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Color Coding (Alon, Yuster and Zwick 1995)

N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM 42(4):844-856, 1995.

The basic idea of this novel method is to use k colors to color elements randomly
and then try to find a colorful k-solution, i.e., a k-solution whose elements are in distinct
colors. If we can find a colorful k-solution in FPT time, then we can find a k-solution
in FPT time with probability k!/kk > e−k. The algorithm can be derandomized by a
family of perfect hash functions. The method is particularly useful for parameterized
problems whose k-solutions have good structures e.g., linear, cyclic, or treelike.

1. (n, k)-family of perfect hash functions: A family F of functions mapping a
domain of size n into a range of size k such that for every k-subset S from the
domain, there is a function in F that is 1-to-1 on S. Based on a construction of
Schmidt and Siegel (1990), Naor (1995) gave a construction of an (n, k)-family of
perfect hash functions of size 2O(k) log n in time 2O(k)n log n.

2. k-Path: 2O(k)m log n time (Alon, Yuster and Zwick 1995)

Does G contain a path with k vertices?

Randomly color vertices with colors {1, . . . , k}, and call a path colorful if colors of
its vertices are distinct. Given a coloring c : V → {1, . . . , k}, we can use dynamic
programming to determine whether there is a colorful k-path.

Construct G′ from G by adding a new vertex v0 of color 0 and connect it with
every vertex in G. Now the problem is to determine whether there is a colorful
(k + 1)-path in G′ that starts at v0.

For each vertex v, define C i(v) = {c(P ) : P is a colorful (v0, v)-path of length i},
where c(P ) is the set of colors of vertices in P . Then G has a colorful k-path iff G ′

has a vertex v with Ck(v) 6= ∅. Note |C i(v)| ≤
(k

i

)

.
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Initially, C1(v) = {c(v)} for each vertex v. For 2 ≤ i < k,

Ci+1(v) = {C ∪ {c(v)} : u ∈ N(v), C ∈ C i(u) and c(v) 6∈ C}.

Note that we keep track of color sets but not paths. Time: O(
∑k

i=1 i
(k

i

)

m) =
O(k2km).

We can derandomize the algorithm using an (n, k)-family of perfect hash functions
to obtain an FPT algorithm with running time 2O(k)m log n.

3. Edge-Disjoint Triangle Packing

Does G contain k edge-disjoint triangles?

Randomly color edges in k colors, and then find k triangles Ti such that the three
edges of Ti all have color i. Let Gi be the graph formed by edges of color i. We
only need to find a triangle in each Gi.

Question: How to derandomize this algorithm?

4. k-Edge Eulerian Subgraph: 2O(k)mn log n time (Cai and Yang 2009)

Does G contain an Eulerian subgraph consisting of k edges?

Similar to k-Path but we color edges in k colors. We can find, for any pair (u, v)
of vertices, a colorful (u, v)-trail of length k (if it exists) in O(k2km) time. To find
a colorful k-edge Eulerian subgraph, we consider a colorful (v, v)-trail of length k
for each vertex.

5. Maximum k-Vertex Cover: FPT (1 + ε)-approximation (Marx 2008)

Let v1, . . . , vn be vertices such that d(vi) ≥ . . . ≥ d(vn). Set D = 2
(k
2

)

/ε and
consider two cases.

Case 1. d(v1) > D. Take v1, . . . , vk as our solution. Then the approximation ratio
is at least

∑k
i=1 d(vi) −

(k
2

)

∑k
i=1 d(vi)

≥ 1 −

(k
2

)

D
= 1 −

ε

2
>

1

1 + ε
.

Case 2. d(v1) ≤ D. In this case, we use color coding to derive an FPT algorithm.
For each 1 ≤ l ≤ kD, we check whether there are at most k vertices that cover at
least l edges. For a given l, we color edges in l colors and consider each possible
partition of l colors into k sets {C1, . . . , Ck}. For each such partition, we check
whether there is a vertex vi that covers at least one edge of each color in Ci.

6. Vertex Cover

Cai, Vertex Covers Revisited: Indirected Certificates and FPT Algorithms, arXiv
preprint arXiv:1807.11339 (2018).

Let G = (V,E; f) be a vertex coloured graph with f : V → {1, . . . , k}. We use Vi

to denote the set of vertices with colour i, and call each Vi a colour class. A vertex
cover X of G is colourful if all vertices in X have distinct colours, i.e., X contains
at most one vertex from each colour class.
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Colourful Vertex Cover

Instance: Vertex coloured graph G with colours in {1, . . . , k}.
Question: Does G contain a colourful vertex cover?

First we note that the problem is no easier than 2Sat as we can reduce 2Sat to
our problem in linear time: For an arbitrary instance (U,C) of 2Sat, we construct
a vertex coloured graph G by creating, for each Boolean variable ui ∈ U , two
vertices ui and ui with colour i and edge uiui; and adding, for each binary clause
{x, y} ∈ C, an edge between vertices x and y.

Inspired by the above connection with 2SAT, we reduce Colourful Vertex

Cover to 2SAT to obtain a quadratic algorithm. For this purpose, we construct
a Boolean formula Φ(G) for G as follows:

(a) For each vertex v, introduce a Boolean variable xv.

(b) For edge set E, let Φ(E) =
∧

uv∈E xu ∨ xv.

(c) For each colour class Vi, let Φ(Vi) =
∧

u,v∈Vi and u6=v
xu ∧ xv.

(d) Set Φ(G) = Φ(E)
∧k

i=1 Φ(Vi).

Theorem 0.1 A vertex coloured graph G admits a colourful vertex cover iff its

corresponding formula Φ(G) is satisfiable.

Proof. Clearly Colourful Vertex Cover is equivalent to the following integer
linear programming: For all v ∈ V , find xv ∈ {0, 1} to satisfy

xu + xv ≥ 1 for each edge uv of G, and

∑

v∈Vi

xv ≤ 1 for each colour class Vi of G.

Note that a vertex v belongs to a colourful vertex cover iff xv = 1.

Now for any x, y ∈ {0, 1}, x + y ≥ 1 is equivalent to x∨ y when we also interpret x
and y as Boolean variables. Similarly, x+y ≤ 1 is equivalent to x ∧ y. Furthermore,
for each colour class Vi,

∑

v∈Vi
xv ≤ 1 is equivalent to xu + xv ≤ 1 for all distinct

u, v ∈ Vi. It follows that Φ(G) is satisfiable iff the above integer linear programming
has a solution, and equivalently G admits a colourful vertex cover.

The above theorem enables us to solve Colourful Vertex Cover in O(n2)
time as Φ(G) contains O(n2) binary clauses (note that x ∧ y = x ∨ y), and 2Sat

is solvable in linear time. In fact, we can solve Colourful Vertex Cover in
linear time by a limited backtracking approach.


