
Lecture Outline (Week 10)
Topics in Graph Algorithms (CSCI5320-20S)

CAI Leizhen

Department of Computer Science and Engineering

The Chinese University of Hong Kong

lcai@cse.cuhk.edu.hk

April 8, 2020

Keywords: Random partition, and random separation.

1 Random Partition

Basic idea: Randomly partition an instance into two parts, and then independently
solve problems for the two parts. We can use universal sets to derandomize such algo-
rithms.

1. (n, t)-universal sets: A collection of binary vectors of length n is (n, t)-universal if
for every subset of size t of the indices, all 2t configurations appear. Naor, Schulman
and Srinivasan have a construction for (n, t)-universal sets of size 2ttO(log t) log n
that can be listed in time 2ttO(log t)n log n.

2. Disjoint Paths

Task: Find two vertex-disjoint k-paths P1 and P2 in graph G.

Step 1. Randomly partition vertices of G into V1 and V2 to form graphs G1 = G[V1]
and G2 = G[V2].

Step 2. Find a k-path P1 in G1 and a k-path P2 in G2.

Let T (m,n) be the time for finding a k-path in a graph with m edges and n vertices.
When G admits a solution, the above algorithm finds a solution in time T (m,n)
with probability 2−2k, as each Pi (i = 1, 2) has probability 2−k to be entirely inside
graph Gi. We can use a family of (n, 2k)-universal sets of size 22kkO(log k) log n
to derandomize the algorithm and obtain a deterministic algorithm with running
time

22kkO(log k) log nT (m,n) = 4k+O(log2 k)T (m,n) log n = O(4.01kT (m,n) log n).

1



CSCI5320-20S-LOW10 2

3. Disjoint Paths: one short and one unconstrained

L. Cai and J. Ye, Finding Two Edge-Disjoint Paths with Length Constraints, WG
2016, LNCS 9941 pp. 62-73, 2016.

Task: For a pair (s, t) of vertices in a graph G, find edge-disjoint (s, t)-paths P
and Q such that P has length at most k.

Definition 1.1 A vertex v is a nearby-vertex if min{d(v, s), d(v, t)} ≤ k/2, and
an edge is a nearby-edge if its two endpoints are both nearby-vertices.

The following lemma is a key for an FPT algorithm based on random partition.

Lemma 1.2 Let (s, t) be a pair of vertices in a graph G = (V,E), P an (s, t)-
path of length at most k, and Q a minimum-length (s, t)-path edge-disjoint from
P . Then

(a) all edges in P are nearby-edges, and

(b) Q contains at most (k + 1)2 − 1 nearby-edges.

Proof. Statement 1 is obvious and we focus on Statement 2. For this purpose,
we call a vertex a P -near vertex if its distance to P is at most k/2, and we first
give an upper bound on the number of P -near vertices in Q. Consider an arbitrary
vertex x in P , and define

N∗
x = {v : v is a nearby-vertex in Q and d(v, x) = d(v, P )},

where d(v, P ) is the minimum distance between v and any vertex of P . In other
words, for each vertex v ∈ N ∗

x , x is a vertex in P closest to v.

Order vertices in N ∗
x along Q from s to t, and let xs and xt be the first and last

vertices, respectively. Let Ps be a shortest (xs, x)-path and Pt a shortest (x, xt)-
path in G. Then both Ps and Pt are edge-disjoint from P as x is a vertex in P
closest to both xs and xt, and therefore PsPt is an (xs, xt)-walk edge-disjoint from
P .

Note that PsPt contains at most k edges as both Ps and Pt have at most k/2
edges. If the (xs, xt)-section of Q contains more than k edges, then we can replace
it by PsPt to obtain an (s, t)-walk that is edge-disjoint from P and shorter than
Q, contradicting the minimality of Q. Therefore, the (xs, xt)-section of Q contains
at most k edges, implying that it contains at most k + 1 P -near vertices, i.e.,
|N∗

x | ≤ k + 1.

Since P has at most k + 1 vertices, and every P -near vertex in Q belongs to N ∗
x

for some vertex x in P , we see that Q contains at most (k + 1)2 P -near vertices.
From the definition of nearby-vertices, we know that every nearby-vertex is a P -
near vertex as s and t are vertices of P . Therefore Q contains at most (k + 1)2

nearby-vertices, and hence at most (k + 1)2 − 1 nearby-edges.



CSCI5320-20S-LOW10 3

Let {E1, E2} be a random partition of nearby-edges, and construct G1 = G[E1] and
G2 = G−E(G1). Note that whenever G admits a solution, it has a solution (P,Q)
such that Q is a minimum-length (s, t)-path edge disjoint from P . Lemma 1.2
implies that P is inside G1 with probability ≥ 1/2k, and Q is inside G2 with prob-
ability ≥ 1/2(k+1)2 . This ensures that, with probability ≥ 1/2k, G1 contains an
(s, t)-path of length at most k and, with probability at least 1/2(k+1)2 , G2 contains
an (s, t)-path. Therefore with probability ≥ 1/2k+(k+1)2 , we will be able to find a
solution for G by finding an (s, t)-path of length at most k in G1 and an (s, t)-path
in G2.

Algorithm DP1S:

(a) Find all nearby-edges in O(m) time by two rounds of BFS, one from s and
the other from t.

(b) Randomly color each nearby-edge by color 1 or 2 with probability 1/2, and
color all remaining edges of G by color 2. Let Gi (i = 1, 2) be the graph
consisting of edges of color i.

(c) Find an (s, t)-path P of length ≤ k in G1, and an (s, t)-path Q in G2. Return
(P,Q) as a solution if both P and Q exist, and return “No” otherwise.

Algorithm DP1S solves our problem with probability ≥ 1/2k+(k+1)2 and runs in
O(m) time, as the two tasks in Step (c) for G1 and G2 also take O(m) time. Let m′

be the number of nearby-edges and r = k + (k + 1)2. We can use (m′, r)-universal
sets to derandomize our algorithm, and obtain a deterministic FPT algorithm
running in time

2rrO(log r) log n ∗ m′ = O(2.01k2

m log n).

2 Random Separation (Cai, Chan and Chan 2006)

L. Cai, S.M. Chan and S.O. Chan, Random separation: a new method for solving fixed-
cardinality optimization problems, LNCS 4169 (pp.239-250), 2006.

The basic idea of this innovative method is to use a random partition of the vertex
set V of a graph G = (V,E) to separate a solution from the rest of G into connected
components and then select appropriate components to form a solution. Algorithms
obtained from this method can be derandomized by families of universal sets.

Random separation is very effective for a large variety of parameterized problems on
graphs with bounded degree or bounded degeneracy, and also useful for some parame-
terized problems on general graphs.



CSCI5320-20S-LOW10 4

1. Dense k-Vertex Subgraphs (a.k.a. Maximum k-Vertex Subgraph) for
degree-bounded graphs (Cai, Chan and Chan 2006)

Let G = (V,E) be a graph of maximum degree d for some constant d. Find k
vertices V ′ in G to maximize the number of edges in G[V ′].

First we randomly colour each vertex of G by either green or red each with prob-
ability 1/2 to form a random partition (Vg, Vr) of V . Green vertices Vg induce
the green subgraph Gg = G[Vg], and the connected components of Gg are green
components.

Let G′ be a maximum k-vertex induced subgraph of G. A random partition of
V is a “good partition” for G′ if all vertices in G′ are green and all vertices in
its neighbourhood NG(G′) are red. Note that NG(G′) has at most dk vertices as
dG(v) ≤ d for each vertex v. Therefore the probability that a random partition is
a good partition for G′ is at least 2−(d+1)k and thus, with at least this probability,
G′ is the union of some green components.

To find a maximum k-vertex induced subgraph for a good partition of G′, we need
only find a collection H′ of green components such that the total number of vertices
in H′ is k and the total number of edges in H′ is maximized. For this purpose, we
first compute in O(dn) time the number ni of vertices and the number mi of edges
inside each green component Hi. Then we find a collection H′ of green components
that maximizes ∑

Hi∈H
′

mi

subject to
∑

Hi∈H
′ ni = k.

Since for any two green components Hi and Hj, the number of vertices (resp. the
number of edges) in Hi ∪ Hj equals ni + nj (resp. mi + mj), we can solve the
problem in O(kn) time by the standard dynamic programming algorithm for the
0-1 Knapsack problem. Therefore, with probability at least 2−(d+1)k , we can find
a maximum k-vertex induced subgraph of G in O((d + k)n) time.

To derandomize the algorithm, we use a family of partitions with the property that
for every partition Π of any (d + 1)k vertices into k vertices and dk vertices, there
is a partition in the family that is consistent with Π.

We can interpret a binary vector of length n as a red-green coloring of G: vertex
vi is colored green if the i-th position of the vector is 1 and red if 0. Then a family
of (n, (d + 1)k)-universal sets can be used as the required family of partitions.
Therefore we obtain an FPT-algorithm that runs in O(f(k, d)n log n) time where

f(k, d) = 2(d+1)k(dk + k)O(log(dk+k))(d + k).


