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1. Definitions: Let G = (V,E) be an undirected graph. M ⊆ E is a matching if no two
edges in M share vertices. For an edge uv ∈ M , u and v are matched under M or M -

matched. For a vertex v, if v is incident with an edge of M , then v is M -saturated and M

saturates v; otherwise v is M -unsaturated.

A matching is a perfect matching if it saturates every vertex, and a maximum matching if
it has the maximum size (maximum weight for weighted graphs).

An M -alternating path is a path whose edges alternate between edges in M and edges not
in M , and such a path is an M -augmenting path if it starts and ends with M -unsaturated
vertices.

2. Berge’s Theorem (1957). A matching M of G is a maximum matching iff G has no

M -augmenting path.

Proof. The sufficiency follows from the fact that an M -augmenting path can be used
to obtain a new matching with one more edge. Conversely, suppose that M ′ is a larger
matching in G and let M∆M ′ be the symmetric difference of M ′ and M . Since the
maximum degree of G[M∆M ′] is two, G[M∆M ′] is a disjoint union of M -alternating
paths and cycles, and one M -alternating path is an M -augmenting path as |M ′| > |M |.

3. Hall’s Theorem (1935). A bipartite graph G = (X,Y ;E) admits a matching saturating
every vertex in X iff for every S ⊆ X, |N(S)| ≥ |S|.

Proof. The condition is obviously necessary and we need only show the sufficiency. For
this purpose, we show that any maximum matching M of G saturates all vertices in X.
Suppose to the contrary that X contains an M -unsaturated vertex x. Let X ′ ⊆ X,
Y ′ ⊆ Y be vertices reachable from x by M -alternating paths. Since M is a maximum
matching, G has no M -augmenting path and hence any M -alternating from x terminates
at a vertex inside X. It follows that N(X ′) = Y ′. On the other hand, every vertex in
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Y ′ is M -saturated and thus M matches Y ′ with X ′ − x, implying |Y ′| = |X ′| − 1. But
then |N(X ′)| = |X ′| − 1 < |X ′|, contradicting the assumption of the theorem. Therefore
X contains no M -unsaturated vertex.

Algorithm: We now discuss a polynomial-time algorithm for determining whether a
bipartite graph G = (X,Y ;E) admits a matching that saturates all vertices in X. Let M

be a matching in G, and u ∈ X an M -unsaturated vertex.

To find an M -augmenting path from u, we grow an M -alternating tree T , which is a tree
with root u such that for every vertex v in T , the (u, v)-path in T is M -alternating.

Initially, T contains vertex u only. At any stage, either (Case 1) T contains an M -
unsaturated vertex y ∈ Y , or (Case 2) all vertices in T except u are M -saturated.

For Case 1, the (u, y)-path P in T is an M -augmenting path, and we can use it to obtain
a larger matching.

For Case 2, let VX = V (T )∩X and VY = V (T )∩ Y . Then VY ⊆ N(VX). If VY = N(VX),
then |N(VX)| = |VX |−1 and G has no required matching by Hall’s theorem. Otherwise, VY

is strictly inside N(VX), i.e., some vertex x ∈ VX is adjacent to a vertex y ∈ N(VX)− VY

and xy 6∈M .

If y is M -unsaturated, then we can grow T by adding edge xy to reach Case 1. Otherwise
y is M -saturated with mate z, and we can grow T by adding edges xy and yz and reach
Case 2 again.

Question: What to do if X has more than one M -unsaturated vertices?

4. Theorem (König, Egervary 1931). For a bipartite graph G, the size of a maximum
matching equals the size of a minimum vertex cover.

Proof. Obviously, the size of a minimum vertex cover is an upper bound of the size of a
maximum matching. Let X ′ ∪Y ′, where X ′ ⊆ X and Y ′ ⊆ Y , be a minimum vertex cover
of G. Consider induced subgraph G1 = G[X ′ ∪ (Y −Y ′)]. For any S ⊆ X ′, |NG1

(S)| ≥ |S|
by the assumption that X ′ ∪ Y ′ is a minimum vertex cover of G. By Hall’s theorem, G1

admits a matching M1 saturating every vertex in X ′. Similarly, G2 = G[(X −X ′) ∪ Y ′]
admits a matching M2 saturating every vertex in Y ′. It follows that M1∪M2 is a matching
of size |X ′ ∪ Y ′|.

5. Tutte’s Theorem (1947) A graph G = (V,E) admits a perfect matching iff for every
S ⊆ V , o(G− S) ≤ |S|, where o(G− S) denotes the number of odd components in G− S.

Note that an odd component is a component with an odd number of vertices.

6. Weighted cover

Let G be a complete bipartite graph Kn,n with vertex set X ∪ Y and weight w(xy) ∈ N

for each edge xy.

Weighted cover f of G: an assignment f : X ∪ Y → N such that f(x) + f(y) ≥ w(xy) for
each edge xy.

Equality subgraph Gf for f : formed by edges xy of G satisfying f(x) + f(y) = w(xy).

Cost c(f) of weighted cover f : c(f) =
∑

v∈X∪Y f(v).
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Lemma. For every perfect matching M and weighted cover f of G, we have c(f) ≥ w(M).
Furthermore, c(f) = w(M) iff M consists of edges xy with f(x) + f(y) = w(xy), and in
such case M is a maximum-weight matching and f a minimum cost weighted cover.

7. Hungarian algorithm (Kuhn 1955 and Munkres 1957)

Find a maximum-weight matching and a minimum cost weighted cover in a weighted
complete bipartite graph G = Kn,n in O(n4) time.

Idea: Maintain a weighted cover f , iteratively reduce the cost of cover until the equality
subgraph Gf contains a perfect matching. Initially, f(x) = maxy∈Y w(xy)} for each x ∈ X

and f(y) = 0 for each y ∈ Y .

Iteration: G← Gf ;
Find a maximum matching M and minimum vertex cover V ′ in G;
If M is a perfect matching, DONE.
Otherwise X ′ ← X ∩ V ′, Y ′ ← Y ∩ V ′,

and ε← min{f(x) + f(y)− w(xy) : x ∈ X −X ′, y ∈ Y − Y ′};
For each x ∈ X −X ′, f(x)← f(x)− ε;
For each y ∈ Y ′, f(y)← f(y) + ε.

8. Applications

Chinese Postman (Guan 1962): Find a closed walk of minimum weight that visits all
edges of a weighted graph G.

The problem is equivalent to the following: duplicate some edges of G to form an Eulerian
multigraph G′ so that the total weight of duplicated edges is minimized. An Euler tour in
G′ gives us a solution for G.

Question: Why does an optimal walk visit each edge at most twice?

Determine edges to be duplicated: Let E ′ be the set of duplicated edges in the multigraph
G′. Then E′ can be decomposed into edge-disjoint paths in G whose ends are odd vertices
of G. Furthermore, these edge-disjoint paths are shortest paths between odd vertices
(why?).

Construct a weighted complete graph G∗ from G whose vertices are odd vertices in G. The
weight of edge uv in G∗ equals the (u, v)-distance in G. Note that the number of vertices
in G∗ are even (why?)

A minimum weight perfect matching of G∗ yields shortest paths that correspond to dupli-
cated edges of G′.

Question: Why are these shortest paths edge-disjoint?

Rooted subtree isomorphism: Given two rooted trees S and T , determine whether S

is a rooted subtree of T , i.e., there is a subgraph isomorphism that maps the root of S

into the root of T .

Let {Si} (resp., {Tj}) be subtrees of S (resp., T ) whose roots are children of roots of S

(resp., T ). For each Si and Tj , recursively determine whether Si is a rooted subtree of Tj .



CSCI5320-19S-LO3 4

Construct a bipartite graph G whose vertices are all Si’s and Tj’s, and whose edges SiTj

indicate that Si is a rooted subtree of Tj . Then G has a matching saturating all vertices
Si in G iff S is a rooted subtree of T .

Growing path: Alice and Bob alternately choose a distinct vertex to grow a path in a
graph G. The person who cannot make a move loses.

The second player has a winning strategy when G contains a perfect matching.

Question: Does the first player have a winning strategy when G has no perfect matching?


