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a b s t r a c t

This paper introduces a new technique called adaptive elitist-population search method. This technique
allows unimodal function optimization methods to be extended to efficiently explore multiple optima
of multimodal problems. It is based on the concept of adaptively adjusting the population size according
to the individuals’ dissimilarity and a novel direction dependent elitist genetic operators. Incorporation
eywords:
enetic algorithms
ultimodal optimization

litist strategy

of the new multimodal technique in any known evolutionary algorithm leads to a multimodal version
of the algorithm. As a case study, we have integrated the new technique into Genetic Algorithms (GAs),
yielding an Adaptive Elitist-population based Genetic Algorithm (AEGA). AEGA has been shown to be very
efficient and effective in finding multiple solutions of complicated benchmark and real-world multimodal
optimization problems. We demonstrate this by applying it to a set of test problems, including rough and
stepwise multimodal functions. Empirical results are also compared with other multimodal evolutionary

ature
algorithms from the liter

. Introduction

Genetic algorithms (GAs) have proven useful in solving a variety
f search and optimization problems [2,8–10,22,24,39]. Many real-
orld problems require an optimization algorithm that is able to

xplore multiple optima in their search space. In this respect, GAs
ave demonstrated the best potential for finding the optimal solu-
ions because they are population-based search approaches and
ave strong global optimization capabilities. However, in the stan-
ard GA for maximization problems, all individuals, which may be

ocated on different peaks at the beginning of the search process,
ventually converge to a single peak. Thus, it usually ends up with
nly one solution. If this solution is a local optimum, we call it pre-
ature convergence in GAs. This phenomenon is even more serious

n GAs with elitist strategy, which is a widely adopted method to
mprove GAs’ convergence [16].

Over the years, various population diversity enhancement
echanisms have been proposed, which enable GAs to maintain

diverse population of individuals throughout their search, to

void convergence of the population to a single peak and to allow
As to identify multiple optima in a multimodal function land-
cape. However, various current population diversity enhancement
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, showing that AEGA generally outperforms existing approaches.
© 2010 Elsevier B.V. All rights reserved.

mechanisms have not demonstrated themselves to be very effi-
cient as expected. The efficiency problems, in essence, are related to
some fundamental dilemmas in GAs implementation. We believe
any attempt to improve the efficiency of GAs has to compromise
between these two dilemmas:

• The elitist search versus diversity maintenance dilemma:
GAs are expected to be global optimizers with global search

capability to encourage exploration of the global optimal solu-
tions. So the elitist strategy is widely adopted in the GAs’ search
processes to improve the chance of finding the global optimal
solution. Unfortunately, the elitist strategy concentrates on some
“super” individuals, but reduces the diversity of the population,
and in turn leads to premature convergence. Contrarily, GAs need
to maintain the diversity of the population in their search pro-
cesses to find the multiple optimal solutions. How to balance
both the elitist search and the diversity maintenance is important
for constructing an efficient multimodal GA. Some researchers
have attempted to handle the dilemma, e.g., Mahfoud’s Deter-
ministic Crowding methods [34], Petrowski’s Clearing Procedure
[41] and Li’s Species Conserving Genetic Algorithm (SCGA)
[32].

• The algorithm effectiveness versus population redundancy dilemma:

For many GAs, we can use a large population size to improve
the chance to obtain the global and multiple optima for optimiza-
tion problems. However, the large population size will notably
increase the computational complexity of the algorithms and

dx.doi.org/10.1016/j.asoc.2010.06.017
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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generate a lot of redundant individuals in the population, thereby
decrease the efficiency of GAs.

Our idea in this study is to strike a tactical balance between the
wo contradictory dilemmas. We propose a new adaptive elitist-
opulation search technique to identify and search for multiple
ptima efficiently in the multimodal function landscape. The tech-
ique is based on an elitist population with a dynamically adapting
ize and the adoption of a series of new GA mechanisms: a specific
efinition of an elitist individual for the multimodal function land-
cape, a new principle for the individual’s dissimilarity, and a new
et of direction dependent elitist genetic operators. Combining this
echnique with GA, we propose a novel multimodal GA—adaptive
litist-population based genetic algorithm (AEGA). AEGA was first
roposed by the authors [31]. This paper describes an improved
ersion of AEGA. Using multiple test functions, we demonstrate
mpirically that our proposed approach generally outperforms the
xisting multimodal evolutionary algorithms reported in the liter-
ture.

To illustrate our technique, we will use unconstrained optimiza-
ion problems of real-valued functions, defined over an array of real
umbers. Where no confusion could occur we denote the objective

unction by f(x). AEGA in this paper makes no distinction between
enotypes and phenotypes. Thus, genetic operators will be applied
irectly to individuals represented by arrays of real numbers. Note
hat none of the above restrictions are required for our technique to
e applicable. The only reason for imposing them is for simplicity
f presentation.

The remainder of this paper is organized as follows. The next
ection describes related work relevant to our proposed technique.
ection 3 introduces the adaptive elitist-population search tech-
ique and describes the implementation of the algorithm. Section
presents the results from a series of experiments on a set of test

unctions, and the comparison of our results with other multimodal
volutionary algorithms. Sections 5 and 6 present the analyses of
he parameter choice in AEGA. Section 7 presents the conclusion
nd some future directions of research.

. Related work

When applying GAs to multimodal optimization problems, it is
ery important to maintain two apparently contradictory require-
ents, which are to preserve promising individuals from one

eneration to the next and maintain the diversity of the population
32]. This section briefly reviews the existing methods developed
o address the related issues: elitism, niche formation methods and
ther parallel subpopulations search methods.

.1. Elitism

Many elitist methods in the literature on GAs preserve the
est solution in different ways. For instance, Whitley [49] pro-
osed a GENITOR approach that generates just one child for each
ycle, which then replaces the worst individual of the popula-
ion. Eshelman [18] introduced the CHC Adaptive Search algorithm
o select the best M (the population size) individuals from the
opulation, which merges all parents and offspring together.
or multimodal optimization, Mahfoud’s Deterministic Crowding
ethods [34] only replace a parent if the competing offspring is

etter. Petrowski’s Clearing Procedure [41] preserves the fitness
f the dominant individual, while it resets the fitness of all the

ther individuals of the same subpopulation to zero. Li’s SCGA [32]
opies the dominating individual of each of the species into the next
eneration as the species’ seeds.

The elitism strategies have been also widely used in imple-
entations of other evolutionary algorithms (EAs). For instance,
mputing 11 (2011) 2017–2034

Costa and Oliveira [12] proposed evolution strategy (ES) with elitist
method for multiobjective optimization. Cortés et al. [11] pro-
posed a novel viral systems (VS) with elitist strategy to deal with
combinatorial problems. Zhang et al. [51] proposed an efficient
population-based incremental learning (PBIL) algorithm with eli-
tist strategy. PBIL is one of the simplest estimation of distribution
algorithms (EDAs). However, it is pointed out that “elitist strategies
tend to make the search more exploitative rather than explorative
and may not work for problems in which one is required to find
multiple optimal solutions” [43].

2.2. Evolving parallel subpopulations by niching

Niching methods extend GAs to problems that require to locate
and maintain multiple optima through parallel subpopulations’
search.

Cavicchio [6] proposed a preselection scheme in which a child
replaces the worse parent if the child’s fitness is higher than that
of the worse parent. De Jong [15] generalized the preselection
technique and suggested a crowding scheme. The approach works
by reproducing and killing off a fixed percentage of the popula-
tion each generation. Each newly generated member must replace
an existing one, preferably the most similar one. Subsequently,
two further variants of crowding, Deterministic Crowding [34] and
Probabilistic Crowding [35], were proposed. Both of them use the
tournament selection and hold tournaments between similar chil-
dren and parents. The main difference between them is that the
former uses a deterministic acceptance rule, while the latter uses
probabilistic tournaments. Cadeño and Vemuri [7] proposed the
Multi-Niche Crowding GA (MNC GA) for dynamic landscapes. The
algorithm introduces the concept of crowding selection to promote
mating among members with similar traits while allowing many
members of the population to participate in mating. Then the MNC
GA uses the worst among most similar replacement (WAMS) policy
to promote competition among members with similar traits while
allowing competition among members of different niches.

In another way, fitness sharing is frequently employed to induce
niching behavior in GAs. Goldberg and Richardson [23] proposed a
sharing scheme in which the idea is to force the individuals of the
populations to share available resources by dividing the popula-
tions into different subpopulations on the basis of the similarity of
the chromosomes. To implement the sharing scheme, a simple lin-
ear function called sharing function Sh(di,j) is adopted as a function
of di,j, which is the distance between two individuals xi and xj. The
sharing function is evaluated for each pair of N individuals in the
population, and then the sum Shi =

∑N
j=1Sh(di,j) is computed for

each individual xi. Finally, the fitness of this individual is adjusted
by dividing by Shi. This sharing scheme was shown [23] to be bet-
ter able to preserve diversity than the crowding scheme and was
successfully applied to solve a variety of multimodal functions. To
make the notion of species clearer, Yin and Germay [50] introduced
a Clustering methodology to the sharing scheme in which each pop-
ulation is divided into clusters directly, but it does not increase any
more diversity than the classical sharing scheme does.

The main drawbacks to use sharing are: (i) setting dissimilar-
ity threshold �share requires a priori knowledge of how far apart
the optima are [13,34]; and (ii) the computational complexity of
niche counts is O(N2) per generation [37,50]. To reduce the compu-
tational complexity of sharing scheme, Beasley at al. [3] proposed
the Sequential Fitness Sharing. It works by iterating a traditional GA,

and maintaining the best solutions of each run off-line. To avoid
converging to the same area of the search space multiple times,
whenever sequential fitness sharing locates a solution, it depresses
the fitness landscape at all points within some dissimilarity thresh-
old �share of that solution.
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Some research works aimed at speeding up sharing may have
nadvertently attacked the problem of nonuniform niches. Miller
nd Shaw [37] proposed the Dynamic Niche Sharing methods. In
he study, they defined a fixed number of dynamic niches with fixed
adii and niche centers determined by a full population sort. For
hose individuals not in a niche, regular fixed sharing is used. The
uthors claimed certain advantages over other nichers based on
imited testing, but the primary weakness of the scheme is the use
f fixed sharing outside the dynamic niches. Goldberg and Wang
27] proposed another adaptive niching scheme called Coevolu-
ionary Shared Niching (CSN), the scheme takes its inspiration from
he model of monopolistic competition in economics and utilizes
wo populations, a population of businessmen and a population
f customers, where the locations of the businessmen correspond
o niche locations and the locations of the customers correspond to
olutions. The scheme overcomes the limitations of fixed sharing
chemes by permitting the distribution of solutions and the radii of
he niches to adapt to complex function landscapes having many

ultiple (local or global) optima that are close to each other.
Spears [44] proposed the simple subpopulation schemes using

ag bits to identify different species—individuals with the same tag
it value belong to the same species. The tag bits are used to restrict
ating and to perform fitness sharing, and can be changed, i.e.,

he species type of a solution can be changed through mutation. Li
t al. [32] developed a new technique called Species Conservation
or evolving parallel subpopulations. The technique is based on the
oncept of dividing the population into several species according
o their similarity. Each of these species is built around a domi-
ating individual called the species seed. Species seeds found in
he current generation are saved (conserved) by moving them into
he next generation. Incorporating the idea of species into Particle
wam Optimization (PSO), Parrott et al. [40] proposed a species-
ased PSO to solve multimodal optimization problems and track
ultiple optima in a dynamic environment.
Some researchers attempted to design more competent subpop-

lations approaches without sharing. Elo [17] proposed a parallel
A for multimodal optimization. The general idea of the parallel GA

s to dynamically divide the population into an increasing number
f subpopulations to allow specialization on the different max-
ma discovered during the search process. Harik [28] developed

form of Restricted Tournament Selection for solving of multi-
odal problems using GAs. It is based on the concept of direct

ocal competition. The parents are crossed-over and mutated to
orm their offspring, then the offspring competes with their close
similar) individuals in the population, but not their parents. Tsut-
ui and Fujimoto [47] proposed a forking GA, which uses one
arent population that explores one subspace; and one or more
hild populations exploiting the other forking subspace. Ursem
48] developed a multinational evolutionary algorithm, which tries
o use the topology to group the individuals into sub-populations
ach covering a part of the fitness landscape. Gan and Warwick
21] proposed a variable radius niching technique called dynamic
iche clustering (DNC). DNC employs a separate population of over-

apping fuzzy niches with independent radii which operate in the
ecoded parameter space and are maintained alongside the GA
opulation.

Other researchers used an Artificial Immune System (AIS) to
olve the multimodal optimization problems. Castro and Zuben
4] proposed a Clonal Selection principle to solve the multimodal
ptimization problem. This strategy suggests that the algorithm
erforms a greedy search, where single members will be optimized
ocally (exploitation of the surrounding space) and the newcomers
ield a broader exploration of the search space. The population of
he clonal selection includes two parts. The first part is the clonal
art. Each individual will generate some clonal points and select
he best one to replace its parent. The second part is the newcomer
Fig. 1. The relative ascending directions of each pair of points (x1 and x2, x3 and x4,
x5 and x6).

part, the function of which is to find new peaks. The clonal selection
algorithm also incurs expensive computational complexity to get
better results. Castro and Timmis [5] proposed an Artificial Immune
Network that presents the adaptation of an immune network model
to perform information compression and data clustering. The main
feature of the algorithm is the dynamic search for an optimal pop-
ulation size based upon the network suppression threshold and a
well-defined stopping criterion.

Kumar and Rockett [29,30] solved multimodal optimizations
reformulated into multiobjective problems using a multiobjective
GA, which preserves diversity without niching. Their algorithm
without any explicit diversity-preserving operator is found to
produce diverse sampling of the Pareto-front with lower computa-
tional effort.

Many multimodal techniques found in the literature try to give
global and good local optimal solutions an equal or similar opportu-
nity to survive. Sometimes, however, survival of relative low fitness
but very different individuals may be as, if not more, important than
that of some highly fit ones. The purpose of this paper is to present
a new technique that addresses this problem. We show that using
our proposed technique, the individuals in GAs will converge to
multiple optimal solutions of multimodal optimization problems.

3. A new adaptive elitist-population search technique

The new technique for multimodal function maximization pre-
sented in this paper achieves adaptive elitist-population searching
by exploring the notion of the relative ascending directions of two
individuals (and for a minimization problem it is called the relative
descending directions).

For a high dimensional maximization problem, every individual
generally can have many possible ascending directions. But along
the line, which is uniquely defined by each pair of individuals (e.g.,
x1 and x2, x3 and x4, and x5 and x6 in Fig. 1 in a two dimensional case),
generally each individual only has one relative ascending direction
with respect to the other one. Now we introduce how to deter-
mine this relative ascending direction. For simplicity, we consider
the multimodal optimization problem with n dimensional domains

specified by

� = [a1, b1]× [a2, b2]× · · · × [an, bn], (1)

where ai, bi ∈R and ai < bi, (i = 1, 2, · · · , n). Let xi and xj be the
points in �, we then generate two reference points x′

i
and x′

j
by
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Fig. 2. The relative ascending directions of both individu

′
i
= xi + ı(xj − xi) and x′

j
= xj − ı(xj − xi), where ı is an absolute

mall positive value.
We compare the function values of xi and x′

i
to determine the

elative ascending direction of xi with respect to xj. If f (x′
i
)− f (xi) >

, we define the relative ascending direction of xi to be moving
owards xj; if f (x′

i
)− f (xi) = 0, we define the relative ascending

irection of xi to be flat; otherwise, if f (x′
i
)− f (xi) < 0, the ascending

irection of xi is moving away from xj. Similarly, we can determine
he relative ascending direction of xj with respect to xi through
omparing the function values of xj and x′

j
. To estimate the relative

scending directions for any two individuals xi and xj on the land-
cape of the high dimensional maximization problem, we add two
eference points x′

i
and x′

j
on the line, which is uniquely defined by

oining the two points xi and xj, and compare the fitness of xi, x′
i
,

nd xj, x′
j

respectively. Thereby, to determine the relative ascend-
ng direction of any two points xi and xj, only 4 function evaluations
re needed. However, the direction is very important information
o identify whether xi and xj are located on the same peak or not.

The points located on different peaks are considered as dis-
imilar individuals in the population of GA for multimodal
aximization problems. The relative ascending directions of two

oints mainly have four possibilities (cases): back to back, face to
ace, one-way and flat. Fig. 2 shows the first three cases while Fig. 3
llustrates the three possible combinations for the flat (4th) case.

e can measure the dissimilarity of the individuals according to
he combination of their relative ascending directions and their
istance. For the flat case, when the part of the objective function

andscape under consideration is flat partially or completely, we
ill only use the individuals’ distance to identify their dissimilar-

ty, since the relative ascending direction of two points cannot be
niquely defined.

The distance between two individuals xi = (xi1, xi2, · · · , xin) and
= (x , x , · · · , x ) is defined by:
j j1 j2 jn

(xi, xj) =

√√√√
n∑

k=1

(xik − xjk)2 (2)

Fig. 3. The three possible combinations of the relative asce
ing considered: back to back, face to face and one-way.

Note that this is not the only way in which the distance, and
hence the dissimilarity, between two individuals represented by
vectors of real numbers could be defined. In this paper, we use
the above definition of distance, but the method we describe will
work for other distance definitions as well. On the other hand, in
many applications, the variable values have different orders of mag-
nitude. We can normalize each variable into the domain [0,1] to
calculate the distance between two individuals.

3.1. The principle of the individuals’ dissimilarity

Our proposed principle of the individuals’ dissimilarity, as well
as the operation of AEGA, depends on the relative ascending direc-
tions and the distance between two individuals. We define the
distance threshold as �s. The principle to measure the individuals’
dissimilarity is described as follows:

• If the relative ascending directions of both individuals are back
to back, or the distance between them equal to or larger than the
distance threshold �s, these two individuals are considered to be
dissimilar and located on different peaks;
• If the relative ascending directions of both individuals are face to

face, one-way or flat, and the distance between them is smaller
than �s, these two individuals are considered to be similar and
located on the same peak.

As we know, in many niching approaches, the distance between
two individuals is the only measurement to determine whether
these two individuals are located on the same peak, but this is often
not accurate. Suppose, for example, that our problem is to maxi-
mize the function shown in Fig. 4. O1 and O2 are two maxima and
assume that, in a particular generation, the population of GA con-
sists of the points shown. The individuals a and b are located on the

same peak, and the individual c is on another peak. According to the
distance between two individuals only, the individuals b and c will
be put into the same subpopulation, which is denoted by “×”, and
the individual a into another subpopulation, which is denoted by
“◦” (as shown in Fig. 4(a)). Since the fitness of c is smaller than that

nding directions of both individuals for the flat cases.
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chosen to be the first part of our proposed elitist crossover opera-
ig. 4. Determining subpopulations by other niching methods (a) and the relative
scending directions of the individuals (b).

f b, the probability of c surviving to the next generation is low. This
s true even for GAs using fitness sharing, unless a sharing function
s specifically designed for this problem. However, the individual c
s very important to the search, if the global optimum O2 is to be
ound. Applying our proposed principle of the individuals’ dissimi-
arity, the relative ascending directions of both individuals b and c
re back to back, they will be considered to be located on different
eaks. The individuals b and c are denoted by “×” and “◦” respec-
ively (as shown in Fig. 4(b)). Identifying and preserving the “good
uality” of individual c is advantageous to maintain the diversity of
he population in the GAs’ search process.

The combination of the individuals’ relative ascending direc-
ions and their distances is more powerful than only using the later
lone to identify the individuals’ dissimilarity. Unfortunately, it is
till not always correct because the objective function landscapes
an be very tricky sometimes. For instance, in some high dimen-
ional case, if two individuals are located on two different ridges
hat lead to the same peak, our proposed principle may identify
hat they are located on two different peaks because their relative
scending directions are back to back. On the other hand, if the rel-
tive ascending directions of two individuals on different peaks are
ace to face or one-way but their distance is smaller than �s, our
roposed principle will also wrongly identify that they are located
n the same peak. Therefore, we propose a novel and tolerant adap-
ive elitist-population for our AEGA to reduce the effects of all the
ossible incorrect identifications through adjusting the population
ize dynamically and conserving the possibly useful individuals.
he details are given below.

.2. Adaptive elitist-population for multimodal maximization
roblem

As we know, introducing elitism into GA will often lead to one
ighly fit individual gradually replacing all competing rivals. Thus,

n addition to introducing the possibility of premature convergence,
litism also prevents GA from finding multiple optima of multi-
odal optimization problems. The question is: “How can the idea of

litism be transferred to GA using some form of genetic operations
n such a way that the possibly useful individuals are conserved to
he next generation?” [32].

The answer to this question is not trivial. Some researchers have
ttempted to tackle this problem, e.g., Mahfoud’s Deterministic
rowding methods [34], Petrowski’s Clearing Procedure [41] and
i’s SCGA [32]. However, these approaches use the best individuals
n the population as the elitists but do not appropriately define
litist individuals for the multimodal optimization problems. In
ur work, we first define an elitist individual in the population so
hat maximum diversity and a minimum population size can be

aintained for the multimodal optimization problems.
efinition 1. For a multimodal optimization problem, an elitist
ndividual is a point with the best fitness on its located peak in the

ultimodal function landscape.
Fig. 5. Pseudocode for the elitist crossover operator.

As shown in Fig. 4(a) and (b), b and c are the elitist individuals
for the multiple optima O1 and O2 respectively. Based on Definition
1, the population can maintain multiple elitist individuals, which
are located on different peaks. The goal of the adaptive elitist-
population search method is to adaptively adjust the population
size according to the features of the multimodal problem in order
to achieve:

• a dynamic number of individuals in the population so that only a
minimum number of elitist individuals is used to search for each
peak; and
• all the individuals in the population search for and occupy differ-

ent peaks in parallel.

Accordingly, we design the direction dependent elitist genetic
operators, which can gradually produce and evolve the elitist indi-
viduals on their own peaks in parallel, to explore multiple optima
of the multimodal optimization problems. In the following four
sections, we present the two elitist genetic operators, the popu-
lation control constraints and the algorithm for the elitist search
respectively.

3.3. Elitist crossover operator

First, we construct an elitist crossover operator to search for
the elitist individuals corresponding to the multiple optima. The
procedure of the elitist crossover operator is shown in Fig. 5. Let
two individuals pi and pj be selected from the population at ran-
dom. ci and cj are their offspring generated through any version of
a crossover operator. Any conventional crossover operator can be
tor. Please note that the conventional crossover operator would not
by itself contribute significantly to the maintenance of diversity of
the population. Here we have chosen the random uniformly dis-
tributed variable to perform crossover (with probability Pc), which
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Fig. 6. A schematic illustratio

s similar to the BLX-0.5 crossover operator [19]. The offspring ci
nd cj of randomly chosen parents pi and pj are:

ci = pi +�1 × (pj − pi)

cj = pj +�2 × (pi − pj)
(3)

here �1, �2 are uniformly distributed random numbers over
−0.5, 0.5]. Then the elitist crossover operator applies our prin-
iple of the individuals’ dissimilarity on the parents pi and pj. If pi
nd pj satisfy back to back (Fig. 6(a)) or max {d(xi, xj) | xi, xj ∈ {pi,
j, ci, cj}}≥�s, then the elitist crossover operator will select the
etter from each of the pairs (pi, ci) and (pj, cj) to the next gener-
tion. Thus if the parents pi and pj are located on different peaks,
he two selected individuals may still remain on different peaks. If

ax {d(xi, xj) | xi, xj ∈ {pi, pj, ci, cj}}≥�s and f(pi) = f(pj) = f(ci) = f(cj),
hen two points with the largest distance among {pi, pj, ci, cj} are
onserved to the next generation.

When the parents pi and pj are on the same peak and satisfy: (i)
ace to face and max{d(xi, xj) | xi, xj ∈ {pi, pj, ci, cj}}< �s (Fig. 6(b)), or
ii) one-way and max {d(xi, xj) | xi, xj ∈ {pi, pj, ci, cj}}< �s (Fig. 6(c)),
he elitist crossover operator will identify the relative ascending
irections and the distances of each pair of the parents pi, pj and
heir offspring ci, cj. If all the relative ascending directions are face
o face, one-way or flat and all the distances are smaller than �s, we
onsider all the four points pi, pj, ci and cj are located on the same
eak with a high probability. For such a case, the elitist crossover
perator will only select the best one of them to the next genera-
ion to reduce the redundancy of the population. As shown in Fig. 5,
he elitist crossover operator selects the best one of pi, pj, ci, cj to
eplace pi (pi← best {pi, pj, ci, cj}) and deletes pj from the cur-
ent population Pop(t). If max {d(xi, xj) | xi, xj ∈ {pi, pj, ci, cj}}< �s

nd f(pi) = f(pj) = f(ci) = f(cj), then randomly select one from {pi, pj, ci,
j} to the next generation.

Why do we need to consider the relative ascending directions of
ach pair of the parents and their offspring, as well as the relative
istances between them? It is because we can only guess whether

hese individuals are on the same peak based on both the relative
scending directions and the appropriately set pre-determined dis-
ance threshold �s. For example, as shown in Fig. 7(a) and (b), the
elative directions of pi and pj are face to face and one-way respec-

ig. 7. A schematic illustration of the elitist crossover operation when the parents
i and pj are located on different peaks.
e elitist crossover operation.

tively, but they are located on different peaks. Thus, if the distance
threshold �s is too large and only the ascending directions of pi and
pj are used, the elitist crossover operator will identify that pi and
pj are located on the same peak. However, in Fig. 7(a) and (b), the
relative directions of each pair of the parents pi, pj and their off-
spring ci, cj do reflect the back to back case with a high probability
(ci, cj in Fig. 7(a) and ci, pj in Fig. 7(b)), and accurately identify that
pi and pj are located on different peaks. Therefore, considering the
relative ascending directions of each pair of the parents and their
offspring can significantly reduce the error of the identification of
individuals’ dissimilarity based only on the distance threshold �s.

The aim of conserving the best one to replace all the parents and
offspring, is to reduce the computational complexity and popula-
tion’s redundancy of GA in the case that many individuals are close
to each other and located on the same peak.

3.4. Elitist mutation operator

The main function of the mutation operator is to find unexplored
peaks. However, many mutation operators in existing niching
methods [4,23,34,41] cannot efficiently satisfy this requirement
well. For example, in deterministic crowding [34], even the off-
spring is located on an unexplored peak, but since its fitness is not
better than that of its parent, it is difficult to be retained, and hence
this unexplored peak cannot be located by this mutation operation
(Fig. 9(a)). Some researchers tried to improve it. For example, in
Probabilistic Crowding [35], the individuals with low fitness can be
conserved to the next generation probabilistically.

To ensure the diversity of the GA’s population, we construct
an elitist mutation operator that can more efficiently produce and
conserve the elitist individuals that are located on the unexplored
peaks. The procedure of the elitist mutation operator is shown in
Fig. 8.

Let pi and ci be the parent and the offspring involved in the muta-
tion respectively. Here we use Mühlenbein’s mutation operator
(with probability Pm) [38]:

ci = pi ± �× rm (4)

where � is a uniformly distributed random number over [−1, 1], rm

defines the mutation range and it is normally set to 0.5× (bk− ak),
ak and bk are defined by Eq. (1), and the ‘+’ and ‘−’ signs are chosen
with a probability of 0.5 each.

According to our proposed principle of individuals’ dissimilar-
ity, if the relative ascending directions of two individuals are face
to face, one-way or flat, and their distance is smaller than �s, we
hypothesize that the two individuals are often located on the same
peak. Thereby, the elitist mutation operator, like the conventional

mutation operator, will select the best one of them to the next
generation. If f(pi) = f(ci), pi will be conserved to the next generation.

If the relative ascending directions of pi and ci are back to back
or d(pi, ci)≥�s, they are considered to be on different peaks. For
such a case, pi is directly conserved to the next generation and ci
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Fig. 8. Pseudocode for the elitist mutation operator.

s considered as a new individual candidate. Then the elitist muta-
ion operator compares the fitness of ci with the other individual
j, which satisfies d(ci, pj) < �s. If there are no such individual pj sat-
sfying d(ci, pj) < �s in the current population, or there exists such
j, but its fitness is not better than that of ci, the new individual
andidate ci is confirmed to be on an unexplored or at least a dif-
erent peak. The elitist mutation operator will conserve such ci to
he next generation. As shown in Fig. 9(a), the offspring will be con-
erved to the next generation because it is the elitist individual on
ts own located peak, and in Fig. 9(b), the offspring will be deleted
ecause there is another individual better than it on their located
eak. Therefore, the elitist mutation operator conserves both par-
nt and its offspring to the next generation only if they are uniquely
ccupying a peak each to maintain or even improve the diversity
f the GA’s population.

.5. Population control constraints

Sometimes the multimodal optimization problems have a lot of
ocal optima and very rugged landscapes. Hence the goal of mul-
imodal optimizers is to find as many global optima and possibly
ood local optima as possible. Our proposed elitist genetic opera-
ors can add new individuals into the population if they are located

n unexplored peaks according to their relative ascending direc-
ions and distances. This criterion of occupying unexplored peaks
s more important than the relative fitness. When the multimodal
unctions have very rugged landscapes, our proposed approach will
eep many low fitness individuals instead of high fitness ones;

Fig. 9. A schematic illustration of the elitist mutation operation.
Fig. 10. Pseudocode for AEGA algorithm.

hence its efficiency may be significantly reduced. To avoid the eli-
tist genetic operators wasting computational power on low fitness
optima, we design two population control constraints as follows:

i. If a newly generated individual has evolved for ˛ generations and
its fitness is still lower than a fitness threshold, ˇ× the best-so-
far solution (e.g., 0.5× the best-so-far solution), it will be deleted
from the current population because it may be located on a peak
with low fitness;

ii. If the initial population size is N and it increases to �×N (� > 1)
at a certain generation in the search process, the adaptive elitist-
population approach will delete the lower fitness individuals
from the current population to reduce its size to �×N (0 < � < 1)
as the population size in the next generation.

The two population control constraints can delete individuals
which are located on the peaks below the threshold set, allowing
the population to focus on the high fitness optima.

3.6. AEGA algorithm

In this section, we will present the implementation outline of
the adaptive elitist-population based genetic algorithm (AEGA) for
solving multimodal optimization problems. Because our proposed
elitist genetic operators and population control constraints can
adaptively adjust the population size and conserve the possibly
useful individuals, thereby they effectively simulate the “survival
for the fittest” principle without any special selection operator. On
the other hand, since the population of AEGA includes most of the
elitist individuals, a classical selection operator could copy some
individuals to the next generation and delete others from the popu-
lation. Thus the selection operator will decrease the diversity of the
population, increase the redundancy of the population, and reduce
the efficiency of the algorithm. Hence, we design AEGA without any
selection operator. The pseudocode for AEGA is shown in Fig. 10.

4. Evaluation of AEGA

In this section, the performance of AEGA is study. In Section 4.1,
the experiment methodology is described. In Sections 4.2, 4.3 and
4.4, the experimental results on comparing AEGA with other multi-
modal evolutionary algorithms for different kinds of optimization
problems are reported respectively.

4.1. Experiment methodology
The evaluation of any optimization algorithm is an extensive
process. The true test of our proposed AEGA will, of course, be
on real-world design problems for which the number, distribu-
tion, and quality of optima are unknown. However, the algorithm’s
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Table 1
The test suite of multimodal functions used in our experiments for finding all mul-
tiple optima.

Deb’s function (5 optima):
f1(x) = sin 6(5�x), x∈ [0, 1];

Deb’s decreasing function (5 optima):

f2(x) = 2−2((x−0.1)/0.9)2
sin6(5�x), x∈ [0, 1];

Roots function (6 optima):

f3(x) = 1
1+|x6−1| , where x∈C, x = x1 + ix2 ∈[−2, 2];

Two dimensional multimodal function (100 optima):
f4(x) = x1sin (4�x1)− x2sin (4�x2 + �) + 1; x1, x2 ∈[−2, 2],

Ten dimensional multimodal function (1024 optima):

p
W
a

•
•

m
s

oj)≤� = 0.005, where Pop(t = T) is the complete population at the
f5(x1, x2, . . . , x10) =
∑10

i=1
| sin(2�(1−xi )

3/5)|
10 ; where xi ∈ [0, 1], i = 1, 2, . . ., 10.

erformance must first be investigated on suitable test problems.
hen testing the algorithm on well understood problems, there

re two measures of performance:

The consistency of locating all known optima; and
The average number of objective function evaluations required to
find these optima (or the running time under the same condition).
The test suite used in our experiments includes the multimodal
aximization problems listed in Tables 1, 3 and a multimodal

tepwise function. The suite mainly contains some representative,

Fig. 11. The test suite of the m
mputing 11 (2011) 2017–2034

complicated, and multimodal functions with many local optima.
These types of functions are normally regarded as difficult to be
optimized, and they are particularly challenging to the applicabil-
ity and efficiency of the multimodal evolutionary algorithms. Our
experiments of multimodal optimization problems were divided
into three groups with different purposes. We report the results of
each group below.

In our experiments, we compare the performance of AEGA
with Deterministic Crowding [34], Probabilistic Crowding [35],
Sequential Fitness Sharing [3], Clearing Procedure [41], Cluster-
ing Based Niching (CBN) [50], Clonal Selection [4], and Species
Conserving Genetic Algorithm (SCGA) [32]. Since we were solv-
ing real-valued multimodal functions, we used consistent real
coding variable representation, uniform crossover (Eq. (3)) and
mutation (Eq. (4)) operators for each algorithm for fairness of
comparison. The crossover probability Pc = 0.8 and the mutation
probability Pm = 0.1 were used. We use the standard tournament
selection operator with tournament size = 2 in our implementa-
tion of Sequential Fitness Sharing, Clearing Procedure, CBN, Clonal
Selection, and SCGA.

The performance of the algorithms was measured by the num-
ber of optima each algorithm found, averaged over 30 runs.
An optimum oj was considered found if ∃xi ∈Pop(t = T) | d(xi,
end of each run and xi an individual in Pop(t = T).
All algorithms were implemented in the C++ language and com-

piled using the same Microsoft Visual C++ 6.0 compiler. All these
experiments were conducted on the same Dell Optiplex GX260

ultimodal function f1–f5.
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Table 2
Performance comparison among the multimodal optimization algorithms for the test functions f1–f5.

Test function Optima (ANO) Distance (ADC) Function evaluations (ANF) Time (AET)

Deterministic crowding 5 (0) 1.52×10−4 (1.38×10−4) 7,153 (358) 0.091 (0.013)
Probabilistic crowding 5 (0) 3.63×10−4 (6.45×10−5) 10,304 (487) 0.163 (0.011)
Sequential fitness sharing 5 (0) 4.76×10−4 (6.82×10−5) 9,927 (691) 0.166 (0.028)

f1 Clearing procedure 5 (0) 1.27×10−4 (2.13×10−5) 5,860 (623) 0.128 (0.021)
CBN 5 (0) 2.94×10−4 (4.21×10−5) 10,781 (527) 0.237 (0.019)
Clonal selection 5 (0) 1.99×10−4 (8.25×10−5) 15,803 (381) 0.359 (0.015)
SCGA 5 (0) 1.16×10−4 (3.11×10−5) 6,792 (352) 0.131 (0.009)
AEGA 5 (0) 4.60 \times 10{̂-5} (1.35×10−5) 2,591 (278) 0.039 (0.007)

Deterministic crowding 3.53 (0.73) 3.61×10−3 (6.88×10−4) 6,026 (832) 0.271 (0.06)
Probabilistic crowding 4.73 (0.64) 2.82×10−3 (8.52×10−4) 10,940 (951) 0.392 (0.07)
Sequential fitness sharing 4.77 (0.57) 2.33×10−3 (4.36×10−4) 12,796 (1,430) 0.473 (0.11)

f2 Clearing procedure 4.73 (0.58) 4.21×10−3 (1.24×10−3) 8,465 (773) 0.326 (0.05)
CBN 4.70 (0.53) 2.19×10−3 (4.53×10−4) 14,120 (2,187) 0.581 (0.14)
Clonal selection 5 (0) 1.37×10−3 (6.87×10−4) 21,922 (746) 0.728 (0.06)
SCGA 4.83 (0.38) 3.15×10−3 (4.71×10−4) 10,548 (1,382) 0.374 (0.09)
AEGA 5 (0) 1.38 \times 10{̂-4} (2.32×10−5) 3,605 (426) 0.102 (0.04)

Deterministic crowding 4.23 (1.17) 7.79×10−4 (4.76×10−4) 11,009 (1,137) 1.07 (0.13)
Probabilistic crowding 4.97 (0.64) 3.35×10−3 (7.14×10−4) 16,391 (1,204) 1.72 (0.12)
Sequential fitness sharing 4.87 (0.97) 2.56×10−3 (2.58×10−3) 14,424 (2,045) 1.84 (0.26)

f3 Clearing procedure 6 (0) 7.43 \times 10{̂-5} (4.07×10−5) 12,684 (1,729) 1.59 (0.19)
CBN 4.73 (1.14) 1.85×10−3 (5.42×10−4) 18,755 (2,404) 2.03 (0.31)
Clonal selection 5.50 (0.51) 4.95×10−3 (1.39×10−3) 25,953 (2,918) 2.55 (0.33)
SCGA 6 (0) 3.27×10−4 (7.46×10−5) 13,814 (2,116) 1.75 (0.21)
AEGA 6 (0) 1.21×10−4 (8.63×10−5) 6,218 (935) 0.53 (0.07)

Deterministic crowding 76.3 (11.4) 4.52×10−3 (4.17×10−3) 1,861,707 (329,254) 21.63 (2.01)
Probabilistic crowding 92.8 (3.46) 3.46×10−3 (9.75×10−4) 2,638,581 (597,658) 31.24 (5.32)
Sequential fitness sharing 89.9 (5.19) 2.75×10−3 (6.98×10−4) 2,498,257 (374,804) 28.47 (3.51)

f4 Clearing procedure 89.5 (5.61) 3.83×10−3 (9.22×10−4) 2,257,964 (742,569) 25.31 (6.24)
CBN 90.8 (6.50) 4.26×10−3 (1.14×10−3) 2,978,385 (872,050) 35.27 (8.41)
Clonal selection 92.1 (4.63) 4.08×10−3 (8.25×10−3) 3,752,136 (191,849) 45.95 (1.56)
SCGA 91.4 (3.04) 3.73×10−3 (2.29×10−3) 2,845,789 (432,117) 32.15 (4.85)
AEGA 99.6 (1.61) 1.44 \times 10{̂-4} (2.82×10−5) 426,599 (63,898) 5.17 (0.93)

Deterministic crowding 494.8 (50.4) 3.54×10−3 (2.63×10−3) 22,488,696 (4,108,125) 534.1 (137.5)
Probabilistic crowding 811.3 (30.6) 4.85×10−3 (3.97×10−3) 35,963,701 (3,845,957) 807.8 (112.7)
Sequential fitness sharing 753.9 (40.7) 7.96×10−4 (1.37×10−3) 32,052,038 (2,071,319) 739.6 (75.3)

f5 Clearing procedure 952.7 (35.7) 6.24×10−4 (6.12×10−4) 26,239,172 (1,198,050) 549.2 (51.9)
CBN 859.4 (58.3) 4.38×10−3 (3.24×10−3) 37,194,360 (5,352,638) 928.1 (184.3)
Clonal selection 893.2 (47.1) 2.87×10−3 (1.63×10−3) 45,739,015 (1,084,927) 1,372.4 (49.6)
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SCGA 977.5 (23.4) 8.42
AEGA 1022.6 (3.86) 4.58

he standard unit of the column Time (AET) is in seconds. (Numbers in parentheses

omputer with a Pentium-4 2.66G-HZ processor and 1G memory
unning Windows XP operating system. In the following sections,
e shall present our experimental results.

.2. Comparing AEGA with other algorithms for finding all
ultiple optima of the problems

In this section, we compare the performance of different algo-
ithms on the multimodal problems f1–f5 listed in Table 1. The
urfaces of f1–f4 and a two dimensional slice of f5 are shown in
ig. 11 respectively. Our main objective in these experiments was
o determine whether AEGA is more efficient and effective than
ther existing algorithms for finding all multiple optima of f1–f5. In
he two population control constraints of AEGA, we set the param-
ters ˛ = ˇ = 0 and � = � = 1. This means that the population will
ot be adaptively adjusted by the population control constraints.
herefore, AEGA will focus on searching all the optima of the prob-
ems. For fairness of comparison, we implement all algorithms with
he same parameter setting. For f1–f3, f4 and f5, the initial popula-
ion sizes of the all algorithms were set to 100, 1000, and 2000

espectively. For Sequential Fitness Sharing, Clearing Procedure,
BN, Clonal Selection, SCGA, and AEGA, we set the distance thresh-
ld �s to 0.1. The algorithms’ stopping criterion is such that when
he number of optima found cannot be further increased in 10 suc-
essive generations after the first 50 generations, the execution of
−4 (1.97×10−4) 28,340,692 (4,619,737) 605.8 (114.9)
es 10{̂-4} (1.68×10−4) 8,627,084 (435,968) 93.21 (10.3)

e standard deviations.)

the algorithm will be stopped. We evaluated the performance of all
the algorithms using four measures:

• The average number of optima found in the final population
(ANO);
• The average distance between the multiple optima the algorithm

found and their closest individuals in the final population (ADC);
• The average number of function evaluations (ANF); and
• The average execution time in seconds (AET).

Table 2 provides a summary of the performance comparison
among different algorithms. From the ANO measure, AEGA could
always find better or equally optimal solutions for the multi-
modal problems f1–f5. We can see that each algorithm can find
all optima of f1. For function f2, only Clonal Selection and AEGA
can find all optima each time. For function f3, Clearing Proce-
dure, SCGA and AEGA can get all optima each run. For functions
f4 and f5, Deterministic Crowding leads to premature convergence
and all other algorithms cannot get any better results, but AEGA
can find all multiple optima 28 and 26 times respectively for 30

runs and its average successful rate of each run is higher than
99%. In addition, for functions f3 and f5, the performance of the
algorithms with the elitist strategy (Clearing Procedure, SCGA and
AEGA) are better than those without elitist strategy (Probabilistic
Crowding, Sequential Fitness Sharing, CBN and Clonal Selection)



2026 Y. Liang, K.-S. Leung / Applied Soft Computing 11 (2011) 2017–2034

F inisti
P ation o

b
v
f
p
w
h
t
s

A
o
a
o
s
r
t

F
P

ig. 12. A schematic illustration that the results of the algorithms for f1, (a) Determ
rocedure, (e) CBN, (f) Clonal Selection, (g) SCGA, (h) AEGA. (Keys: “×”—final popul

ecause these functions have multiple global optima of equal
alue. If we compare the ADC measure listed in Table 2, it is
ound that AEGA obtained the best score for all the multimodal
roblems except f3. For f3, the solution precision of AEGA is only
orse than that of Clearing Procedure. On the other hand, AEGA
as smaller standard deviations in the ANO and ADC measures
han the other algorithms, and hence its solution quality is more
table.

From the ANF measure in Table 2, we can clearly observe that
EGA makes orders of magnitude fewer function evaluations than
ther algorithms under the same termination criterion. Recall that
ll algorithms use the same conventional crossover and mutation

perators, we can easily deduce that the adaptive elitist-population
earch technique in AEGA is able to produce better population (low
edundancy and high diversity) more efficiently and effectively
han the other multimodal search strategies.

ig. 13. A schematic illustration that the results of the algorithms for f2, (a) Deterministi
rocedure, (e) CBN, (f) Clonal Selection, (g) SCGA, (h) AEGA. (Keys: “×”—final population o
c Crowding, (b) Probabilistic Crowding, (c) Sequential Fitness Sharing, (d) Clearing
f the multimodal algorithms.)

To validate that AEGA improves over the other algorithms
because AEGA produces more better populations in the iterations,
Figs. 12 and 13 show the comparison results of AEGA and other
multimodal algorithms for f1 and f2, respectively. The initial pop-
ulations of all algorithms have 100 identical individuals. However,
in the final population of AEGA, the 100 individuals decrease to 5
individuals corresponding to the 5 multiple optima, while, on the
contrary, the final population of other seven algorithms still have
100 individuals, which are located on 5 peaks. Fig. 14(a) and (b)
show the AEGA’s changing population size in the optimization pro-
cesses for f1 and f2 respectively. These clearly show why AEGA is
more efficient than the other algorithms.
When comparing the execution time (AET) in Table 2, AEGA uses
significantly less time to finish than other algorithms. The situation
could be accounted for by the reduction of the redundancy in the
population due to the elitist crossover operator. All these compar-

c Crowding, (b) Probabilistic Crowding, (c) Sequential Fitness Sharing, (d) Clearing
f the multimodal algorithms.)
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Fig. 14. The change processes of the AEGA’s populat

Table 3
The test suite of multimodal functions used in our experiments for finding the
multiple high fitness optima.

Rastrigin’s function:

f6(x1, x2) = −(20+ x2
1 + x2

2 − 10(cos 2�x1 + cos 2�x2)), x1, x2 ∈[−10, 10];

Griewank’s function:

f7(x1, x2) = −( (x1)2+(x2)2

4000 − cos( x1√
2

)× cos( x2√
2

)+ 1), x1, x2 ∈[−600, 600];

Modified Griewank’s function:

f8(x1, x2) = cos(0.5x1)+cos(0.5x2)
10 + cos(10x1)× cos(10x2)− 1.2, x1, x2 ∈ [0, 120];

i
a

4
m

r

we set the parameters ˛ = 3, ˇ = 0.5, � = 1.5 and � = 0.5 in the two
n dimensional negative Shubert function:

f9−n(xi) = −
∏n

i=1

∑5

j=1
j cos{(j + 1)xi + j}, where xi ∈[−10, 10];

sons show that AEGA generally outperforms the other multimodal
lgorithms in efficacy and efficiency.

.3. Comparing AEGA with other algorithms for finding the

ultiple high fitness optima of the problems

In this section, we compare the performance of different algo-
ithms on the multimodal optimization problems listed in Table 3.

Fig. 15. The test suite of the mu
ion sizes for f1 (left) and f2 (right) respectively.

The surface of Rastrigin’s function f6, the one dimensional slice of
Griewank’s function f7 for [−200, 200], the one dimensional slice
of Modified Griewank’s function f8 for [0, 120] and Two dimen-
sional negative Shubert function f9−2 are shown in Fig. 15. These
problems have a lot of local optima and very rugged landscapes.
The goal of the multimodal optimizers is to find as many as pos-
sible global optima, and possibly good local optima. Rastrigin’s
function f6 and Griewank’s function f7 only have one global opti-
mum, so we want to test whether the multimodal algorithms can
find their global optimum and 100 higher fitness local optima to
validate the algorithms’ performance. Modified Griewank’s func-
tion f8 has 100 global optima and the n dimensional negative
Shubert functions f9−n have n×3n global maxima, and the mul-
timodal algorithms need to find all their global maxima. Recall
that if the landscapes of the objective functions are very rugged,
our proposed population control constraints of AEGA can avoid
wasting computational power to obtain low fitness optima. Here,
population constraints of AEGA. This means that if a newly gen-
erated individual has evolved for 3 generations and its fitness is
still lower than half of the value of the best-so-far solution, it
will be deleted from the current population because it may have

ltimodal function f6–f9−2.
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ocated on a peak with a low fitness optimum. On the other hand,
f the initial population size is N and it increases to 1.5×N at

certain generation in the search process, AEGA will delete the
ower fitness individuals from the current population to reduce
ts size to 0.5×N as the initial population in the next genera-
ion.

Our main objective in these experiments was to determine
hether AEGA is more efficient and effective than other existing

lgorithms for finding the multiple high fitness optima of functions
6–f9−n. In the experiments, the initial population sizes of all algo-
ithms were set to 1000 and 2500 for f6–f9−4 and f9−5 respectively.
or Sequential Fitness Sharing, Clearing Procedure, CBN, Clonal
election, SCGA, and AEGA, we set the distance threshold �s to 1,
, 5, 5 for f6, f7, f8, f9−n respectively. The algorithms’ stopping cri-
erion is such that when the number of optima found cannot be
urther increased in 50 successive generations after the first 500
enerations, the execution of the algorithm will be stopped. We
till evaluate the performance of the all algorithms using the above
our measures ANO, ADC, ANF, and AET. However, ANO and ADC
nly focus on a portion of the higher fitness optima found by the
lgorithm, i.e.:

The average number of higher fitness optima found in the final
population (ANO); and
The average distance between the higher fitness multiple optima
the algorithm found and their closest individuals in the final pop-
ulation (ADC);

Table 4 provides a summary of the performance comparison
mong different algorithms. From the ANO measure, we observe
hat AEGA could always find more optimal solutions for the mul-
imodal problems f6–f9−n. For Rastrigin’s function f6, only AEGA
an find all multiple high fitness optima 27 times for 30 runs and
ts average successful rate of each run is higher than 99%. On the
ontrary, the other algorithms cannot find all multiple higher fit-
ess optima for any run. For Griewank’s function f7, only AEGA
an get all multiple higher fitness optima for each run. Modified
riewank’s function f8 has numerous local optima whose value

s close to the value of the global optima, AEGA still can find all
lobal optima with higher than 97%. For Two and Three dimensional
egative Shubert functions f9−2 and f9−3, 3 algorithms (Clearing
rocedure, SCGA and AEGA) and 2 algorithms (SCGA and AEGA)
an get all multiple higher fitness maxima for each run respec-
ively. For Four and Five dimensional negative Shubert functions
9−4 and f9−5, no algorithm can find all global maxima for each run,
ut AEGA still gets better results than other algorithms. In addi-
ion, for finding multiple higher fitness optima, the performance
f the algorithms with the elitist strategy (Clearing Procedure,
CGA and AEGA) are better than those without elitist strategy
Probabilistic Crowding, Sequential Fitness Sharing, CBN and Clonal
election) and Deterministic Crowding leads to premature con-
ergence. If we compare the ADC measure listed in Table 4, it is
ound that AEGA could always obtain the highest accurate solu-
ions for all the multimodal problems f6–f9−n. Moreover, AEGA
as smaller standard deviations in the ANO and ADC measures
han other algorithms, and hence its solution quality is more sta-
le.

From the ANF and AET measures in Table 4, we can clearly
bserve that AEGA uses significantly fewer function evalua-

ions and less running time than other algorithms under the
ame termination criterion. Deterministic Crowding leads to pre-
ature convergence. Comparing with other algorithms except
eterministic Crowding, AEGA is at least 4.1, 4.5, 3.2, 4.6,
.9, 6.1 and 6.3 times faster than them for functions f6–f9−5
Fig. 16. The stepwise function f10 from the test suite.

respectively. All these comparisons show that AEGA generally
outperforms the other multimodal algorithms in efficacy and effi-
ciency.

4.4. Comparing AEGA with other algorithms for stepwise function

In this section, we compare the performance of different algo-
rithms on the two dimensional stepwise function f10 (Fig. 16),
which possesses ten absolutely flat regions of the step fitness from
10 to 100 respectively.

We use the percentage of the area of each step fitness � in
the total feasible solution space as the targeted solution distri-
bution (% of the total number of solutions) for each �. Our main
objective in these experiments was to determine whether AEGA
is more efficient and effective than other existing algorithms in
distributing individuals regularly to all steps. For regular distri-
bution of the individuals on each step surface, it should have a
percentage (%) of individuals close to the targeted distribution of
that step. In the experiments, the initial population size was set
to 1000 for all algorithms. For Sequential Fitness Sharing, Clearing
Procedure, CBN, Clonal Selection, SCGA, and AEGA, we set the dis-
tance threshold �s to 10. The algorithms’ stopping criterion is such
that when the average fitness of the population cannot be further
increased in 50 successive generations after the first 500 genera-
tions, the execution of the algorithm will be stopped. We evaluate
the performance of all the algorithms using the above two mea-
sures ANF, AET, and a new one called PIP(�), which is defined as
follows:

• The percentage (%) of individuals with the step fitness � in the
final population (PIP(�)).

In the two population control constraints of AEGA, we set the
parameters ˛ = ˇ = 0 and � = � = 1. This means that the population
is not adaptively adjusted by the population control constrains.
Therefore, AEGA will focus on searching all the optima of the step-
wise problem.

Table 5 provides a summary of the performance comparison
among different algorithms and the last row lists the targeted dis-

tribution of the flat steps of f10. From the PIP(�) measures, we can
clearly observe that AEGA could always find better solutions for
the stepwise problems f10 except PIP(40) and PIP(50). In Table 6,
based on the targeted distribution of flat solutions, the Sum of
Squared Error (SSE) of AEGA’ solution of 5.08 is much smaller than
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Table 4
Performance comparison among the multimodal optimization algorithms for the test functions f6–f9−5.

Test function Optima (ANO) Distance (ADC) Function evaluations (ANF) Time (AET)

Deterministic crowding 62.4 (14.3) 4.72×10−3 (4.59×10−3) 1,760,199 (254,341) 14.62 (2.83)
Probabilistic crowding 84.7 (5.48) 1.50×10−3 (9.38×10−4) 2,631,627 (443,522) 34.39 (5.20)
Sequential fitness sharing 76.3 (7.08) 3.51×10−3 (1.66×10−3) 2,726,394 (562,723) 36.55 (7.13)

f6 Clearing procedure 93.6 (2.31) 2.78×10−3 (1.20×10−3) 2,107,962 (462,662) 28.61 (6.47)
(101) CBN 87.9 (7.78) 4.33×10−3 (2.82×10−3) 2,835,119 (683,195) 37.05 (8.23)

Clonal selection 90.6 (9.95) 3.15×10−3 (1.47×10−3) 5,075,208 (194,376) 58.02 (2.19)
SCGA 97.4 (4.80) 1.34×10−3 (8.72×10−4) 2,518,301 (643,129) 30.27 (7.04)
AEGA 100.4 (1.39) 6.77 \times 10{̂-4} (3.18×10−4) 688,731 (71,813) 7.08 (0.51)

Deterministic crowding 52.6 (8.86) 3.71×10−3 (1.54×10−3) 2,386,960 (221,982) 19.10 (2.26)
Probabilistic crowding 79.2 (4.94) 3.48×10−3 (3.79×10−3) 3,861,904 (457,862) 43.53 (4.38)
Sequential fitness sharing 63.0 (5.49) 4.76×10−3 (3.55×10−3) 3,619,057 (565,392) 42.98 (6.35)

f7 Clearing procedure 79.4 (4.31) 2.95×10−3 (1.64×10−3) 3,746,325 (594,758) 45.42 (7.64)
(101) CBN 71.3 (9.26) 3.29×10−3 (4.11×10−3) 4,155,209 (465,613) 48.23 (5.42)

Clonal selection 89.2 (5.44) 3.02×10−3 (1.63×10−3) 5,423,739 (231,005) 69.39 (2.63)
SCGA 94.9 (8.18) 2.63×10−3 (1.81×10−3) 3,629,461 (373,382) 47.84 (6.09)
AEGA 101 (0) 1.32 \times 10{̂-3} (8.76×10−4) 1,067,792 (13,241) 9.64 (1.12)

Deterministic crowding 44.2 (7.93) 4.45×10−3 (3.63×10−3) 2,843,452 (353,529) 23.14 (3.85)
Probabilistic crowding 70.1 (8.36) 2.52×10−3 (1.47×10−3) 4,325,469 (574,368) 49.51 (6.72)
Sequential fitness sharing 58.2 (9.48) 4.14×10−3 (3.31×10−3) 4,416,150 (642,415) 54.43 (12.6)

f8 Clearing procedure 67.5 (10.11) 2.31×10−3 (1.43×10−3) 4,172,462 (413,537) 52.39 (7.21)
(100) CBN 53.1 (7.58) 4.36×10−3 (3.57×10−3) 4,711,925 (584,396) 61.07 (8.14)

Clonal selection 74.4 (12.75) 3.52×10−3 (2.19×10−3) 5,835,452 (498,033) 74.26 (5.47)
SCGA 87.3 (9.61) 3.15×10−3 (2.07×10−3) 3,964,491 (412,538) 53.87 (8.46)
AEGA 98.6 (1.65) 1.54 \times 10{̂-3} (9.55×10−4) 1,725,183 (73,497) 15.42 (2.30)

Deterministic crowding 9.37 (1.91) 3.26×10−3 (5.34×10−4) 648,602 (75,413) 4.58 (0.57)
Probabilistic crowding 15.17 (2.43) 2.87×10−3 (5.98×10−4) 1,823,774 (265,387) 12.92 (2.01)
Sequential fitness sharing 12.29 (2.14) 1.42×10−3 (5.29×10−4) 1,767,562 (528,317) 14.12 (3.51)

f9−2 Clearing procedure 18 (0) 1.19×10−3 (6.05×10−4) 1,875,729 (265,173) 11.20 (2.69)
(18) CBN 14.84 (2.70) 4.39×10−3 (2.86×10−3) 2,049,225 465,098) 18.26 (4.41)

Clonal selection 14.61 (2.33) 3.42×10−3 (1.58×10−3) 4,989,856 (618,759) 33.85 (5.36)
SCGA 18 (0) 1.58×10−3 (4.12×10−4) 2,261,469 (315,727) 13.71 (1.84)
AEGA 18 (0) 3.34 \times 10{̂-4} (1.27×10−4) 450,823 (84,012) 2.39 (0.43)

Deterministic crowding 39.1 (7.24) 3.52×10−3 (1.87×10−3) 4,963,832 (536,959) 41.34 (4.72)
Probabilistic crowding 56.6 (6.35) 4.09×10−3 (2.47×10−3) 6,625,478 (947,516) 60.34 (8.77)
Sequential fitness sharing 48.5 (9.04) 3.95×10−3 (1.98×10−3) 5,611,468 (803,659) 54.76 (7.58)

f9−3 Clearing procedure 68.2 (5.71) 1.48×10−3 (8.37×10−4) 6,973,616 (783,614) 56.85 (6.35)
(81) CBN 56.9 (5.97) 3.91×10−3 (2.15×10−3) 8,061,334 (1,139,233) 86.16 (12.5)

Clonal selection 60.5 (5.11) 3.71×10−3 (1.96×10−3) 13,761,253 (1,482,397) 112.71 (13.2)
SCGA 81 (0) 2.39×10−3 (9.31×10−4) 6,561,413 (627,383) 53.07 (5.20)
AEGA 81 (0) 8.59 \times 10{̂-4} (2.75×10−4) 1,394,557 (162,932) 10.62 (1.44)

Deterministic crowding 141.5 (17.4) 4.41×10−3 (2.59×10−3) 15,751,612 (2,692,755) 183.49 (28.4)
Probabilistic crowding 170.9 (15.3) 3.65×10−3 (2.09×10−3) 25,270,263 (5,936,534) 293.35 (61.5)
Sequential fitness sharing 154.6 (14.3) 3.85×10−3 (1.03×10−3) 28,757,064 (5,602,523) 369.79 (68.1)

f9−4 Clearing procedure 226.8 (13.7) 3.42×10−3 (1.98×10−3) 21,881,324 (3,304,173) 243.91 (37.8)
(324) CBN 193.4 (18.6) 3.95×10−3 (1.18×10−3) 42,898,602 (5,267,027) 644.95 (73.7)

Clonal selection 227.8 (16.1) 3.52×10−3 (2.16×10−3) 51,817,693 (5,829,516) 627.17 (70.9)
SCGA 244.2 (15.4) 3.13×10−3 (1.18×10−3) 26,802,791 (4,121,909) 329.74 (53.3)
AEGA 318.3 (4.18) 1.13 \times 10{̂-3} (4.42×10−4) 3,725,621 (319,536) 39.64 (3.46)

Deterministic crowding 638.2 (62.7) 4.69×10−3 (2.19×10−3) 103,564,891 (12,934,724) 2087.33 (241.2)
Probabilistic crowding 744.6 (45.1) 3.71×10−3 (1.67×10−3) 150,294,243 (15,714,937) 2992.61 (298.1)
Sequential fitness sharing 675.6 (55.8) 3.96×10−3 (2.84×10−3) 136,205,221 (17,349,408) 2819.46 (362.5)

f9−5 Clearing procedure 883.1 (41.2) 3.44×10−3 (1.33×10−3) 113,749,762 (16,150,218) 2241.06 (319.3)
(1215) CBN 726.8 (43.9) 4.11×10−3 (3.05×10−3) 175,874,166 (19,362,825) 3906.14 (434.7)

Clonal selection 863.4 (83.1) 3.45×10−3 (2.32×10−3) 214,211,935 (18,595,896) 4270.63 (391.2)
SCGA 924.6 (51.8) 2.95×10−3 (1.51×10−3) 121,270,156 (11,662,490) 2594.17 (217.6)
AEGA 1194.8 (16.1) 2.14 \times 10{̂-3} (9.27×10−4) 18,447,699 (1,678,397) 354.88 (32.71)
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The numbers of multiple optima considered are shown in the brackets.) The stand

he SSE of 79.35 of the second best algorithm Sequential Fitness
haring. This means that AEGA can distribute the individuals more
egularly to all flat solutions. In addition, for finding multiple flat

olutions, the performance of the algorithms without elitist strat-
gy (Probabilistic Crowding, Sequential Fitness Sharing, CBN and
lonal Selection) are better than those of the algorithms with the
litist strategy (Deterministic Crowding, Clearing Procedure and
CGA) except AEGA.
it of the column Time (AET) is in seconds.

From the ANF and AET measures listed in Table 5, we can clearly
observe that AEGA uses fewer function evaluations and less running
time than the other algorithms under the same termination crite-

rion. For the stepwise function f10, AEGA is at least 3 times faster
than the other algorithms because the average of its final popula-
tion sizes is only 159.27 for 30 runs as compared to 1000 for all other
algorithms. All these comparisons show the strong performance of
AEGA in efficacy and efficiency.
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Table 5
Performance comparison among the multimodal optimization algorithms for the multiple stepwise function f10.

PIP(10) PIP(20) PIP(30) PIP(40) PIP(50) PIP(60)

Deterministic crowding 0.83 (2.36) 1.66 (2.13) 2.23 (5.19) 3.69 (4.45) 4.23 (2.53) 7.49 (9.40)
Probabilistic crowding 6.92 (4.27) 10.44 (9.42) 9.48 (5.33) 12.95 (4.59) 11.13 (7.58) 10.87 (6.41)
Sequential fitness sharing 13.75 (12.06) 12.58 (6.19) 12.73 (19.17) 12.86 (10.29) 13.34 (9.72) 12.10 (9.96)
Clearing procedure 5.83 (8.11) 5.71 (6.23) 6.09 (6,35) 8.12 (8.22) 8.52 (7.19) 7.95 (7.38)
CBN 13.77 (14.31) 12.82 (5.35) 13.47 (13.91) 9.26 (8.79) 9.86 (8.82) 8.09 (2.67)
Clonal selection 7.71 (9.65) 6.37 (8.03) 7.96 (5.39) 9.34 (4.66) 11.57 (8.98) 14.86 (7.61)
SCGA 1.64 (2.47) 3.52 (4.62) 5.41 (1.29) 6.36 (4.69) 8.75 (3.76) 9.71 (11.16)
AEGA 17.89 (3.28) 16.15 (2.95) 15.43 (3.27) 12.61 (2.71) 10.39 (3.82) 9.35 (2.26)
Targeted distribution of flat optima 19 17 15 13 11 9

PIP(70) PIP(80) PIP(90) PIP(100) Function evaluations (ANF) Time (AET)
Deterministic crowding 9.57 (4.52) 15.84 (7.94) 19.25 (9.87) 25.21 (8.58) 1,683,082 (182,532) 14.29 (1.17)
Probabilistic crowding 9.86 (5.52) 11.52 (8.73) 9.07 (12.64) 7.76 (8.02) 3,494,483 (343,778) 32.41 (3.46)
Sequential fitness sharing 9.38 (8.70) 6.13 (7.25) 4.29 (5.14) 2.84 (2.31) 3,197,843 (437,906) 30.54 (4.38)
Clearing procedure 10.91 (8.77) 11.20 (10.14) 14.41 (15.38) 21.26 (3.69) 2,764,416 (262,851) 26.31 (2.23)
CBN 7.85 (6.17) 9.21 (8.63) 9.73 (7.16) 5.94 (7.11) 2,619,020 (472,955) 23.94 (5.03)
Clonal selection 12.09 (3.63) 12.44 (9.83) 11.18 (6.41) 6.48 (2.15) 4,020,947 (194,152) 46.76 (0.91)
SCGA 10.46 (7.97) 16.28 (12.46) 18.75 (9.86) 19.12 (6.51) 2,997,643 (332,374) 27.96 (3.16)
AEGA 7.58 (5.47) 4.86 (1.98) 3.41 (1.11) 2.33 (1.93) 594,874 (82,257) 4.12 (0.73)
Targeted distribution of flat optima 7 5 3 1 - -

PIP(�) describes the percentage (%) of individuals with fitness � in the final population, where � = 10, 20, . . ., 100. The standard unit of the column Time (AET) is in seconds.

Table 6
Comparison of Sum of Squared Error (SSE) among the multimodal evolutionary algorithms for the multiple stepwise function f10.
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Deterministic Probabilistic Sequential fitness
Crowding Crowding Sharing

SSE 1837.624 356.18 79.35

Two dimensional stepwise function:

10(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10, if0 ≤ x1 < 10and0 ≤ x2 ≤ 100,or0 ≤ x1 ≤ 100
20, if10 ≤ x1 < 20and10 ≤ x2 ≤ 100,or10 ≤ x1 ≤
30, if20 ≤ x1 < 30and20 ≤ x2 ≤ 100,or20 ≤ x1 ≤
40, if30 ≤ x1 < 40and30 ≤ x2 ≤ 100,or30 ≤ x1 ≤
50, if40 ≤ x1 < 50and40 ≤ x2 ≤ 100,or40 ≤ x1 ≤
60, if50 ≤ x1 < 60and50 ≤ x2 ≤ 100,or50 ≤ x1 ≤
70, if60 ≤ x1 < 70and60 ≤ x2 ≤ 100,or60 ≤ x1 ≤
80, if70 ≤ x1 < 80and70 ≤ x2 ≤ 100,or70 ≤ x1 ≤
90, if80 ≤ x1 < 90and80 ≤ x2 ≤ 100,or80 ≤ x1 ≤
100, if90 ≤ x1 < 100and90 ≤ x2 ≤ 100,or90 ≤ x1 ≤

In the above experiments, we set the parameters ˛ = ˇ = 0,
= � = 1 and do not use the population control constraints to delete

he individuals with low fitness from the population. When we set
= 5 and � = � = 1, if ˇ increases to 0.6, 0.7, 0.8 and 0.9 respectively,

he populations of AEGA converged to the highest step with fitness
00 as shown in Table 7.

.5. Comparison with the simple version of AEGA
In [31], we proposed the simple version of AEGA. Comparing
ith [31], here we have proposed new strategies to extend AEGA

o solve the complicated multimodal optimization problems, which
nclude multimodal functions with very rugged landscapes and
tepwise functions. We have analyzed the relative ascending direc-

able 7
omparison of PIP(100) among AEGA with different parameters’ setting for the
ultiple stepwise functions f10.

ˇ = 0.6 ˇ = 0.7 ˇ = 0.8 ˇ = 0.9

PIP(100) 8.61 19.07 35.92 79.83
Clearing CBN Clonal SCGA AEGA
Procedure Selection

1005.75 151.42 516.29 1340.31 5.08

≤ x2 < 10;
nd10 ≤ x2 < 20;
nd20 ≤ x2 < 30;
nd30 ≤ x2 < 40;
nd40 ≤ x2 < 50;
nd50 ≤ x2 < 60;
nd60 ≤ x2 < 70;
nd70 ≤ x2 < 80;
nd80 ≤ x2 < 90;
and90 ≤ x2 < 100.

tions with the flat case, and renewed the elitist genetic operators
based on it. We have also proposed the two population control

constraints to construct the improved version of AEGA. In this sec-
tion, we have added 4 multimodal optimization algorithms (totally
8 algorithms) and 9 complicated problems (totally 13 problems) to
validate the performance of AEGA. The parameter settings for these
algorithms are also different from [31]. We have also added some
parameters’ discussions in the following sections.

5. The effect of the distance parameter

In this section, we study how the distance parameter �s affects
the performance of AEGA. In Sections 5.1 and 5.2, the experimental
results on comparing AEGA with different �s for Roots function f3
and Four dimensional negative Shubert function f9−4 are reported
respectively.
5.1. Effect of different �s for f3

In many niching methods, the distance threshold �s plays a
crucial role. AEGA also utilizes this parameter, but it is not as
important as in the other niching methods, because the relative
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differences are small compared with those for the other values of
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ig. 17. Variation in the average number of maxima population size and optima
ound with the distance threshold for Roots function f3, with one standard deviation
rror bars (Keys: “◦” – average population size; “×”—number of optima found).

scending directions between individuals are more important to
dentify the individuals’ dissimilarity. To examine the influence
f the distance threshold, we conducted a series of experiments,
gain using Roots function f3, in which we varied the value of �s,
nd recorded the number of multiple optima found and the maxi-
um population size in the AEGA search process. For these runs we

sed the initial population size of 2, the crossover probability Pc = 1,
he mutation probability Pm = 1, the number of generation T = 200,
nd set ˛ = ˇ = 0, � = � = 1 in the population control constraints. We
veraged the results over 30 AEGA runs for each value of �s. The
xperimental results obtained are shown in Fig. 17.

Fig. 17 shows that, as expected, as the distance threshold is
ncreased, the number of multiple optima found does not decrease.
or values of �s between 0.1 and 2, AEGA can find all multi-
le optima (note: 2 is the half value of the domain width of all
he dimensions). The difference is that when �s is small, more
ndividuals are generated in the beginning generations. Then the
opulation size gradually decreases through the elitist genetic
perators eliminating other individuals belonging to the same peak
n the evolutionary search process, until the population size and
he number of peaks equalize. When �s is large, generating new
ndividuals mainly depends on determining the relative ascending
irections of individuals. New individuals are generated parsimo-
iously and the population size gradually increases to the number
f multiple optima. This demonstrates AEGA is stable with respect
o various distance thresholds.

There are three possibilities:
i. For the case that the relative ascending directions between two
individuals are back to back, we need not consider their distance
and can consider them located on different peaks.

able 8
erformance comparison among AEGA with different �s value for the test function f9−4 (3

Test function Optima (ANO) Distance (A

�s = 2 317.7 (18.12) 1.57×10−3

�s = 5 318.3 (14.18) 1.13×10−3

f9−4 �s = 10 320.1 (13.49) 2.31×10−3

�s = 12 317.8 (13.63) 2.63×10−3

�s = 15 315.4 (16.82) 1.71×10−3

he standard unit of the column Time (AET) is in seconds.
puting 11 (2011) 2017–2034 2031

ii. For the case that the relative ascending directions between
two individuals are face to face or one-way, and the distance
between them is smaller than the distance threshold, the two
individuals can be considered to be on the same peak. If they
are in fact located on different peaks, through several AEGA’s
generations, eventually an offspring on the new peak will have
back to back directions with one of the other individuals. Using
these directions AEGA can find a new peak even with the width
smaller than the distance threshold.

iii. For the case that the relative ascending directions between
two individuals are face to face or one-way, and the distance
between them equal to or larger than the distance threshold,
the two individuals can be considered to be on different peaks.
But if they are in fact located on the same peak, through sev-
eral AEGA’s generations, when they get closer to the optimum,
their distance decreases and becomes smaller than the dis-
tance threshold eventually. Then the elitist operators will only
select the elitist one to next generation to reduce the algo-
rithm’s redundancy. From the experiment, we can observe that
the average population size varied with the distance threshold
�s, but eventually converge to a constant which is equal to the
number of optima found.

In other words, our proposed algorithms based on the distance
threshold is relatively robust.

5.2. Effect of different �s for f9−4

In this section, we compare the performance of AEGA with dif-
ferent �s values on Four dimensional negative Shubert function
f9−4. As described in Section IV-C, this problem has 324 global max-
ima and a lot of local maxima. The goal of multimodal optimizers
was to find all the global maxima from the rough surface.

In this experiment, we investigate the effect of varying the val-
ues of �s. The initial population size of AEGA was set to 1000, the
crossover probability Pc = 0.8, the mutation probability Pm = 0.1 and
˛ = 3, ˇ = 0.5, � = 1.5, � = 0.5 in the population control constraints.
The algorithms’ stopping criterion is such that when the number of
optima found cannot be further increased in 50 successive genera-
tions after the first 500 generations, the execution of the algorithm
will be stopped. We performed the experiments using �s values of
2, 5, 10, 12, 15 respectively. The results are presented in Table 8.

From the table, we notice that the best final results (see the
ANO and ADC measures) are obtained for �s = 10. However, it is
not significantly different from those with other values of �s. For
different values of �s, the successful rates of AEGA are all higher
than 97%. The longest and smallest average execution time (AET)
values are obtained for �s = 2 and �s = 15 respectively. The ANF and
AET measures decrease with increasing values of �s. However, the
�s. Therefore, we can conclude that the efficacy and efficiency of
AEGA with the two population constraints are stable for different
�s values in a relative wide range. This is important for using AEGA
to solve hard multimodal engineering design problems.

24 global optima).

DC) Function evaluations (ANF) Time (AET)

(3.81×10−4) 3,749,726 (366,827) 40.08 (3.84)
(4.42×10−4) 3,725,621 (349,536) 39.64 (3.16)
(2.97×10−4) 3,704,583 (412,368) 39.43 (4.20)
(3.04×10−4) 3,625,245 (380,401) 38.74 (3.96)
(4.69×10−4) 3,618,106 (321,398) 38.59 (3.28)
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Table 9
Different parameter settings in the two population control constraints.

Cases ˛ ˇ � � Individual survival Population size fluctuation allowed

.5

.8

.5

.8

6
c

�
c
o
p

g
i
t
t
l
p
v
v
u
t

t
g
a
p

F
y

setting 1 10 0.5 1.5 0
setting 2 10 0.5 1.2 0
setting 3 3 0.75 1.5 0
setting 4 3 0.75 1.2 0

. Effect of different parameters ˛, ˇ, �, � in the population
ontrol constraints

In our proposed AEGA, we have added four parameters ˛, ˇ,
, � into the two population control constraints. These constraints
an avoid AEGA wasting computational power to obtain low fitness
ptima. In this section, we study how these parameters affect the
erformance of AEGA.

In the first population control constraint of AEGA, if a newly
enerated individual has evolved for ˛ generations and its fitness
s still lower than a fitness threshold, ˇ× the best-so-far solu-
ion (e.g., 0.5× the best-so-far solution), it will be deleted from
he current population because it may be located on a peak with
ow fitness. When we set the parameter ˛ relative large and the
arameter ˇ relative small, the new generated individual can sur-
ive in the population for relative longer (more generations) and
ice versa. Here, we set ˛ = 3, ˇ = 0.75 (short survival for individ-
als) and ˛ = 10, ˇ = 0.5 (long survival for individuals) to evaluate
hese two situations.

In the second population control constraint of AEGA, if the ini-

ial population size is N and it increases to �×N (� > 1) at a certain
eneration in the search process, the adaptive elitist-population
pproach will delete the lower fitness individuals from the current
opulation to reduce its size to �×N (where 0 < � < 1) as the pop-

ig. 18. Variation in the average numbers of population sizes against the execution tim
-axis—average population size.)
long large
long small
short large
short small

ulation size in the next generation. When we set the parameter
� relative large and the parameter � relative small, the popula-
tion size can change in a relative larger range, and vice versa. Here,
we set � = 1.5, � = 0.5 (large fluctuation) and � = 1.2, � = 0.8 (small
fluctuation) to evaluate these two situations.

Consequently, we get the four combinations of parameter set-
tings as listed in Table 9. To examine the influence of the different
parameter settings, we conduct a series of experiments, again using
the negative Shubert function f9−4, and recorded the number of
multiple optima found and the population size in the AEGA search
processes. For these runs, we used the initial population size of
1000, the crossover probability Pc = 0.8, the mutation probability
Pm = 0.1, the distance threshold �s = 10. The algorithms’ stopping
criterion is the same as the previous experiments. We average the
results over 30 AEGA runs for each setting. The experimental results
obtained are shown in Figs. 18, 19 and Table 10 respectively.

Fig. 18 shows the average population size curves of AEGA with
each parameter setting when applied to f9−4. It is observed that the
AEGA’s population sizes fluctuate between the upper and lower
bounds and their trendlines smoothen out towards the end of the

search processes. The initial patch of relatively high frequency of
fluctuations in each of the four experiments is due to the vigorous
exploration in the search space by the genetic operators. It should
be noted that the elitist crossover and the first population con-

e with the settings 1–4 for the test function f9−4. (Keys: x-axis—execution time;
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Table 10
Performance comparison among AEGA with different ˛, ˇ, �, � settings for the test function f9−4 (324 global optima).

Test function Optima (ANO) Distance (ADC) Function evaluations (ANF) Time (AET)

setting 1 320.5 (10.31) 1.85×10−3 (4.12×10−4) 3,764,478 (290,849) 40.27 (3.18)
f9−4 setting 2 319.2 (14.59) 2.65×10−3 (2.92×10−4) 3,738,407 (371,953) 39.79 (3.96)

×10−

×10−

T

s
t
e
a
i
b
t
c
t
t
i
t
a
u
a
s
s

o
e
c
3
t
F
o
r
w
s

t
t
o
n

F
t

setting 3 318.6 (12.71) 3.15
setting 4 317.4 (13.65) 2.28

he standard unit of the column Time (AET) is in seconds.

traint tend to reduce the population size while the elitist mutation
ends to increase it. Before the convergence towards the end, the
ffect of the elitist mutation dominates over the other two oper-
tors and increases the population size. When the population size
ncreases to the upper bound �×N, it will be decreased to the lower
ound �×N by the second population control constraint. After
he initial violent fluctuations, the relatively smooth fluctuations
ontinue until the search algorithm converges and has allocated
he elitist individuals for the desired optima towards the end of
he search process. For the different parameter settings 1–4, if the
ndividuals are allowed to stay in the population for relative long
ime (settings 1 and 2), the population size tends to increase faster
nd fluctuates up and down more times between the lower and
pper bounds. On the other hand, if the range of the population size
llowed is set relatively narrower (settings 2 and 4), the population
ize also fluctuates more times before convergence (compared to
ettings 1 and 3 respectively).

Fig. 19 shows the curves of the average numbers of multiple
ptima found against the execution time by AEGA with each param-
ter setting when applied to f9−4. In comparison, if the individuals
an only stay in the population for relative few generations (settings
and 4), the AEGA runs appear to do well in the early generations,

hen they are overtaken by AEGA with settings 1 and 2 respectively.
inally, all of the AEGA runs finish with similar mean values. On the
ther hand, if the population size is allowed to fluctuate between
elative large ranges (settings 1 and 3), the AEGA runs appear to do
ell in the early generations, but all of the AEGA runs finish with

imilar mean values as mentioned above.
The comparison results of AEGA with the four different parame-
er settings 1–4 are presented in Table 10. From the table, we notice
hat the best final results (see the ANO and ADC measures) are
btained for AEGA with parameter setting 1. However, the average
umber of function evaluations (ANF) and the average execution

ig. 19. Variation in the average number of multiple optima found and the execution
ime with the settings 1–4 for the test function f9−4.
3 (3.24×10−4) 3,675,478 (347,432) 39.18 (3.29)
3 (4.18×10−4) 3,628,831 (328,631) 38.82 (3.64)

time (AET) of the AEGA with setting 1 is also slightly higher than
the others. For the four different parameter settings 1–4 covering
the possible ranges, the differences in the ANO and AET measures
are smaller than 1.0% and 4.5% respectively. Therefore, we can
conclude that the efficacy and efficiency of AEGA with the two
population constraints are stable with respect to various param-
eter settings of ˛, ˇ, � and �. Based on our experiment results,
AEGA can efficiently solve multimodal optimization problems if
˛∈ [3, 10], ˇ∈ [0.5, 0.75], �∈ [1.2, 1.5] and �∈ [0.5, 0.8] respec-
tively.

7. Conclusion

In this paper we have presented the adaptive elitist-population
search method, a new technique for evolving parallel elitist indi-
viduals for multimodal function optimization. The technique is
based on the concept of adaptively adjusting the population size
according to the individuals’ dissimilarity using direction depen-
dent elitist genetic operators.

The adaptive elitist-population search technique can be imple-
mented with any combinations of standard genetic operators. To
use it, we just need to introduce one additional control parame-
ter, the distance threshold, and the population size is adaptively
adjusted according to the number of multiple optima. As an exam-
ple, we have integrated the new technique with genetic algorithms,
yielding an Adaptive Elitist-population based Genetic Algorithm
(AEGA).

AEGA has been experimentally tested with a difficult test suite
consisting of 10 benchmark multimodal function optimization
examples. The performance of AEGA has been compared against the
existing algorithms, Deterministic Crowding, Probabilistic Crowd-
ing, Sequential Fitness Sharing, Clearing Procedure, Clustering
Based Niching (CBN), Clonal Selection, and Species Conserving
Genetic Algorithm (SCGA). All experiments have demonstrated that
AEGA generally outperforms the other multimodal evolutionary
algorithms in efficiency and solution quality, typically with sig-
nificant efficiency speedups. The improvements of AEGA is due
to two visible features: (i) the adaptive elitist-population size is
dynamically adjusted to reduce the redundancy of computation
complexity; and (ii) the diversity of the population is maintained
and even improved in term of multimodal optimization. All these
support the good performance and power of the technique devel-
oped in the present work.

In [33], we have used AEGA to solve an optimal control model
of drug scheduling in cancer chemotherapy. To explore multiple
efficient drug scheduling policies, we have proposed a novel vari-
able representation—a cycle-wise representation and modified the
elitist genetic search operators in AEGA. The simulation results
obtained by AEGA match well with the clinical treatment expe-
riences, and can provide multiple efficient alternative solutions for
the oncologists to consider. It has been shown that the evolutionary

drug scheduling approach is simple and capable of solving complex
cancer chemotherapy problems requiring multimodal solutions by
adapting AEGA.

We plan to apply our technique to hard multimodal engineering
design problems with the expectation of discovering novel solu-
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Andalucía assesses the investment needed to deploy a fiber-optic network,
Interfaces 36 (2) (2006) 105–117.
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