Lecture Outline (Week 10)
Topics in Graph Algorithms (CSCI5320-20S)

CAI Leizhen
Department of Computer Science and Engineering
The Chinese University of Hong Kong
lcai@cse.cuhk.edu.hk

April 8, 2020

Keywords: Random partition, and random separation.

1 Random Partition

Basic idea: Randomly partition an instance into two parts, and then independently
solve problems for the two parts. We can use universal sets to derandomize such algo-
rithms.

1. (n,t)-universal sets: A collection of binary vectors of length n is (n, t)-universal if
for every subset of size t of the indices, all 2! configurations appear. Naor, Schulman
and Srinivasan have a construction for (n,t)-universal sets of size 2/¢2(1°8%) logn
that can be listed in time 2t¢C1°8t)nlog n.

2. D1SJOINT PATHS

Task: Find two vertex-disjoint k-paths P; and P, in graph G.

Step 1. Randomly partition vertices of G into V; and V5 to form graphs G; = G[V4]
and G = G[Va].

Step 2. Find a k-path P; in G; and a k-path P, in Gs.

Let T'(m, n) be the time for finding a k-path in a graph with m edges and n vertices.
When G admits a solution, the above algorithm finds a solution in time T'(m,n)
with probability 272*, as each P; (i = 1,2) has probability 27* to be entirely inside
graph G;. We can use a family of (n,2k)-universal sets of size 22k :0(logk) 1gg
to derandomize the algorithm and obtain a deterministic algorithm with running
time

9%k ;008 k) 100 nT'(m, n) = 4k+0(log? BT (m,n)logn = O(4.01%T(m,n)logn).



CSC15320-20S-LOW10 2

3. Disjoint Paths: one short and one unconstrained

L. Cai and J. Ye, Finding Two Edge-Disjoint Paths with Length Constraints, WG
2016, LNCS 9941 pp. 62-73, 2016.

Task: For a pair (s,t) of vertices in a graph G, find edge-disjoint (s, t)-paths P
and @ such that P has length at most k.

Definition 1.1 A wvertex v is a nearby-vertex if min{d(v, s),d(v,t)} < k/2, and
an edge is a nearby-edge if its two endpoints are both nearby-vertices.

The following lemma is a key for an FPT algorithm based on random partition.

Lemma 1.2 Let (s,t) be a pair of vertices in a graph G = (V,E), P an (s,t)-
path of length at most k, and @ a minimum-length (s,t)-path edge-disjoint from
P. Then

(a) all edges in P are nearby-edges, and
(b) Q contains at most (k+ 1)* — 1 nearby-edges.

Proof. Statement 1 is obvious and we focus on Statement 2. For this purpose,
we call a vertex a P-near verter if its distance to P is at most k/2, and we first
give an upper bound on the number of P-near vertices in (). Consider an arbitrary
vertex = in P, and define

N; ={v:vis a nearby-vertex in Q and d(v,z) = d(v, P)},

where d(v, P) is the minimum distance between v and any vertex of P. In other
words, for each vertex v € N}, z is a vertex in P closest to v.

Order vertices in IV along @ from s to ¢, and let x5 and z; be the first and last
vertices, respectively. Let Pg be a shortest (x4, z)-path and P, a shortest (x,z)-
path in G. Then both P; and P; are edge-disjoint from P as x is a vertex in P
closest to both xg and x4, and therefore PP, is an (x4, x¢)-walk edge-disjoint from
P.

Note that P;P, contains at most k edges as both Ps; and P, have at most k/2
edges. If the (xg, z¢)-section of @ contains more than k edges, then we can replace
it by PsP, to obtain an (s,t)-walk that is edge-disjoint from P and shorter than
@, contradicting the minimality of Q. Therefore, the (z g, z+)-section of @) contains
at most k edges, implying that it contains at most k£ + 1 P-near vertices, i.e.,
INY| < k+1.

Since P has at most k + 1 vertices, and every P-near vertex in () belongs to N
for some vertex x in P, we see that ) contains at most (k + 1)? P-near vertices.
From the definition of nearby-vertices, we know that every nearby-vertex is a P-
near vertex as s and t are vertices of P. Therefore QQ contains at most (k + 1)
nearby-vertices, and hence at most (k + 1)? — 1 nearby-edges. |



CSC15320-20S-LOW10 3

Let {E4, Es} be a random partition of nearby-edges, and construct G; = G[E;] and
G2 = G—E(G1). Note that whenever G admits a solution, it has a solution (P, Q)
such that @ is a minimum-length (s,t)-path edge disjoint from P. Lemma 1.2
implies that P is inside G with probability > 1/ 2% and @ is inside G with prob-
ability > 1/ 2(k+1? " This ensures that, with probability > 1/2%, G; contains an
(s,t)-path of length at most k and, with probability at least 1/2(k+1)2, (G5 contains
an (s, t)-path. Therefore with probability > 1/2F+(*+1)* we will be able to find a
solution for G by finding an (s, t)-path of length at most k in G; and an (s, t)-path
in GQ.

Algorithm DP1S:

(a) Find all nearby-edges in O(m) time by two rounds of BFS, one from s and
the other from ¢.

(b) Randomly color each nearby-edge by color 1 or 2 with probability 1/2, and
color all remaining edges of G by color 2. Let G; (i = 1,2) be the graph
consisting of edges of color 3.

(c) Find an (s,t)-path P of length < k in G1, and an (s,t)-path @ in G3. Return
(P, @) as a solution if both P and @ exist, and return “No” otherwise.

Algorithm DP1S solves our problem with probability > 1/ 2k+(*+1)* and runs in
O(m) time, as the two tasks in Step (c) for G; and G5 also take O(m) time. Let m’
be the number of nearby-edges and r = k + (k + 1)%. We can use (m/,r)-universal
sets to derandomize our algorithm, and obtain a deterministic FPT algorithm
running in time

2008 Jog s/ = O(2.Olk2mlog n).

2 Random Separation (Cai, Chan and Chan 2006)

L. Cai, S.M. Chan and S.O. Chan, Random separation: a new method for solving fixed-
cardinality optimization problems, LNCS 4169 (pp.239-250), 2006.

The basic idea of this innovative method is to use a random partition of the vertex
set V of a graph G = (V, E) to separate a solution from the rest of G into connected
components and then select appropriate components to form a solution. Algorithms
obtained from this method can be derandomized by families of universal sets.

Random separation is very effective for a large variety of parameterized problems on
graphs with bounded degree or bounded degeneracy, and also useful for some parame-
terized problems on general graphs.



CSC15320-20S-LOW10 4

1. DENSE k-VERTEX SUBGRAPHS (a.k.a. MAXIMUM k-VERTEX SUBGRAPH) for
degree-bounded graphs (Cai, Chan and Chan 2006)

Let G = (V,E) be a graph of maximum degree d for some constant d. Find k
vertices V' in G to maximize the number of edges in G[V].

First we randomly colour each vertex of G by either green or red each with prob-
ability 1/2 to form a random partition (Vi,V;) of V. Green vertices V; induce
the green subgraph G, = G[V,], and the connected components of G, are green
components.

Let G’ be a maximum k-vertex induced subgraph of G. A random partition of
V is a “good partition” for G’ if all vertices in G’ are green and all vertices in
its neighbourhood Ng(G') are red. Note that Ng(G') has at most dk vertices as
dg(v) < d for each vertex v. Therefore the probability that a random partition is
a good partition for G’ is at least 2~ (@tD% and thus, with at least this probability,
G’ is the union of some green components.

To find a maximum k-vertex induced subgraph for a good partition of G’, we need
only find a collection H’ of green components such that the total number of vertices
in H' is k and the total number of edges in H’ is maximized. For this purpose, we
first compute in O(dn) time the number n; of vertices and the number m; of edges
inside each green component H;. Then we find a collection H’ of green components
that maximizes

> m

H;,eH'
subject to >y ey i = k.

Since for any two green components H; and Hj, the number of vertices (resp. the
number of edges) in H; U H; equals n; + n; (resp. m; + m;), we can solve the
problem in O(kn) time by the standard dynamic programming algorithm for the
0-1 KNAPSACK problem. Therefore, with probability at least 27Dk we can find
a maximum k-vertex induced subgraph of G in O((d + k)n) time.

To derandomize the algorithm, we use a family of partitions with the property that
for every partition IT of any (d + 1)k vertices into k vertices and dk vertices, there
is a partition in the family that is consistent with II.

We can interpret a binary vector of length n as a red-green coloring of G: vertex
v; 18 colored green if the i-th position of the vector is 1 and red if 0. Then a family
of (n,(d + 1)k)-universal sets can be used as the required family of partitions.
Therefore we obtain an FPT-algorithm that runs in O(f(k,d)nlogn) time where

f(]{,d) _ 2(d+l)k(d]€ + k,)O(log(dk-i-k)) (d + ]{3)



