Lecture Outline 5 Topics in Graph Algorithms (CSCI5320-18S)

CAI Leizhen Department of Computer Science and Engineering The Chinese University of Hong Kong lcai@cse.cuhk.edu.hk

February 7, 2018

Keywords: network flow, residual graph, augmenting path, maximum matching, disjoint paths, and project selection problem.

1. References

Review article by Goldberg and Tarjan, Efficient maximum flow algorithms, Communications of the ACM, 57(6), 82-89, 2014.

Chapter 7 of Algorithm Design (Kleinberg and Tardos) contains a rich collection of applications of network flows.

Fastest algorithm for the maximum flow problem by Orlin (2013): O(mn) in general and $O(n^2/\log n)$ when m = O(n).

2. Flow network: Weighted digraph G = (V, E; c) with capacity $c : E \to R^+$, a source $s \in V$ and sink $t \in V$.

We assume that every vertex in on an (s, t)-path.

3. Notation

For a vertex v, $E^+(v)$ denotes the set of edges going out from v, and $E^-(v)$ the set of edges coming into v.

An (s,t)-cut [S,T] is a partition of V into S and T such that $s \in S$ and $t \in T$. We also use [S,T] to denote edges across S and T, $[S \to T]$ edges from S to T, and $[S \leftarrow T]$ edges from T to S.

- 4. Flow: A function $f: E \to R^+ \cup \{0\}$ that satisfies the following two conditions:
 - 1. capacity constraint: for every edge $e, f(e) \leq c(e)$, and
 - 2. flow conservation: for every vertex $v \in V \{s, t\}$,

$$\sum_{e\in E^-(v)}f(e)=\sum_{e\in E^+(v)}f(e).$$

The value |f| of flow f is defined as $\sum_{e \in E^+(s)} f(e)$.

- 5. **Residual graph**: For a flow f of G, the residual graph $G_f = (V, E_f; c_f)$ is defined as follows: for each edge e = uv of G, if f(e) > 0 then vu is an edge in G_f with residual capacity $c_f(vu) = f(e)$, and if c(e) f(e) > 0 then uv is an edge of G_f with residual capacity $c_f(uv) = c(e) f(e)$. Note that $|E_f| \leq 2|E|$.
- 6. Augmenting path: a simple (s, t)-path P in G_f . The residual capacity of P: $c_f(P) = \min\{c_f(uv) : uv \in P\}.$

We can use an augmenting path P to define a new flow f' with |f'| > |f|:

For each edge e of G, set $f'(e) = f(e) + c_f(P)$ if e is in P, $f'(e) = f(e) - c_f(P)$ if the reverse of e is in P, and f'(e) = f(e) otherwise.

7. Let [S,T] be an (s,t)-cut.

Net flow across [S,T]: $f(S,T) = \sum_{[S \to T]} f(e) - \sum_{[S \leftarrow T]} f(e)$.

Capacity of [S,T]: $c(S,T) = \sum_{[S \to T]} c(e)$.

Lemma. For any flow f and any (s, t)-cut [S, T], $f(S, T) = |f| \le c(S, T)$.

- 8. Theorem (Min-Cut Max-Flow) The following statements are equivalent:
 - (a) f is a maximum flow.
 - (b) G_f has no augmenting path.
 - (c) |f| = c(S,T) for some (s,t)-cut [S,T].

Proof. (a) \rightarrow (b). If G_f has an augmenting path P, then we has a new flow f' with |f'| > |f|.

(b) \rightarrow (c). Let $S = \{v \in V : \text{there is an } (s, v)\text{-path in } G_f\}$ and T = V - S. Since G_f has no (s, t)-path, [S, T] forms an (s, t)-cut and no flow goes from T to S. Furthermore, for every edge e going from S to T, we have f(e) = c(e). Therefore |f| = f(S, T) = c(S, T).

(c) \rightarrow (a). Since $|f| \leq c(S,T)$, f is indeed a maximum flow.

9. Ford-Fulkerson Algorithm (1962)

 $f \leftarrow 0;$

while there is an augmenting path P in G_f do augment f to f' using P.

For integer-valued capacities, the algorithm always returns a maximum flow with every flow value being an integer, and runs in $O(m|f^*|)$ time, where f^* is a maximum flow. However the algorithm may not terminate for real-valued capacities.

Edmonds-Karp algorithm $(O(m^2n) \text{ time})$: an implementation of Ford-Fulkerson algorithm by using a shortest (s, t)-path (in terms of the number of edges in the path) in G_f as an augmenting path. This algorithms works for real-valued capacities.

Remark. If all capacities are integers, then Ford-Fulkerson and Edmonds-Karp algorithms always find a maximum flow whose value is an integer.

- 10. **Applications**: The maximum flow (minimum cut) algorithm is very useful for solving a large number of problems.
- 11. Maximum matching in bipartite graphs.

A matching is a subset of edges that are mutually nonadjacent. To find a maximum matching in a bipartite graph G = (X, Y, E), we construct a flow network G' from G as follows: Add source s and sink t, add edge sx for every $x \in X$ and edge yt for every $y \in Y$, and orient every edge of G from X to Y. Set the capacity of every edge to 1.

The value of a maximum flow of G' equals the size of a maximum matching of G.

12. **Disjoint paths**: Find the maximum number of edge-disjoint (s, t)-paths in digraph G.

Set the capacity of every edge to 1, and use Ford-Fulkerson algorithm.

We can also use the following construction to find the maximum number of vertex-disjoint (s,t)-paths: For each vertex v, split it into two vertices v_{in} and v_{out} , change all edges coming into v to coming into v_{in} and all edges going out of v to going out of v_{out} , and add edge $v_{in}v_{out}$. Set the capacity of every edge to 1.

13. **Project selection**: Given a dag (directed acyclic graph) G = (V, E; w) with $w : V \to Z - \{0\}$, we want to find a subset V' of vertices to maximize $\sum_{v \in V'} w(v)$ subject to precedence constraint: for each $v \in V'$, every out-neighbor of v is also in V'.

Background: Each vertex v represents a project, and weight w(v) is the profit for pursuing project v, and an edge uv indicates that in order to pursue project u we must also pursue project v. We wish to select a feasible set of projects with maximum profit.

The difficulty of the problem is caused by projects with negative profits.

Construct a flow network G' = (V', E'; c') as follows:

- Add a source s and a sink t.
- For each vertex u with w(u) > 0, add edge su with capacity w(u).
- For each vertex v with w(v) < 0, add edge vt with capacity -w(v).
- Set the capacity of each edge of G to ∞ .

We compute a minimum (s, t)-cut [S, T] of G', and output $S - \{s\}$ as an optimal set of projects.

Let C be the capacity of the cut $[\{s\}, V' - \{s\}]$ in G', i.e., $C = \sum_{w(v)>0} w(v)$. Then the maximum flow of G' has value at most C.

Lemma. Let [S,T] be an (s,t)-cut of G'.

- (a) If $c(S,T) \leq C$ then $S \{s\}$ satisfies the precedence constraint.
- (b) If $S \{s\}$ satisfies the precedence constraint, then the capacity of [S, T] equals $C \sum_{v \in S \{s\}} w(v)$.

The above lemma implies that when [S,T] is a minimum (s,t)-cut of G', $S - \{s\}$ yields an optimal solution.

Proof of the lemma. Let S^* be a subset of vertices satisfying the precedence constraint. Set $S = S^* \cup \{s\}$ and T = V' - S. Then in G', $[S \to T]$ consists of edges leaving s or entering t only. For capacity c(S,T), edges entering t contribute

$$\sum_{v \in S^* \text{ and } w(v) < 0} -w(v),$$

and edges leaving s contribute

$$\sum_{v \not \in S^* \text{ and } w(v) > 0} w(v) = C - \sum_{v \in S^* \text{ and } w(v) > 0} w(v),$$

where $C = \sum_{w(v)>0} w(v)$. Therefore (b) holds, i.e.,

$$c(S,T) = C - \sum_{v \in S^*} w(v).$$

Since every edge of G has capacity ∞ , $c(S,T) \leq C$ implies that no edge of G goes from S to T. Therefore $S - \{s\}$ satisfies the precedence constraint, and (a) holds.