
Lecture Outline 5
Topics in Graph Algorithms (CSCI5320-18S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

February 7, 2018

Keywords: network flow, residual graph, augmenting path, maximum matching, disjoint
paths, and project selection problem.

1. References

Review article by Goldberg and Tarjan, Efficient maximum flow algorithms, Communi-
cations of the ACM, 57(6), 82-89, 2014.

Chapter 7 of Algorithm Design (Kleinberg and Tardos) contains a rich collection of
applications of network flows.

Fastest algorithm for the maximum flow problem by Orlin (2013): O(mn) in general and
O(n2/ log n) when m = O(n).

2. Flow network: Weighted digraph G = (V,E; c) with capacity c : E → R+, a source

s ∈ V and sink t ∈ V .

We assume that every vertex in on an (s, t)-path.

3. Notation

For a vertex v, E+(v) denotes the set of edges going out from v, and E−(v) the set of
edges coming into v.

An (s, t)-cut [S, T] is a partition of V into S and T such that s ∈ S and t ∈ T . We also
use [S, T] to denote edges across S and T , [S → T] edges from S to T , and [S ← T]
edges from T to S.

4. Flow: A function f : E → R+ ∪ {0} that satisfies the following two conditions:

1. capacity constraint: for every edge e, f(e) ≤ c(e), and

2. flow conservation: for every vertex v ∈ V − {s, t},
∑

e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e).

The value |f | of flow f is defined as
∑

e∈E+(s) f(e).

1

CSCI5320-18S-LO5 2

5. Residual graph: For a flow f of G, the residual graph Gf = (V,Ef ; cf) is defined as
follows: for each edge e = uv of G, if f(e) > 0 then vu is an edge in Gf with residual

capacity cf (vu) = f(e), and if c(e) − f(e) > 0 then uv is an edge of Gf with residual

capacity cf (uv) = c(e)− f(e). Note that |Ef | ≤ 2|E|.

6. Augmenting path: a simple (s, t)-path P in Gf . The residual capacity of P : cf (P) =
min{cf (uv) : uv ∈ P}.

We can use an augmenting path P to define a new flow f ′ with |f ′| > |f |:

For each edge e of G, set f ′(e) = f(e) + cf (P) if e is in P , f ′(e) = f(e) − cf (P) if the
reverse of e is in P , and f ′(e) = f(e) otherwise.

7. Let [S, T] be an (s, t)-cut.

Net flow across [S, T]: f(S, T) =
∑

[S→T] f(e)−
∑

[S←T] f(e).

Capacity of [S, T]: c(S, T) =
∑

[S→T] c(e).

Lemma. For any flow f and any (s, t)-cut [S, T], f(S, T) = |f | ≤ c(S, T).

8. Theorem (Min-Cut Max-Flow) The following statements are equivalent:

(a) f is a maximum flow.

(b) Gf has no augmenting path.

(c) |f | = c(S, T) for some (s, t)-cut [S, T].

Proof. (a) → (b). If Gf has an augmenting path P , then we has a new flow f ′ with
|f ′| > |f |.

(b) → (c). Let S = {v ∈ V : there is an (s, v)-path in Gf} and T = V −S. Since Gf has
no (s, t)-path, [S, T] forms an (s, t)-cut and no flow goes from T to S. Furthermore, for
every edge e going from S to T , we have f(e) = c(e). Therefore |f | = f(S, T) = c(S, T).

(c) → (a). Since |f | ≤ c(S, T), f is indeed a maximum flow.

9. Ford-Fulkerson Algorithm (1962)

f ← 0;

while there is an augmenting path P in Gf do augment f to f ′ using P .

For integer-valued capacities, the algorithm always returns a maximum flow with every

flow value being an integer, and runs in O(m|f ∗|) time, where f ∗ is a maximum flow.
However the algorithm may not terminate for real-valued capacities.

Edmonds-Karp algorithm (O(m2n) time): an implementation of Ford-Fulkerson algo-
rithm by using a shortest (s, t)-path (in terms of the number of edges in the path) in Gf

as an augmenting path. This algorithms works for real-valued capacities.

Remark. If all capacities are integers, then Ford-Fulkerson and Edmonds-Karp algo-
rithms always find a maximum flow whose value is an integer.

CSCI5320-18S-LO5 3

10. Applications: The maximum flow (minimum cut) algorithm is very useful for solving
a large number of problems.

11. Maximum matching in bipartite graphs.

A matching is a subset of edges that are mutually nonadjacent. To find a maximum
matching in a bipartite graph G = (X,Y,E), we construct a flow network G′ from G as
follows: Add source s and sink t, add edge sx for every x ∈ X and edge yt for every
y ∈ Y , and orient every edge of G from X to Y . Set the capacity of every edge to 1.

The value of a maximum flow of G′ equals the size of a maximum matching of G.

12. Disjoint paths: Find the maximum number of edge-disjoint (s, t)-paths in digraph G.

Set the capacity of every edge to 1, and use Ford-Fulkerson algorithm.

We can also use the following construction to find the maximum number of vertex-disjoint
(s, t)-paths: For each vertex v, split it into two vertices vin and vout, change all edges
coming into v to coming into vin and all edges going out of v to going out of vout, and
add edge vinvout. Set the capacity of every edge to 1.

13. Project selection: Given a dag (directed acyclic graph) G = (V,E;w) with w : V →
Z − {0}, we want to find a subset V ′ of vertices to maximize

∑
v∈V ′ w(v) subject to

precedence constraint: for each v ∈ V ′, every out-neighbor of v is also in V ′.

Background: Each vertex v represents a project, and weight w(v) is the profit for pursuing
project v, and an edge uv indicates that in order to pursue project u we must also pursue
project v. We wish to select a feasible set of projects with maximum profit.

The difficulty of the problem is caused by projects with negative profits.

Construct a flow network G′ = (V ′, E′; c′) as follows:

• Add a source s and a sink t.

• For each vertex u with w(u) > 0, add edge su with capacity w(u).

• For each vertex v with w(v) < 0, add edge vt with capacity −w(v).

• Set the capacity of each edge of G to ∞.

We compute a minimum (s, t)-cut [S, T] of G′, and output S − {s} as an optimal set of
projects.

Let C be the capacity of the cut [{s}, V ′ − {s}] in G′, i.e., C =
∑

w(v)>0 w(v). Then the
maximum flow of G′ has value at most C.

Lemma. Let [S, T] be an (s, t)-cut of G′.

(a) If c(S, T) ≤ C then S − {s} satisfies the precedence constraint.

(b) If S − {s} satisfies the precedence constraint, then the capacity of [S, T] equals
C −

∑
v∈S−{s} w(v).

The above lemma implies that when [S, T] is a minimum (s, t)-cut of G′, S − {s} yields
an optimal solution.

CSCI5320-18S-LO5 4

Proof of the lemma. Let S∗ be a subset of vertices satisfying the precedence constraint.
Set S = S∗ ∪ {s} and T = V ′ − S. Then in G′, [S → T] consists of edges leaving s or
entering t only. For capacity c(S, T), edges entering t contribute

∑

v∈S∗ and w(v)<0

−w(v),

and edges leaving s contribute

∑

v 6∈S∗ and w(v)>0

w(v) = C −
∑

v∈S∗ and w(v)>0

w(v),

where C =
∑

w(v)>0 w(v). Therefore (b) holds, i.e.,

c(S, T) = C −
∑

v∈S∗

w(v).

Since every edge of G has capacity ∞, c(S, T) ≤ C implies that no edge of G goes from
S to T . Therefore S − {s} satisfies the precedence constraint, and (a) holds.

