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1. Covering Exactly k Edges (Cai, Chan and Chan 2006)

Find a set of vertices in a graph G to cover exactly k edges.

W.l.o.g., we may assume that G has no isolated vertices. Color each vertex either
red or green each with probability 1/2 to form a random partition (Vg, Vr) of V . A
solution S is “well-colored” if all vertices of S are green and all vertices in N(S) are
red. Since S covers exactly k edges, we see that |S| ≤ k and |N(S)| ≤ k. Therefore
a solution has probability at least 2−2k to be well-colored.

The problem of finding a well-colored solution is equivalent to the problem of
finding a collection H′ of green components such that the total number of edges
in G covered by vertices in H′ is exactly k. To find such a collection H′, we
compute, for each green component Hi, the number ei of edges in G covered by
vertices in Hi. Since for any two green components Hi and Hj, the number of edges
covered by vertices in Hi ∪Hj equals ei + ej , we can obtain such a collection H′ in
O(kn) time by using the standard dynamic programming algorithm for the Subset

Sum problem. Therefore we can solve the problem in O(4k(m + n)) expected
time when G contains such a vertex cover and, using (n, 2k)-universal sets for
derandomization, O(4k(2k)O(log k)(m + n) log n) worst-case time, which is O((m +
n) log n) for each fixed k.

2. Maximum Weight Independent k-Set for planar graphs (Cai, Chan and Chan
2006)

Let G = (V,E;w) be a weighted planar graph with w : V → Z+, and consider the
problem of finding a maximum weight independent set of size k in G.

Since a planar graph always contains a vertex of degree at most 5, we can orient
edges of G in O(n) time so that the outdegree of each vertex is at most 5. Color each
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vertex either red or green each with probability 1/2 to form a random partition
(Vg, Vr) of V . For a maximum weight independent k-set V ′, there is at least
2−6k chance that all vertices of V ′ are green and all out-neighbors of V ′ are red.
Therefore, with probability at least 2−6k, V ′ consists of sinks of G[Vg] and thus k

sinks of largest weights in G[Vg]. We can easily find such V ′ in O(kn) time, and
thus, with probability at least 2−6k, we can find a maximum weight independent
k-set in O(kn) time. We can derandomize the algorithm by using (n, 6k)-universal
sets to obtain a deterministic algorithm that runs in O(n log n) time for each fixed
k.

3. Three methods for Maximum k-Vertex Domination on degree-bounded graphs
G = (V,E) (Cai, Chan and Chan 2006). For a subgraph H of G, let ρ(H) be
the number of vertices dominated by vertices of H. An optimal k-solution S is
“well-colored” if all vertices of S are green and all vertices in N(S) are red. How-
ever, two green components H and H ′ may not satisfy ρ(H ∪H ′) = ρ(H) + ρ(H ′),
and it seems not easy to find a well-colored solution. However, we may redefine
“well-colored solutions” to obtain the following three algorithms.

Algorithm 1: N [S] green and N 2(S) red. For each green component Hi, let
hi = |V (Hi)|, and find minimum number ki of vertices that dominate all vertices
in Hi and have no red neighbors. Then for any two green components Hi and Hj,
we have ρ(Hi ∪ Hj) = hi + hj , and we can use DP for (0,1)-knapsack to find a
well-colored solution.

Algorithm 2: Use three colors – S green, N(S) blue and N 2(S) red. For each
green-blue component Hi, let ki be the number of green vertices and hi = |V (Hi)|.
Then for any two green-blue components Hi and Hj, we have ρ(Hi∪Hj) = hi +hj.

Algorithm 3: S green, and both N(S) and N 2(S) red. Then for any pair {Hi,Hj}
of green components whose distance dG(Hi,Hj) in G is at most two, we have
V (Hi) ⊆ S iff V (Hj) ⊆ S. This fact allows us to merge green components into
clusters of green components, called 2-cgcs. Construct a graph GH by taking each
green component Hi as a vertex and HiHj as an edge if dG(Hi,Hj) ≤ 2. Then
each connected component of GH corresponds to a 2-cgc of G, and S consists of a
collection of 2-cgcs. For each 2-cgc Ci, let ki = V (Ci) and hi = ρ(Ci). Then for
any two 2-cgcs Ci and Cj , ρ(Ci ∪ Cj) = hi + hj .

4. The idea of Algorithm 3 can be generalized to require that a “well-colored”
solution S satisfies S green and all N t(S) red for 1 ≤ t ≤ i, which forms an
i-separating partition for a solution. We can then merge green components into
i-cgcs, and a “well-colored” solution will consists of a collection of i-cgcs. This idea
leads to the following general theorem.

Theorem (Cai, Chan and Chan 2006) Let G = (V,E) be a graph of maximum
degree d, where d is a constant. Let φ : 2V → R ∪ {−∞,+∞} be an objective
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function to be optimized. Then it takes FPT time to find k vertices V ′ in G that
optimizes φ(V ′) if

(a) For all V ′ ⊆ V with |V ′| ≤ k, φ(V ′) can be computed in FPT time, and

(b) There is an integer i computable in FPT time such that for all V1, V2 ⊆ V

with |V1| + |V2| ≤ k, if d(V1, V2) > i then φ(V1 ∪ V2) = φ(V1) + φ(V2).

5. Induce k-Path for d-degenerate graphs (Cai, Chan and Chan 2006).

G is d-degenerate if it admits an acyclic orientation G′ such that d+
G′(v) ≤ d for

each vertex v.

We use random separation to separate an induced k-path from its out-neighbors
and then use color coding for the green subgraph to find an induced k-path. For this
purpose, we use k + 1 colors {0, 1, . . . , k} with color 0 for red and colors {1, . . . , k}
for an induced k-path.

(a) To generate a (k + 1)-coloring, we produce a random partition {Vg, Vr} of
V , color red vertices Vr by 0 and randomly color green vertices Vg by colors in
{1, . . . , k}.

An induced k-path of G is “well-colored” if its vertices are colored from 1 to k

along the path, and N+
G′(P ) has color 0.

(b) To find a well-colored induced k-path, we mark vertices as follows.

For each vertex v with color 1, mark it if all vertices in N +
G′(v) have color 0, except

perhaps one vertex of color 2.

For i = 2 to k process vertices v of color i: mark v if there is a marked vertex in
NG(v) of color i − 1, and all vertices in N+

G′(v) have color 0, except perhaps one
vertex of color i + 1.

It can be shown that G has a well-colored induced k-path iff there is a marked
vertex of color k.


