PROBABILISTIC COOPERATIVE-COMPETITIVE
HIERARCHICAL MODELING AS A GENETIC OPERATOR IN
GLOBAL OPTIMIZATION

Kwong-Sak Leung

Terence Wong

Irwin King

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Email:{ksleung,wongyb,king}@cse.cuhk.edu.hk

ABSTRACT

Existing search-based discrete global optimization
methods share two characteristics: (1) searching at
the highest resolution; and (2) searching without
memorizing past searching information. In this pa-
per, we firstly provide a model to cope with both.
Structurally, it transforms the optimization problem
into a selection problem by organizing the continuous
search space into a binary hierarchy of partitions. Al-
gorithmically, it is an iterative stochastic cooperative-
competitive searching algorithm with memory. It
worths mentioning that the competition model elim-
inates the requirement of the niche radius required
in the existing niching techniques. The model is ap-
plied to (but not limited to) function optimization
problems (includes high-dimensional problems) with
experimental results which show that our model is
promising for global optimization. Secondly, we show
how pccBHS can be integrated into genetic algorithms
as an operator.

1. INTRODUCTION
MOTIVATION

Global optimization approaches such as simulated
annealing [?], evolutionary algorithms [?], [?] and
greedy decent/ascent [?] share two characteristics:
(1) they search the sample space at the highest reso-
lution; and (2) they search without memorizing past
global information. These characteristics could in
some circumstances be undesirable. Motivated by
these characteristics, we provide our model as a com-
plementary approach.

We approach the optimization problem by organiz-
ing the sample space into a binary hierarchy of par-
titions so as to make the reduction of search space
and the control of resolution possible. To deal with
the absence of reliable global information, we adopt

a stochastic cooperative searching algorithm. A set
of searching agents are allowed to explore and collect
information about the sample space autonomously.
This information i1s then used to guide the search-
ing agents in future explorations. Concerning about
the ability to cope with high-dimensional problems,
we combined the cooperative model devised by De
Jong [?] and the competition model based on niching

methods [?], [?], [?]-

SEARCH SPACE REDUCTION AND RESO-
LUTION CONTROL WITH BINARY HIER-
ARCHY

Fig. 1. Balanced binary hierarchy

Given a balanced binary hierarchy (Fig. 1) of { lev-
els’, there are { + 1 number of node layers and 2!
number of leaf nodes. To locate a leaf node, we go
through [number of branches starting from the root.
If we need to make a decision on which branch to tra-
verse next, we will have to make | number of such
decisions. Since a branch of the hierarchy leads to a
unique non-overlapping sub-hierarchy below it, after
making a decision on the branch to go, in principle we
just need to consider the corresponding sub-hierarchy

000 001 010 011 100 101 110 111 Labels

Fig. 2. Labeling of partitions

111 LIe HOAL UCUInlOoll., 1L 1d vital ullab ullc 140 Ol Lic 111-
erarchy we are facing is diminishing with the decision
made towards the bottom.

Viewing the hierarchy in another way, if we cut
the hierarchy into two halves longitudinally at node
level [{/2], the number of leaf nodes faced by all
sub-hierarchies at the upper half are reduced by half.
Those in the lower half are, however, kept unchanged
as mentioned before. In general, if we cut the hier-
archy successively at each node level top-down, total
number of ‘leaf nodes’ to be searched can be reduced
drastically.

The formation of such a hierarchy basically defines
[4+ 1 number of resolution levels. The levels upper
in the hierarchy represent the sample space in lower
resolutions and vice versa. This resolution hierarchy
allows our algorithm to concentrate the searching at
the lower resolution (general shape of the landscape),
which is easier, locating the promising area first and
to drive into the precise optimum later at the higher
resolution when 1t is converging.

2. PROBLEM FORMULATION

In this section, we express our problem in terms of
unconstrained function optimization. Given a contin-
uous real-value function F'(x) to optimize, we need
to find «* such that F(x*) is the optimum. Depend-
ing on the required solution precision, we quantize
the search space into V' partitions. Imposing a re-
striction on V that it should be equal to 2' where
! € N, a binary number labeling scheme is then intro-
duced to label the partitions as shown in Fig. 2. Sup-
pose S denotes the set of binary strings s; of length
[, the partitions are labeled as sg, s1, ..., sy _1 suc-
cessively. Based on this labeling scheme; we notice
that the search space is not only divided into V' parti-
tions, but also a hierarchy of partitions with each bit
separating the partition inherited from the immedi-
ate more-significant bit into two halves. We can then
treat each partition as a sequence of bit-values for
optimization. The problem becomes so simple that it
accounts for just a series of [selections between 0 and

1.

To locate the optimal solution, we explore the hier-
archy in a probabilistic way. To do the probabilistic
search, we give the states of each bit b; € {0, 1} scores
ap where k = 2(H)+b; indicating how well the states
perform in that bit position in the past. Using these
scores, a reasonable bit-value selection scheme (prob-
abilistic search) becomes possible. We now restate
our problem as follows:

I'We define a ‘level’ as a layer of branches but not as a layer
of nodes.

LU Ullgliilal plopiclil s Lto - .0 sl Lilab
Fe*)> F(x),Ve e X, X CR (1)

After transformation, it becomes a problem to find
probabilistically an optimal binary string s* € S to
where z* belongs:

max Prob(select s*) =

0
max H Prob(select b}) (2)

i={—1
which can be re-formulated as finding b such that:

bY = arg mkax{ ags + k= 2(l-1-)+b; } (3)

1
b b, bo

s | \ \ \

3o &332 3334 35

Tntor. A | \

component component
fitness fitness
for O for 1

Fig. 3. Correspondence of bit-string and the retained

component fitness list

3. INFORMATION PROCESSING
CYCLE

To solve the problem formulated in the last sec-
tion, we present in this section an algorithm based
on the information processing cycle characterized by
a population of homogeneous searching agents and a
searching environment.

SEARCHING AGENTS - LOCAL BEHAV-
IOR

Each agent is designed to generate in each itera-
tion a binary string through a sequence of bit value
selection probabilistically. We treat the set of scores
ap € [0.0,1.0] stated in Eq.(3) as our global infor-
mation. It is defined as a list A having 2/ number of
ar € R. In order to make the selection possible, a cor-
respondence is drawn between A and the bit-strings
s;. Every non-overlapping pair of two consecutive ag
i1s used to represent a single bit position. For each
pair of the list elements, we dedicate the former one
as the score for 0 and the later one as the score for 1.
Fig. 3 shows the correspondence of A and a bit-string.

Specifically, the generation of a binary string starts
at the most-significant bit and proceeds towards the
least-significant one, carrying the meaning of dividing

vile »soaltll spatt 1LV lldall sULLooslvely 101U WILLE LT
sample space hierarchy. The probabilities p and ¢ of
selecting 0 and 1 respectively at bit b; given that bits
bi_1 to b;11 are generated are defined as follows:

p=a; and g¢g=1-p (4)

ENVIRONMENT - GLOBAL INFORMA-
TION

Given a reliable global information A*, the search-
ing agents described in the above section should be
able to find s* with probability approaching 1 fulfill-
ing Eq.(2), i.e., Prob(select s*) a~ 1. The question is
how to make A* reliable? We approach this problem
as follows:

Assuming that the good performance of a binary
string 18 due to its underlying components, we as-
sign the raw fitness of the binary string to each of its
constituting components. A population of searching
agents of size N 1s distributed to try different par-
titions simultaneously. Their raw fitness values are
assembled into component fitness values. The more
partitions are tried, the more reliable the component
fitness values are. The assembling is done in the fol-
lowing way: Let hpy. be the component fitness of
state ¢ € {0, 1} at bit position 7 in the current popu-
lation. Then,

Zj\f:_ol F(x;| b; of s; equals ¢)

hk+c —

e

where n. is the total number of agents satisfying the
constraint: b; of s; equals ¢. Every antagonistic pair
of component fitness values are normalized in such a
way that hg + hry1 = 1. Using these values to make
decision, the searching agents should be able to pro-
duce better binary strings, as they have an immediate
past searching experience to rely on. Continuously
using the newly produced hj; means forgetting the
past searching experience except the immediate one.
Instead of forgetting completely the past, we retain
all the past information. The past component fitness
values are retained as follows: At time ¢,

pe(t) = Biapre(t — 1) + (1=5) hege(t = 1) (6)

with ag(t) + app (t) = 1. We call 8; as remembrance.
It is the fraction of the past collected information re-
tained at bit ¢ in the next time step. As indicated
in the equation, different bits have different remem-
brance values. There are two reasons why this is so:
1. The more significant bits controlling larger com-

mon partitions should have more reliable informa-

tion collected given the same number of samples.

L s sUuppolbs 10511 HHOLC Padst 11O ALIOLE VO L=
crease convergence speed.

2. The hierarchical structure has an advantage on
search space reduction. The reduced size suggests
a smaller remembrance value be used to speed up
the convergence.

Therefore, we devised an adaptive remembrance
scheme. Let 7 be a threshold value above which
means converged and be the minimum allowed re-
membrance. Suppose b, is the first encountered bit
considered from the most significant side that satis-
fies: |0.5—a2(1_1_7«) | > 7V |0.5—a2(1_7«) | < T
Then f; is set according to:

[-1>i>r

.
ﬁ:{%i? r>iz0 "

This scheme, basically, keeps the remembrance for the
converged bits (b; to bry1) constant at 3, while inter-
polates the rest from 5 to (r + 8)/(r + 1).

4. HIGH-DIMENSIONALITY

We solve n-dimensional problems, F(z), » € X",
by extending the basic model to a cooperative-
competitive one. A population described in previ-
ous sections are dedicated to a single dimension. We
call such population as subpopulation. For an n-
dimensional problem, we have a set of n subpopu-
lations. We refer such a set as a subgroup. The
raw fitness of each binary string is determined by
how well it cooperates with the elite [?]. Suppose
the current elite ¢ is [@f, x5, -, 25_4]. The fit-
ness of the jth binary string sq; of the subpopula-
tion responsible for the 0-th dimension is equal to
cf (wo,j,2%) = Flwoj, 2%, x5, _1)-

Owing to the high greediness of this approach and
the assumption of the independence among the di-
mensions, competition is introduced. Instead of keep-
ing one subgroup, we keep G number of subgroups.
They are allowed to compete with each other for the
exclusive occupancy of territories. The aim of the
competition is to force them to search different ar-
eas by separating them in the n-dimensional space.
The competition is achieved by generating a repul-
sive force when two subgroups come together in the
n-dimensional space. The closer the two subgroups,
the greater the repulsive force. Once they are sepa-
rated, the force disappears.

Given two subgroups ¢l and g2, we first check if
all of their dimensions are overlapped, since two sub-
groups are said to be overlapped only when they are
overlapping in all dimensions. There are two metrics
required to calculate the repulsive force: (i) degree

: ® center
0 X

—~—— X ——

Fig. 4. Overlapping of two subgroups

of overlapping and (ii) prozimity. For each dimen-
sion ¢, we measure the distance F' which is the largest
among all pairs of binary strings in the two subgroups
under consideration. Denote ¢l,,;, and gl,,q. as
the minimum and the maximum of g1 respectively,
92min and g2, as the minimum and the maxi-
mum of ¢2 respectively, F = max{glmaz, 92maz} —
min{gl,in, 92min - Minimum value of F is 0 when
all binary strings in g1 and g2 are identical, while the
maximum possible F' value equals max X — min X.
We also measure the distance O of the region where
they overlap (see Fig. 4). Overlapping distance O
equals 0 when glmax < g2mzn or g2max < glmzn
Degree of overlapping D;(gl, g2) between the same
dimension ¢ of the two subgroups is defined as:
Di(g1,92) = %.

Assuming that the ‘center’ of a dimension of a
subgroup ¢ is where the elite is located, every bi-
nary string s; ; in the neighboring subgroup is as-
signed a proximity value P;(g,z; ;) equal to the dis-
tance to the center of the subgroup g. Repulsive
force Ri(gl,#; ;) for the binary string is equal to
D;(gl,92) x (1 — P;(g1,2;;)). Another quantity in-
teraction fitness I; ; is defined to indicate how well
a binary string performs in the competition: [; ; =
ef(xij,2°) x Ri(g,2; ;). Instead of feeding back f;
into system, I; ; should be used. The F'in Eq. 5 is
then replaced by I; ;.

5. pccBHS AS A GENETIC
OPERATOR

The design of pccBHS shares a number of similar-
ities with the canonical genetic algorithms. Firstly,
they are classified as iterative probabilistic search.
Secondly, chromosome/binary string is the basic ob-
ject to be manipulated. Thirdly, they are population-
based approaches. Based on these similarities, we in-
tegrated them to become a hybrid algorithm in order
to gain the benefits from both. However, we should
state clearly that it is a preliminary model provided to
initiate further research. Moreover, the cooperative
part of pccBHS is not built into the hybrid model.

Before describing the model, we list below its main

= Crossover
w pCCBHS

Generate
Evaluation binary string

‘ Selection ‘ Evaluation ‘

e

Information | ypdate
gathering e

I
1

Global
information

Fig. 5. Hybridization of GA and pccBHS

]

characteristics:

¢ Merging of populations from both parties will be
taken. A parameter v is introduced to control the
proportions of chromosomes of GA and the binary
strings of pccBHS to be passed to the next gener-
ation.

o The operator pccBHS is different in nature to the
basic GA operators such as crossover and muta-
tion. These basic GA operators can be said to be
transformation functions mapping a population of
chromosomes into another population of the same
universal set. pccBHS is different in that it gener-
ates a complete new set of binary strings instead
of transforming the set from the last generation.
Hence, in one aspect, the hybrid model has two cy-
cles (GA cycle and pccBHS cycle) running in par-
allel. In another aspect, pccBHS can be viewed as
an operator plugged into the GA cycle. It is made
possible by the presence of a rendezvous—merging
of two populations.

To aid in understanding, we show the model in
Fig. 5. On the left hand side of the figure, there
shows the normal GA components such a crossover,
mutation, selection and evaluation. Consider the cy-
cle on the left only, if the Merge and Information
gathering processes are empty, we got a normal GA
cycle. On the right hand side of the figure (the shaded
region), there shows a normal pccBHS algorithm.
These two separate cycles are connected together
by the Merge and the Information gathering pro-
cesses. The former one is a simple process that joins
the set of chromosomes from GA cycle with the set
of binary strings from the pccBHS cycle to form a

Test functions

Test results

Problems n I Feval Ref. Ft Feval Cond.2
ST - Shekel 1 14.59265 1,186 I 14.59265 915 5=0.94
H3 - Hartman 3 3.86 2,500/972/1,459 3] 3.861400 709 £=0.95
H6 - Hartman 6 3.32 4,154 b 3.320700 4,847 3=0.8
A30 - Ackley 30 0.001 13,997/19,420 T -0.00078 18,680 [(3=0.4
A100 - Ackley 100 0.001 57,628/53,860 t -0.00074 58,216 (3=0.35
R20 - Rastrigin 20 0.9 6,098/3,608 T -0.48987 5,413 £=0.45
R100 - Rastrigin 100 0.9 45,118/25,040 t -0.54718 45,195 (3=0.45

1: Our GA expt.

b: MGs [?]/Our GA expt./SA [?]
b: Clustering [?]

t: GA [7] [EASY/BGA]

#eval: Number of function evaluations.

combined populations of size the sum of both. The
information of the combined population is accumu-
lated in the Information gathering process. The
information gathered is then used in generating new
chromosomes by pccBHS. As mentioned before, there
is a parameter which controls the proportions of chro-
mosomes from GA and binary strings from pccBHS.
We call this parameter mix ratio v € [0.0, 1.0]. Tt re-
flects the relative contribution of GA and pccBHS in
the gathered information. Given a v and the size N
of the final merged population, there are y/N number
of chromosomes contributed by GA and (1 —)N of
binary strings contributed by pccBHS. In our model,
~ = 0.0 does not mean a pure pccBHS, since all the
pccBHS binary strings will be processed by GA oper-
ators.

6. EXPERIMENTS

In this section, we present two set of simulation
results on solving a number of well-known and com-
monly used numeric functions. Experiment 1 illus-
trates the performance of the basic pccBHS model,
while experiment 2 illustrates the performance of the

hybrid model.
EXPERIMENT 1

In this experiment, we tried several well-known
problems with problem size up to 100 dimensions
which are listed on the left of Table 1. While the
results are listed on the right of the same table. It
shows clearly that the performance of our algorithm is
comparable with (and even outperform) the existing
advanced techniques, namely genetic algorithms (e.g.
breeder genetic algorithm (BGA) [?], evolutionary al-
gorithm with soft genetic operators (EASY) [?]), sim-
ulated annealing [?], and clustering (new Price’s al-
gorithm) [?], and multistart greedy descent [?].

A Conditions: N=40, u=1,
Number of runs=50.

fT: Average function
value attained.

EXPERIMENT 2

In this section, the performance of the hybrid
model is illustrated. Several commonly used nu-
meric functions are used: Goldstein-price, Rastrigin,
and Hartman. The experimental condition used for
each function is stated in the Tables. 2, 3, and 4
along with the corresponding results. Throughout
the three test cases, one-point crossover is used with
crossover rate 1.0, point mutation is used with prob-
ability 1/1, and the selection is 2-tournament. All of
the results indicate that the hybrid algorithm (y =
{0.0,0.25,0.50,0.75}) outperforms the canonical GA
(v = 1.0) by using less number of function evaluations
to achieve the same/similar level of performance (suc-
cess rate).

Table 2. Performance of the hybrid model - Goldstein-Price

(n=2),f* = —3.000055N = 60, 8 = 0.80,G = 1

v Succ. rate Ave. f.e.
0.00 96 2856.9
0.25 97 3100.2
0.50 98 3682.0
0.75 100 3579.6
1.00 86 5215.8

Table 3. Performance of the hybrid model - Rastrigin
(n:2),f+ = 1.9997,N: 50, ﬁ = O.QO,G =1

v Succ. rate Ave. f.e.
0.00 93 1838.1
(0.00 99 2364.3)t
0.25 99 1844.5
0.50 100 2018.2
0.75 100 2192.5
1.00 100 3676.0

t: p=o0.95

Table 4. Performance of the hybrid model - Hartman (n=3).
+=3.860,N = 30,3 = 0.75,¢ = 1

v Succ. rate Ave. f.e.
0.00 96 483.1
0.25 98 489.6
0.50 100 554.9
0.75 99 571.6

1.00 88 1302.6

o NIJRNJTINURLIUWIARILN

We have proposed a hierarchical view of the sample
space subdivision which reduces the search size dra-
matically and provides a basis for controlling resolu-
tion. Coupled with the information processing cycle
created by the collective contribution of samples and
the global searching environment, reliable global in-
formation becomes available. With the introduction
of cooperative-competitive paradigm, the algorithm
can be extended to solve high-dimensional problems
with comparable performance to (even outperforms)
the existing promising techniques. Moreover, a hybrid
algorithm is designed which is an integration of pc-
cBHS with genetic algorithm. The hybrid algorithm
is found to outperform the genetic algorithm tested.

In this work, we have exploited very minimal poten-
tial of the resolution control property of the hierarchy
and the gathered global information. Hence, one of
the future work would be the design of a better adap-
tive learning algorithm and a better searching mech-
anism. Furthermore, extension and refinement are
needed to improve the primitive hybrid algorithm.

ACKNOWLEDGMENT

This research is partially supported by a Hong
Kong Government RGC Earmarked Grant, Ref. No.
CUHK352/96E.

APPENDIX

1. ALGORITHM OVERVIEW

Procedure INFORMATIONP ROCESSINGCYCLE
global environment < Empty
While stopping critera are not met Loop
For each searching agent do
search result + Search(global environment)
End For
global environment +Modify(collection of search
result,global environment)
End While
End

