point.

Step 1 Find a maximal matching M of G. No solution if |M | > k, and take all vertices
V (M) in M to form a solution if 2|M | ≤ k.

Step 2 For each of 3|M | possible subsets V ′ of V (M) do if V ′ ∪ ext(V ′) is a k-vertex
cover then return “yes”.

ext(V ′) = {v : v ∈ V − V (M) and ∃uv ∈ E with u 6∈ V ′}

4. Algorithm 4: Fellows (1988) (Also Mehlhorn) O(2kn) — branching out on an edge.

The algorithm uses the bounded search tree method based on the simple fact that for
every edge uv, any k-vertex cover must contain either u or v.

We construct a binary tree B of height at most k as follows. Label the root of B by
(G, ∅). Choose an edge uv in the current graph G, branch out and label the two children
of the root by (G − u, u) and (G − v, v) respectively. For each labeled node of B, label
its two children in the same manner.

Note that G has a k-vertex cover V ′ iff B has a leaf l with label (∅, x) for some vertex x,
and V ′ can be obtained from the labels of the nodes on the path from l to the root.

5. Algorithm 5: O(1.5kn) — branching out on a vertex.

For a vertex v with d(v) ≥ 3, branch out for v and N(v).

Let Sk be the size of the search tree. Then Sk ≤ Sk−1 + Sk−3 + 1, implying Sk ≤ 1.5k

and we obtain an O(1.5kn) algorithm.

6. Algorithm 6: Buss (1989) O(kn + 2kk2)

The algorithm uses the kernelization method based on the simple fact that a vertex v

with d(v) > k must be in every k-vertex cover.

Step 1 Find all vertices V ′ of degree > k, set G′ = G−V ′ and k′ = k−|V ′|. No solution
if |V ′| > k.

Step 2 If G′ has > kk′ edges then return “No solution” and stop.

Step 3 Delete isolated vertices from G′ to obtain G∗, and find a k′ vertex cover V ∗ in
G∗ to form a k-vertex cover V ∗ ∪ V ′ of G.

Note that after Step 1, k′ vertices can cover at most kk′ edges. Graph G∗ has ≤ k2 edges
and ≤ k + k2 vertices, and (G∗, k′) is called a kernel.

4 Bounded search tree

A fundamental method for obtaining FPT algorithms is to bound the size of a search tree to a
function of k only. Typically, to find a k-solution (x1, . . . , xk), we bound the number of choices
for each xi to a small number, which is often a constant c, and hence obtain an FPT algorithm
with running time cknO(1).

CSCI5320-18S-LO7 4

1. Triangle-Free Deletion: O(3knω).

Determine whether we can delete at most k vertices from a graph to obtain a triangle-free
graph.

For a triangle, there are three different ways to delete a vertex to destroy the triangle,
and we branch out for each of the three possibilities.

2. Split Graph Deletion: O(5k(m + n)).

Can we delete at most k vertices from a graph G to make it a split graph?

A graph is a split graph if its vertices can be partitioned into a clique and independent
set.

Theorem. A graph is a split graph iff it contains no induced subgraph isomorphic to C4,

C4, or C5.

If G is not a split graph, we can find a forbidden induced subgraph F in G in O(n5)
time, and branch out in 4 or 5 different ways depending on the number of vertices in F .

3. Vertex Recoloration: O(4k(m + n)).

Can we transform a vertex 3-coloring of a graph G into a proper 3-coloring by recoloring
≤ k vertices?

For a monochromatic edge uv, branch out by recoloring u or v whenever they are un-
marked vertices and mark u or v accordingly.

Question: Can you find a faster FPT algorithm?

4. Vertex Cover on bipartite+kv graphs (Cai 2003): O(2k
√

nm).

Given a graph G and at most k vertices V ∗ such that G−V ∗ is bipartite, find a minimum
vertex cover in G.

For a vertex v ∈ V ∗, a minimum vertex cover of G contains either v or N(v).

Furthermore, both G−v and G−N [v] are bipartite+(k−1)v graphs, where N [v] denotes
the closed neighborhood {v}∪N(v) of v. We branch out by considering Vertex Cover

for G − v and G − N [v].

Note that one can use matching technique to solve Vertex Cover for bipartite graphs
in time O(

√
nm).

5. Density Reduction: O(2kn log n).

Remove k points from a set P of n points to maximize the minimum pairwise distance
for the remaining points.

For a closest pair (x, y) of points, we need to remove either points x or y, and we branch
out for these two cases. Note that it takes O(n log n) to find a closest pair.

6. Multicut in Trees: O(2k(l + n)).

Given an n-vertex tree T , l pairs {(ui, vi)} of vertices and integer k, determine whether
we can remove ≤ k edges E ′ from T to disconnect ui and vi for every (ui, vi).

CSCI5320-18S-LO7 5

Arbitrarily pick up a vertex r of T as the root. Let Pi denote the (ui, vi)-path in T , and
wi the least common ancestor of ui and vi. Let (ui∗ , vi∗) be a pair that maximizes the
distance from r to wi∗ , and ei∗ and e′

i∗
the two edges of Pi incident with w′

i∗
.

Lemma There is a k-multicut that contains either ei∗ or e′i∗ .

Find a required pair (ui∗ , vi∗) and branch out by including either ei∗ or e′i∗ in a k-multicut.

7. Feedback Vertex Set: O((2k)kn2).

Can we remove at most k vertices from a graph G to obtain a forest?

Theorem. Let G be a graph with minimum degree at least 3. If G admits an FVS with

k vertices, then G contains a cycle of length at most 2k.

We preprocess G to obtain a graph G′ with minimum degree at least 3 by repeatedly
deleting degree-1 vertices and contracting an edge incident with a degree-2 vertex. For
G′, find a minimum-length cycle C, which contains at most 2k vertices if G′ admits an
FVS with k vertices, and branch out for each vertex in C.

8. Connected Vertex Cover

Determine whether G contains a k-vertex cover V ′ with G[V ′] connected.

The O(2kkn) algorithm for k-Vertex Cover enumerates all minimal vertex cover of
size ≤ k. For each such vertex cover V ′, we determine whether V ′ can be extended to a
connected subgraph on ≤ k vertices, which gives a Steiner tree problem.

