
Lecture Outline 3
Topics in Graph Algorithms (CSCI5320-22S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

January 21, 2022

All-pairs Shortest Paths

Keywords: distance, negative cycle, single-source shortest paths: Dijkstra’s algorithm, and
Bellman-Ford algorithm, all-pairs shortest paths: Johnson’s algorithm, Floyd-Warshall algo-
rithm, matrix ”multiplication”, dynamic programming, and edge-disjoint paths.

1. Let G = (V,E;w) be a weighted graph with w : E → R. We assume that G is a digraph
(i.e., a directed graph) when we study shortest paths.

Question 3.1: How do we convert an undirected graph into a digraph?

Question 3.2: Why do we allow negative weights?

2. The distance from u to v, denoted d(u, v), is the length of a shortest path from u to v.
The length of a path P is the number of edges in P for unweighted graphs, and the sum
of weights of edges in P for weighted graphs.

Question 3.3: Does a path allow repetition of vertices/edges?

3. Review of single-source shortest paths

Dijkstra’s algorithm: for weighted graph G without negative edges (O(m + n log n)
time using Fibonacci heap).

Dijkstra’s algorithm computes shortest paths from the source vertex s to all vertices
reachable from s in a way similar to BFS: the algorithm maintains the set S of visited
vertices, and visits the next vertex by selecting an edge v ′v, where v′ ∈ S and v ∈ V −S,
such that v′v is on a shortest (s, v)-path. For this purpose, the algorithm assigns each
vertex v a label d[v] which is an upper bound of d(s, v) and decreased to d(s, v) once v

is visited. We also maintain a rooted tree T on S such that for each vertex v ∈ S, the
unique (s, v)-path in T is a shortest (s, v)-path in G.

The key step in Dijkstra’s algorithm is to choose a vertex u outside S with minimum
d[u], and for every edge uv change d[v] to min{d[v], d[u] + w(uv)}.

1



CSCI5320-22S-LO3 2

Question 3.4: How can Dijkstra’s algorithm fail to work for graphs with negative edges?

Bellman-Ford algorithm: for general weighted graphs (O(mn) time).

Repeats the following step n− 1 times: for every edge uv do Refine(uv).

Refine(uv): if d[v] > d[u] + w(uv) then d[v]← d[u] + w(uv).

Question 3.5: How do we know that indeed d[v] = d(s, v) after n− 1 iterations?

Question 3.6: Can we use the ideas in Bellman-Ford algorithm to modify Dijkstra’s
algorithm to make it work for general weighted graphs?

4. Negative cycle: a cycle whose total weight is negative. Distances may not be well
defined when a graph contains negative cycles, and Bellman-Ford algorithm can be used
to detect a negative cycle in a graph.

5. All-pairs shortest paths: Run single-source algorithm for every vertex.

Use Bellman-Ford (O(mn2) time) and use Dijkstra’s algorithm when no negative edges
(O(mn + n2 log n) time).

6. Johnson’s algorithm: reweighting method in O(mn + n2 log n) time.

Change the weight w of G = (V,E;w) to a new weight w′ such that
(a) shortest paths in G remain unchanged, and
(b) for every edge e ∈ E, w′(e) ≥ 0.

Let h : V → R be an arbitrary function, and for each edge uv ∈ E, set w ′(uv) =
w(uv) + h(u)− h(v). Let G′ = (V,E;w′).

Lemma. P is a shortest path in G′ iff it is a shortest path in G, and G′ has a negative
cycle iff G does.

Therefore any function h satisfies (a), and we use the following method to find an h that
also satisfies (b).

Construct G∗ from G by adding a vertex s and edges sv with weight 0 for every vertex
v of G. Set h(v) = dG∗(s, v) for all v ∈ V (note that G∗ has a negative cycle iff G does).

By the triangle inequality of distance, we have

dG∗(s, v) ≤ dG∗(s, u) + dG∗(u, v) ≤ dG∗(s, u) + w(uv),

implying w′(uv) ≥ 0.

Johnson’s algorithm

Step 1. Run Bellman-Ford algorithm on G∗.

Step 2. If G∗ has no negative cycle, then set h(v) = dG∗(s, v) for all v ∈ V and set
w′(uv) = w(uv) + h(u)− h(v) for every edge uv ∈ E.

Step 3. For every vertex of G, run Dijkstra’s algorithm on G′ = (V,E;w′).

Step 4. For every pair u, v of vertices, compute dG(u, v) from dG∗(u, v).



CSCI5320-22S-LO3 3

Question 3.7: Can you find a different method to obtain a required h?

7. Floyd-Warshall algorithm: dynamic programming in O(n3) time.

Let V = {1, . . . , n}, and w(ij) the weight of edge ij. Define d
(k)
i,j to be the weight of a

shortest (i, j)-path with internal vertices in {1, . . . , k}. Then d(i, j) = d
(n)
i,j .

Recurrence: d
(0)
i,j = w(ij) and d

(k)
i,j = min{d

(k−1)
i,j , d

(k−1)
i,k + d

(k−1)
k,j }.

We can easily compute d
(n)
i,j by dynamic programming in O(n3) time.

Question 3.8: How can we compute pairwise shortest paths instead of distances?

8. Matrix “multiplication”: O(n3 log n) time.

Let V = {1, . . . , n}, and let W = [wij ]n×n be the weighted adjacency matrix of G, i.e.,

wij =











0 if i = j

w(ij) if i 6= j and ij ∈ E

∞ otherwise.

Let l
(t)
ij be the weight of a shortest (i, j)-path that uses at most t edges. Then we have

the following recurrence: l
(0)
ij =

{

0 if i = j

∞ if i 6= j
and l

(t)
ij = min1≤k≤n{l

(t−1)
ik + w(kj)}.

We can easily compute distance d(i, j) = l
(n−1)
ij by dynamic programming in O(n4) time,

and we can speed it up by matrix “multiplication”.

For two n×n matrices A and B, define A?B to be matrix C with cij = mink{aik + bkj}.
Compare this with the normal matrix multiplication cij =

∑

k aik × bkj, we see the
correspondences “min′′ ↔ “

∑′′ and “+′′ ↔ “×′′.

Let L(t) = [l
(t)
ij ]n×n. Then

L(0) = [l
(0)
ij ], L(1) = L(0)?W = W,L(2) = L(1)?W = W 2, . . . , L(n−1) = L(n−2)?W = W n−1,

where W i = W ? . . . ? W with i W ’s.

We can compute W n−1 by repeated squaring W,W 2,W 4,W 8, . . . O(log n) times to obtain
W n−1. Note that, when G has no negative cycle, W n−1 converges and doesn’t change
after that.

9. Edge-disjoint paths (Suurballe 1974) O(m + n log n) time.

Task: For a pair (s, t) of vertices in a weighted digraph G = (V,E;w), find a pair of
edge-disjoint (s, t)-paths of minimum total length.

For simplicity, we assume w(e) ≥ 0 and G is antisymmetric, i.e., uv ∈ E implies that
vu 6∈ E. We use the reweighting idea to solve our problem.

Step 1 . Use Dijkstra’s algorithm to find a shortest-path tree T with root s, and compute
d(s, v) for every vertex v.



CSCI5320-22S-LO3 4

Step 2 . For every edge uv, define w′(uv) = (d(s, u) + w(uv)) − d(s, v).

Step 3 . Construct from G a new graph G′ by reversing directions of all edges in the
(s, t)-path P in T .

Step 4 . Run Dijkstra’s algorithm on G′ with new weight w′ to find a shortest (s, t)-path
P ′ in G′.

Step 5 . Take the union of edges in P and P ′, discarding every edge in P whose reversal
appears in P ′, and group them into two (s, t)-paths.

Remarks. The new weight w′(e) ≥ 0 by the triangle inequality of distances. Step 5 is
guaranteed by augmenting paths and min-cut max-flow theorem for network flows.

10. Tree 1-spanner (Cai and Corneil 1995)

Task: For a weighted graph G = (V,E;w) with w : E → R+, determine whether
G contains a tree 1-spanner, i.e., a spanning tree T such that for every pair {u, v} of
vertices, dG(u, v) = dT (u, v).

Fact 1: If G contains a tree 1-spanner T , then T is the unique minimum spanning tree
of G.

Fact 2: T is a tree 1-spanner iff for every non-tree edge xy, w(xy) ≥ dT (x, y).

Algorithm: Find a minimum spanning tree T of G and then verify that T preserves
pairwise distances of G.

For verification, it takes O(n3) time if we compute all-pairs distances in T and G. We
can reduce the verification time to O(m + n) as follows:

Step 1. Arbitrarily choose a vertex r of T as the root.

Step 2. For every vertex v, compute dT (r, v).

Step 3. For every non-tree edge xy, check if w(xy) ≥ dT (x, y).

Step 2 takes O(n) time by BFS. For Step 3, we note that for any two vertices x and y,

dT (x, y) = dT (r, x) + dT (r, y)− 2dT (r, LCA(x, y)),

where LCA(x, y) denotes the least common ancestor of x and y. We can use an algorithm
of Harel and Tarjan to compute LCA(x, y) in O(1) time. It follows that Step 3 takes
O(m + n) time.

11. References

[1] Cormen et. al., Introduction to Algorithms (2nd Ed) Chapter 25, MIT Press, 2001.

[2] Suurballe and Tarjan, A quick method for finding shortest pairs of disjoint paths,
Networks, Vol. 14 325-336, 1984.


