
Lecture Outline 1
Topics in Graph Algorithms (CSCI5320-19S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

January 9, 2019

Keywords: TSP, Clique, Vertex Cover, and FPT algorithm.

Graphs are effective models for numerous applications, and algorithmic problems
on graphs arise naturally from various applications. Three key words in establishing
mathematical models: simplification, abstraction, and approximation.

1. Problem 1: 3D Printing

Task: For a given layer, determine nozzle movement to minimize the traveling
distance of the nozzle.

Special case: The layer consists of isolated dots each of minimum feature size.

Graph model: Construct a weighted complete graph G whose vertices correspond
to dots and the weight of an edge indicates the distance between two dots.

Our problem is exactly the NP-complete metric Traveling Salesman Problem on
G if we want the nozzle to return to its start position after finishing the layer
(otherwise the problem is to find a Hamiltonian path of minimum weight).

2-Approximation algorithm

Find a MST T in G, walk around the tree to get a closed walk W , and then convert

W into a Hamiltonian cycle C by taking short cuts to next unvisited vertices.

Note that edge weights of metric TSP satisfy triangle inequality: for any three
vertices x, y and z, w(xy) ≤ w(xz)+w(yz). It follows that w(C) ≤ w(W ) = 2w(T )
as w(W ) = 2w(T ). On the other hand, any Hamiltonian cycle H of G contains a
spanning path P which is a spanning tree. Therefore w(H) > w(P ) ≥ w(T ), and
hence opt(G) > w(T ). It follows that w(C)/opt(G) < 2.

1.5-Approximation algorithm

We use a different way to form a closed walk W : add edges to T to form an

Eulerian graph G∗, and use an Eulerian cycle in G∗ as W .

For this purpose, we construct a weighted complete graph GT from T by taking
odd vertices of T as vertices, and setting the weight of edge uv in GT to be their

1



CSCI5320-19S-LO1 2

distance. We find a minimum-weight perfect matching M from GT and add it to
T to form G∗. Note that G∗ may contain parallel edges.

Since w(M) ≤ opt(G)/2, we have w(C) ≤ w(W ) = w(T ) + w(M) < 3

2
opt(G).

2. Problem 2: Making Necklace

Origin: To make a perfect pearl necklace, one should use pearls as identical (size,
color, shape, and texture) as possible.

Task: Select k pearls from n pearls to make a perfect necklace.

Graph model: Construct a weighted complete graph G = (V,E;w) whose vertices
are pearls, and the weight w(xy) of edge xy is the similarity score between pearls
x and y.

Put a threshold ε for similarity scores: we can use pearls x and y together in a
necklace if w(xy) ≥ ε.

New task: Find a k clique in the graph obtained from G by deleting all edges
with weight less than ε.

3. Problem 3: Density Reduction

Origin: Trees in a forest are too dense, and we need to cut down some trees.

Problem formation: Given a point set S in the plane, remove k points from S
to maximize the minimum pairwise distance of the remaining points.

Graph model: Construct a weighted complete graph G = (V,E;w) whose vertices
are points of S, and the weight w(uv) of edge uv is the distance between u and v
in the plane.

General version: Minimum Edge Weight

Input: An edge-weighted graph G, integers k and w.

Question: Are there at most k vertices V ′ in G such that the minimum edge weight
in G − V ′ is at least w?

Note: Density Reduction is a special case of Minimum Edge Weight on
weighted complete graphs.

Connection with Vertex Cover

Construct a graph G′ from G by deleting all edges of G with weight at least w.

Then the answer for G is yes iff G′ contains a vertex cover of size at most k.

However, Vertex Cover is NP-complete and this reduction does not help us to
solve Minimum Edge Weight.

Question: Can you prove that Minimum Edge Weight is NP-complete?

4. Vertex Cover for fixed k

Easily solved in time O(nkm) by exhaustive search, where m and n, respectively,
are numbers of edges and vertices of G.

However this type of polynomial-time algorithms is normally meaningless in theory
and useless in practice.



CSCI5320-19S-LO1 3

5. FPT algorithm

An FPT (fixed-parameter tractable) algorithm measures its runing time in terms
of the input size and a parameter, which is usually a part of input, and runs in
time O(f(k)nc) for some computable function f(k), where n denotes the input size
and c is a constant independent of k and n.

Parameter k tries to capture an aspect of a problem that most interests you, and
FPT algorithms attempt to solve intractable problems such as NP-hard problems
effectively in practice when parameter k is “small”.

Question: Can you give an alternative definition of FPT algorithms that captures
the key ideas of FPT algorithms?

6. FPT algorithm for Vertex Cover [Mehlhorn (1984) and Fellows (1988)]

The algorithm uses the bounded search tree method based on the simple fact that
for every edge uv, any k-vertex cover must contain either u or v.

We construct a binary tree B of height at most k as follows. Label the root of B
by (G, ∅). Choose an edge uv in the current graph G, branch out and label the
two children of the root by (G− u, u) and (G− v, v) respectively. For each labeled
node of B, label its two children in a similar way.

Note that G has a k-vertex cover V ′ iff B has a leaf l with label (∅, x) for some
vertex x, and V ′ can be obtained from the labels of the nodes on the path from l
to the root.

The above algorithm solves k-Vertex Cover in O(2k(m + n)) time, which is
effective for small k, say k ≤ 15. The current fastest FPT algorithm for k-Vertex

Cover runs in O(1.28k + kn) time (Chen, Kanj and Xia 2005), which makes
Vertex Cover quickly solvable in practice for n ≤ 1015 and k ≤ 150. Actually,
the algorithm can handle k ≤ 400 for most practical problems. Note that the
exhaustive search algorithm for the problem can hardly handle a graph with n =
100 and k = 10.

7. Using FPT algorithms for k-Vertex Cover, we can obtain FPT algorithms for
Minimum Edge Weight, and hence for Density Reduction. In fact, Cai
and Zimmermann (2010) have obtained an O(1.28k + m)-time algorithm for the
problem.

8. For k-Vertex Cover, Cai (2017) used indirect certificating technique to obtain
the following extremely simple algorithm, which finds a k-vertex cover in a graph
G with probability at least 4−k, if G has one:

Randomly mark each vertex with probability 1/2 and output N(M).

Note that N(M) denotes the open neighbourhood of marked vertices, i.e., un-
marked vertices that are adjacent to marked vertices.


