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Abstract

In this information age, how to manage information is one of the important

issues in our daily life. In a content-based retrieval database, contents or

features of the database objects are used for retrieval. Typically, these data

exist in natural clusters. However, many of the currently indexing methods

omit this data clusters information in the construction of the indexing structure

which leads to performance degradation.

To improve the retrieval performance, we (1) use Sequential Fuzzy Compet-

itive Clustering (SFCC), a fast and noise resistant fuzzy clustering algorithm,

to obtain the natural clusters information and (2) use the result of SFCC

clustering to construct a good indexing structure (SFCC-b-tree) for effective

nearest-neighbor search. SFCC-b-tree uses a hierarchical clustering approach

to transform the feature space into a sequence of nested clusters. These nested

clusters are then further converted into an indexing tree for data retrieval.

Our experimental results show that: (1) SFCC is faster than other tested

clustering methods to locate natural clusters for indexing. (2) FCC and SFCC

are more accurate and noise resistance than other tested clustering methods.

(3) SFCC-b-tree is efficient for 100% nearest-neighbor search and it is faster
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than other indexing methods in both building time and searching time. More-

over, we prove worked out a efficiency formula for SFCC-b-tree. We can make

use of it to predict the searching efficiency of SFCC-b-tree and compare it with

other indexing methods for a given set of parameters.

To let people stop moving forward is not “depression”; but “give-up”. To

let people keep going is not “hope”; is “mind”.

Violet, ARMS Vol. 15
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Chapter 1

Introduction

In this information age, people need to manipulate a lot of multimedia data

objects, such as images, sounds, articles, and videos in their daily life. How-

ever, as usually, when the size of database is huge, people find it impossible

to index the database by human and need to develop some automatic meth-

ods for indexing and retrieving the multimedia data objects from the database.

In a traditional database, although people use keywords or text descriptors

for indexing and retrieval, but they are usually ineffective and imprecise. It

even poses difficulties for the end users especially for those without special

training. The main difficulties are:

1. Lack of Standards: Different users may use different words to describe

a same multimedia data object for retrieval.

2. Lack of Descriptive Power: Even when standardized vocabulary is

used, it is still hard to depict the object clearly and precisely.

3. Lack of Automatic Keywords Extraction Methods: There is no

efficient keywords extraction algorithm to extract meaningful keywords

from multimedia data objects.

Image database are those databases that store image as their data. It is

a special kind of multimedia database. Here, we use this to demonstrate the

1



Chapter 1 Introduction 2

above difficulties and introduce some alternative to deal with these difficulties.

Assume that, we want to search an image with an old person standing at

the right hand side of the image. In this case, we may use old people or elderly

people as the keyword for this retrieval. This shows that, even for a very simple

query, different users may use different keywords for a same query. Even for

the same user, it is likely to happen that he may use different keywords at

different times.

Even when only the keyword elderly people is used. How to define the fuzzy

term, right hand side, is still a problem we need to face. Because different per-

son may have different definitions on the adjective (or Fuzzy Term) right. So,

it is hard to define the meaning of right or other fuzzy terms in a common

standard.

Furthermore, it is hard to extract those keywords from a multimedia database

automatically. For the above example, there is no efficient and automatic meth-

ods to extract the high-level keywords “elderly people” and “old people” from

the image. As a result, many image database systems that use keywords as

query in retrieval still need human to extract these keywords. To improve the

efficiency and accuracy, we need a new kind of database which is especially

designed for multimedia data indexing and retrieval.

Rather than using keywords in queries, databases that support content-

based retrieval use the content in the multimedia object itself as the queries

for retrieval. These contents (or features) may be color, texture, sketch and

shape for image databases. On the other hand, it can be frequency range,

sound quality and intensity for sound databases. In a typical content-based

retrieval task, objects with features similar to the query will be the retrieval
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results.

For example, we may retrieve an image with a red sun at the right hand

side of the image by just sketch a red circle on the right hand side of the image.

Many content-based retrieval multimedia database systems have been de-

veloped in the past few years. For example, Montage [2] allows users input

histogram and sketch the query out for retrieval. Query by Image Content

(QBIC) [3] allows users input color, texture, and shape of the database objects

as the query. Photobook [4] makes use of semantics-preserving image compres-

sion to support search based on three image content descriptions: appearance,

2-D shape, and textural properties. VisualSEEK [5] is a content-based image

and vedio retrieval system for World Wide Web. It uses color contents and

spatial layout of color regions of images for retrieval. There are still many other

multimedia database systems support content-based query for retrieval include

Chabot [6], VLMSYS [7], ART MUSEUM [8], KMeD [9, 10], and CORE [11].

Although the above database systems use different approaches for multimedia

management, most of them have shown that they are efficient for retrieval.

In a typical multimedia database system, all the database objects have to

be pre-analyzed and then organized in a special way before retrieval. The main

steps are:

1. Feature Extraction: Features are extracted from the database objects.

The definition of features are usually pre-defined, such as color histogram

and texture. These features are usually stored in the form of real-valued

multi-dimensional vectors.

2. Indexing: The database may then organize the extracted features by

using an indexing structure for retrieval.
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Figure 1.1: The flow of indexing and retrieval in a content-based retrieval
multimedia database.

3. Retrieval: Content-based retrieval can be performed on the indexing

structure efficiently and effectively.

In summary, Figure 1.1 shows the flow of the process.

Many multimedia database systems use multi-dimensional vectors to rep-

resent the data objects. So, it can support similar search easily. By applying

a suitable distance function to the feature vectors as the similarity measure-

ment, the database objects can then be ranked according to the distance (or

similarity) between the query and database objects. The top ranked objects

are then retrieved as the result for similar search. Nearest-neighbor search is a
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typical kind of similar searching. As a result, if the database objects are rep-

resented in the form of multi-dimensional vectors, a nearest-neighbor is simply

a multi-dimensional point (or vector) too. Then, the result of the query is

the objects with features which are the neighbors of the query point. Using

nearest-neighbor search, we can retrieve similar data objects easily.

For the multimedia databases with nearest-neighbor retrieval, a good in-

dexing method is a key component for efficient and accurate retrieval. Nowa-

days, alphanumeric data indexing techniques are already well-developed such

as [12, 13]. However, these database systems are designed for one-dimensional

vectors. When the dimension of the vector increases, these database systems

seem not to be very efficient. Therefore, people have begun to develop new

indexing methods for content-based retrieval in databases such as R-tree [14],

R+-tree [15], R*-tree [16], SR-tree [17], Quad-tree [18], k-d tree [19], VP-

tree [20], MVP-tree [20] and some other methods [21, 22].

1.1 Problem Definition

Typically, natural data objects usually form clusters and these objects can be

approximated using mixture of Gaussian distributions in the feature vector

space. For nearest-neighbor search, a group of objects with similar features

(or in the same natural cluster) will often be retrieved as the result of a query.

From this observation, if we can first calculate the natural clusters from the

feature space and build an indexing structure based on these cluster informa-

tion, nearest-neighbor search will become more efficient and effective.

There are many existing algorithms for getting the natural cluster informa-

tion. However most of them have a very high computational complexity. So,
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it is impossible to use them in multimedia databases, which are usually huge

in size.

Most of the existing indexing methods usually generate partitions for the

feature vector space which lead to indexing structures for efficient retrieval in

many cases, but as the main concern for them is how to build the indexing

structure as balanced as possible, most of them seem to fail to retrieve similar

database objects when a nearest-neighbor query lies on the partition bound-

ary. One of the reasons is that these methods do not look at the distribution

of the features to find natural clusters. So that features in the same natural

cluster may be partitioned into several different partitions. As a result, the

performance of nearest-neighbor searches for these methods will be degraded.

Thus, the problems we are facing are:

1. To find an efficient clustering method to locate natural clusters from the

input feature vector set,

2. To build a good indexing structure based on the clusters for efficient and

effective retrieval, and

3. To develop a good searching method based on the indexing structure for

increasing the retrieval performance.

1.2 Contributions

The main contributions of our work for solving the problems defined in the

last section are shown as follows.

1. We develop two clustering methods, Fuzzy Competitive Clustering (FCC) [23,

24] and Sequential Fuzzy Competitive Clustering (SFCC) to get the nat-

ural cluster information from the input feature vector set. FCC and
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SFCC are unsupervised heuristic algorithms for clustering. They provide

a good approximate of the cluster prototype with cluster information on

each dimension. From the experimental results, we find SFCC is com-

putational efficient. Therefore, we make use of SFCC to calculate the

natural clusters for indexing and retrieval.

2. We build indexing structures based on natural cluster information in a

hierarchical approach. The hierarchical approach transforms a feature

space into a sequence of nested clusters and builds a hierarchical binary

indexing tree (SFCC-b-tree) based on the clusters. We then apply a

overlap checking technique (Section 4.2.5) on the indexing structure for

efficient data retrieval. In short, we make use of the information of

natural clusters for efficient and effective indexing and retrieval.

3. According to the experimental results of SFCC-b-tree, we use linear re-

gression method to work out a formula to describe the relationship be-

tween the searching parameters and the searching efficiency. We can

then make use of this formula to find out the estimated efficiency value

for a given set of parameters. Besides, we can generalize the formula to

other indexing methods for comparing their efficiency with a given set of

parameters.

Our experimental results show that:

1. FCC and SFCC get better cluster prototypes than k -means, competitive

learning, and rival penalized competitive learning.

2. SFCC is faster than k -means clustering algorithm and most of the off-line

clustering algorithms.

3. SFCC-b-tree is faster and needs less instance access than VP-tree to

produce 100% nearest-neighbor search results.
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1.3 Thesis Organization

We organize the rest of the thesis as follows. First, we present the technical

details and problems on multimedia database indexing, and clustering meth-

ods for both the fuzzy and non-fuzzy ones in Chapter 2. Then, we present our

proposed fuzzy clustering algorithms in Chapter 3. We cluster the input data

with two different approaches. Chapter 4 shows the hierarchical approach to

build the binary indexing tree. Several experiments and discussions are pre-

sented in this chapter. Chapter 5 shows a case study on a real life problem of

our indexing algorithm. Finally, we show how to work out the efficiency for-

mula from the experimental results and have a brief summary of our proposed

methods together with some suggested future directions in Chapter 6.



Chapter 2

Literature Review

We divide this chapter into three parts. The first part concentrates on Content-

based Retrieval Multimedia Database. We give some backgrounds of this kind

of databases and then in the second section, we present some problems found in

the existing content-based indexing methods. In the third section, we present

some clustering methods for both the fuzzy and non-fuzzy ones.

2.1 Content-based Retrieval, Background and

Indexing Problem

In this section, we first give some technical backgrounds of the content-based

retrieval multimedia databases: Feature Extraction, Nearest-neighbor Search,

and Content-based Indexing. We then present some problems found in the

existing content-based indexing methods.

9
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2.1.1 Feature Extraction

Feature Extraction is one of the most important subjects in content-based re-

trieval multimedia databases. Feature extraction means extracting some use-

ful features from the object. In content-based retrieval multimedia database,

users may want to retrieve database objects similar to a query in terms of

some kinds of features. Therefore, when a multimedia data object is inserted

into the database, the useful features of the object will be extracted and trans-

formed into feature vectors. The database then organizes the feature vectors

for content-based retrieval.

The definition of feature extraction is:

Definition 2.1 (Feature Extraction) Let DB = {Ii}n
i=1 be a set of database

objects. With a set of feature parameters θ = {θi}m
i=1, a feature extraction func-

tion f is defined as:

f : I × θ → Rd ,

which extracts a real-valued d-dimensional vector.

We use a simple example here to explain the above definition. Let DB =

{I1, . . . , I10} be a set of 10 images and θ = {θ1} be the image feature parame-

ter set where θ1 indicates the number of top colors considered for extraction.

f(I5, 2) will return a real-value vector based on the top two colors in the image

I5.

Many features can be used for feature extraction, such as, color, texture,

and shape. Here are some examples for images.

1. Color: The color histogram is built and transformed to the feature

vector [25].
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Figure 2.1: Feature extraction of a color image using color histogram.

2. Texture: There are some statistical methods use to analyze the texture

information of an image [26]. Some researchers use Gabor filter for image

scaling and orientation in texture analysis [27, 28].

Here is an example to illustrate the detail of the feature extraction using

color histogram (Figure 2.1). Given an image, all the pixels in the image are

quantized into n representative colors according to its pixel color. By calculat-

ing the frequency of each representative color, an n-bucket color histogram is

formed. For fair comparison to other color histogram, the sum of the frequen-

cies is normalized to 1. After normalization, the histogram is transformed into

an n-dimensional feature vector for indexing and retrieval.

2.1.2 Nearest-neighbor Search

By using feature vector, content-based retrieval multimedia database allows

users to perform similar search. In a typical similar search query, those

database objects with similar features to the query will be retrieved as the

result. Nearest-neighbor (NN) is one of the common similar searching tech-

niques used in the MMDBs for content-based retrieval.

Nearest-neighbor search usually makes use of a distance function for simi-

larity measurement. The distance function usually takes two feature vectors as
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input and outputs a real value as the similarity measurement. In most cases,

the smaller of the distance value, the more the similarity between each of the

input features.

The definition of the distance function is:

Definition 2.2 (Distance Function) A typical distance function D is de-

fined as follows:

D : F × F → R

, satisfying:

1. D(x, y) ≥ 0,

2. D(x, y) = D(y, x),

3. D(x, y) = 0 iff x = y, and

4. D(x, y) + D(y, z) ≥ D(x, z).

where x, y, and z ∈ F and F is a feature vector set.

One of the widely used distance function is the L2-norm (Euclidean dis-

tance). It is defined as: D(x, y) = ‖x − y‖ =
√∑d

i=1(xi − yi)2.

Having the distance function, nearest-neighbor search in multimedia databases

is a retrieval of database objects with features nearest to a query under the

feature space with a given distance function. There are two main kinds of

nearest-neighbor search, they are the range-neighbor search and k nearest-

neighbor search.

The definition for these two kinds of search are:

Definition 2.3 (Range Nearest-neighbor Search) Given a set of N fea-

tures X = {xi}N
i=1, a range nearest-neighbor query x̂ returns the set P of
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features:

P = {x|x ∈ X and 0 ≤ D(x, x̂) ≤ ε}, (2.1)

where ε is a pre-defined positive real number and D is a distance function.

Definition 2.4 (k Nearest-neighbor Search) Given a set of N features

X = {xi}N
i=1, a k nearest-neighbor query x̂ returns the set P ⊆ X satisfy-

ing:

1. |P | = k for 1 ≤ k ≤ N , and

2. D(x̂, x) ≤ D(x̂, y) for y ∈ X − P .

where D is a distance function.

The main difference between range NN search and k-NN search is their

inputs and retrieval results. In range NN search, we use the query point and

a small positive number ε as the input. Then it gives the objects with fea-

tures located inside the query hyper-sphere with radius ε as the results (Figure

2.2(a)). On the other hand, k-NN search takes the query point and a positive

integer k as the inputs. It gives the objects with features which are the top k

nearest neighbors to the query as the results (Figure 2.2(b)).

Many different algorithms for nearest-neighbor search have been proposed.

Table 2.1 summarizes some of the searching algorithms.

2.1.3 Content-based Indexing Methods

In this section, we discuss some of the indexing methods. Most of the indexing

methods can be classified into two main classes: rectangle-based indexing and

partition-based indexing.
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Algorithm Data Metric Result

Burkhard and Keller
(1973) [29]: Some ap-
proaches to best-match
file searching

1,000 randomly gener-
ated registers of a file us-
ing 30-bits keys

Hamming
distance

∼ 700 average distance
computations (∼ 70 %)

Fukunaga and Naren-
dra (1975) [30]: A
branch-and-bound algo-
rithm for computing K-
nearest neighbors based
on a hierarchical index-
ing structure

1,000 2-D uniform sam-
ples data

Euclidean
distance

∼ 580 average distance
computations (∼ 58 %)

Feustel and Shapiro
(1982) [31]: The
nearest-neighbor prob-
lem in an abstract metric
space

29 randomly generated 5-
vertices directed graphs

Graph-
isomorphism-
based
discrete-
valued
distance

∼ 3 average distance
computations (∼ 10 %)

Kamgar and Kanal
(1985) [32]: An
improved branch-and-
bound algorithm for
computing k-nearest
neighbors based on a
hierarchical indexing
structure

1,000 2-D samples uni-
form sample data

Euclidean
distance

∼ 165 average distance
computations (∼ 16.5 %)

Roussopoulos et al.
(1995) [33]: Nearest
neighbor queries for R-
tree

1K, 4K, 16K, 64K, and
256K synthetic uniformly
distributed data sets

MINDIST
and MIN-
MAXDIST
distances

The no. of nearest neigh-
bors increased the no. of
pages accessed grew in a
linear ratio

Nene and Nayer
(1997) [34]: A simple
algorithm for nearest-
neighbor search in high
dimensions

30,000 and 100,000 high
dimensional uniform and
normal distribution sam-
ples

Euclidean
distance

∼ 20 % of search time
used than exhaustive
search for 30,000 10-D
data and ∼ 40 % of
search time used than
exhaustive search for
30,000 25-D data

Table 2.1: Searching performance of some nearest-neighbor search algo-
rithms. [1]
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(a) (b)

Figure 2.2: (a) Range nearest-neighbor search in 2-D. (b) k nearest-neighbor
search in 2-D (k = 4).

Rectangle-based Indexing

Rectangle-based indexing methods use rectangles to organize the features into

groups for indexing. R-tree, R+-tree, R*-tree, and SR-tree are some classical

examples of rectangle-based indexing methods.

R-tree

R-tree [14] is the generalization version of the B-tree [12, 13] for multi-dimensional

data indexing. It uses rectangles to partition the data into groups. The parti-

tion process proceeds hierarchically until all the leaf nodes contain a number

of instances within a pre-defined range.

• Properties: R-tree is a balanced tree with Leaf Node and Non-leaf Node

only. Let M and m ≤ M be the maximum and the minimum number

of entries that a node can contain respectively. Then, every leaf node

except the root node must contain a number of entries between m and

M . Also, every non-leaf node except the root has between m and M

children. The root node has at least two children unless it is a leaf node.
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• Insertion: R-tree is built by inserting the data objects one by one. It

does not consider the global data distribution in tree building. Figure 2.3

shows an example of R-tree. Starting from the root node with a minimum

bounding rectangle (MBR) which is the smallest rectangle containing all

the data objects for the node. Data will continue to be inserted into the

node until overflow. When the node has overflowed, a splitting algorithm

is applied to partition the corresponding rectangle into several smaller

rectangles for child nodes.

• Deletion: Apart from insertion, deletion is also a major operation of

R-tree. After deleting a data object from a node, a merging algorithm

is applied if the deleted node contains less than m objects.

• Searching: The searching algorithm for R-tree is not very difficult.

Given a query, all the nodes in R-tree with MBRs that overlapped with

the query rectangle are examined in order to find the result of the query.

R-tree works fine in many cases. However when the query lies on the

overlapping area of two or more minimum bounding rectangles or the

degree of overlapping between those minimum bounding rectangles is

high, the efficiency is very low for R-tree. Because all the involved rect-

angles have to be examined in order to find out the result of query which

reduces the efficiency of the retrieval in such cases. Therefore, it is bet-

ter to decrease the overlapping area as much as possible to make the

retrieval more efficient.

R+-tree

R+-tree is [15] is a variation of R-tree. It tries to prevent the high overlapping

of MBRs by modifying the searching and updating algorithms. According to

the experimental results shows in [15], R+-tree has a better searching perfor-

mance when compared with R-tree. Also, it is more efficient for indexing point
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Figure 2.3: (a) An input data set partitioned by using minimum bounding
rectangles. (b) The corresponding R-tree structure.

data and point queries than R-tree.

R*-tree

R*-tree [16] is another variation of R-tree. The authors of R*-tree showed

in [16] that overlapping-region-technique does not imply bad searching perfor-

mance. They also find that in order to get a better searching performance,

some essential points should be considered:

1. The area covered by a MBR should be minimized.

2. The overlap between MBRs should be minimized.

3. The margin of a MBR should be minimized.

4. Storage utilization should be optimized.

Therefore, the authors modify the splitting algorithms used in R-tree to

increase the searching performance by reducing the area of MBR, margin, and

overlap of rectangles. Moreover, the storage utilization is higher than R-tree.
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In short, from the experimental results in [16], R*-tree outperforms the other

R-tree variants.

SR-tree

SR-tree [17] is the extension of R*-tree [16] and the SS-tree [22]. It stands for

Sphere/Rectangle-tree. As its name suggests, it makes use of both rectangles

and spheres for indexing. It improves the performance on nearest-neighbor

search by reducing both the volume and the diameter of regions compared

with the R*-tree and SS-tree. According to the experimental results in [17],

SR-tree performs much better than R*-tree especially in the high dimension

vector space.

Partition-based Indexing

Partition-based indexing methods use lines or curves to partition the feature

vector space into partitions for indexing. Quad-tree, k-d tree, VP-tree, and

MVP-tree are some classical examples for partition-based indexing methods.

Quad-tree

Quad-tree [18] is one of the first indexing methods developed for multi-dimensional

data. It is the generalization version of binary tree.

• Properties: Quad-tree divides the feature vector space into partitions

according to the direction of the data points. Using two-dimensional

space as an example, each non-leaf node in Quad-tree has four child

nodes representing its four directions NE, SE, SW, NW. Figure 2.4 shows

an example of Quad-tree.

• Insertion: Same as typical binary tree, Quad-tree are built by insert-

ing data objects one by one into the tree. When a new data object is

inserted, its corresponding direction to the root node is determined and
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Figure 2.4: (a) An input 2-D data set for quad-tree. (b) The corresponding
quad-tree structure.

the corresponding child node will be selected for further processing until

the leaf node level is reached.

• Searching: Searching in quad-tree is based on the direction of the query

to each non-leaf node. Assume the vector space is in k-dimension. Given

a query, it compares all the k coordinates to the node and determines

which child node (or direction) is examined next. This process will then

repeat until the target leaf node is found.

The insertion algorithm yields an O(n log n) performance in the 2-D case.

So, it is an efficient algorithm for 2-D vector space.

k-d tree

k-d tree [19] is also a kind multi-dimensional binary search tree where k denotes

the dimensionality of the search space.

• Properties/Searching: The searching algorithm is similar to quad-tree
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Figure 2.5: (a) An input data set for k-d tree. (b) The corresponding k-d tree
structure.

except we just need to compare one different attribute value at each level

of tree. For example, in 2-D space, we are comparing the x coordinates

at even levels while we are comparing the y coordinates at odd levels.

• Insertion: k-d tree are built by inserting data objects one by one into

the tree. When a new data object is inserted, it first compares the pre-

selected attribute between itself and the node to determine a child node

for further processing. The process will continue until a leaf node is

reached. Then, the data object will be inserted and it partitions the

space associated with the leaf node into sub-spaces for two child nodes

according to a suitable attribute value. Figure 2.5 shows an example of

k-d tree.

Because it only needs to consider part of attributes for a query at each node,

k-d tree is relatively more efficient than quad-tree for indexing and retrieval.
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Figure 2.6: A simple VP-tree for the data set on the left.

VP-tree

Vantage point tree (VP-tree) [35, 20] is an indexing method for multi-dimensional

nearest-neighbor search.

• Properties: VP-tree is also a partition-based indexing method. The

difference between VP-tree and k-d tree is VP-tree partitions the feature

space based on the distance between the feature vectors and a calculated

vantage point.

• Building Indexing Tree: VP-tree divides the vector space according

to the distance between data points and the vantage point. According to

the median of these distance, the whole feature space is divided into two

partitions, it is those with distance smaller than the median distance

and distance larger than median distance. This process will continue

in the sub-partitions individually, until an indexing tree structure are

built based on the resultant vector sets. Figure 2.6 shows an example of

VP-tree.

• Searching: For searching in VP-tree, the query first calculates its dis-

tance from the vantage point associated with the root node. Then we

compare the distance with the median of the node to determine which

child node is going to be examined next. The process repeats until the
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Figure 2.7: A simple MVP-tree for the data set on the left.

target leaf-node is found. The data objects associated with the leaf-

node satisfying the searching criteria of the query will be retrieved as

the result.

The experimental results in [20] show that VP-tree preforms better than

k-d tree.

MVP-tree

Multi-vantage point tree (MVP-tree) [36] is a variation of VP-tree. MVP-tree

also uses vantage point and median to partition the vector space. However,

MVP-tree uses two or more vantage points to partition the feature space. So,

MVP-tree is not a binary tree.

• Building Indexing Tree: MVP-tree uses two or more vantage points

to partition the feature space. Use MVP-tree with 2 vantage points as

an example, Figure 2.7 shows the partitions of one of the tree levels.

• Properties: As MVP-tree has more than one vantage point. Every non-

leaf node has more than two child nodes. According to the experimental

results shown in [36], MVP-tree outperforms VP-tree in high dimensional

data.
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2.2 Indexing Problems

In a typical multimedia database, data objects usually form clusters. We use

document database as an example.

In a document, usually it contains “keywords”. Keywords mean those

words that can describe the document. Also, those similar document may

contain similar keywords. For example, document about vehicle may contain

words like car, speed, and so on. However, those documents about food may

contain fish, meat, and so on.

As a result, similar document forms natural clusters. Usually, these kinds

of clusters can be approximated by a Gaussian distribution.

On the other hand, we know that for nearest-neighbor search, a group of

similar data instances is often retrieved together as the results of the query.

In other words, instances in the same natural cluster will be retrieved as a

group of results. Therefore, if we can first calculate the natural clusters from

the feature vector space and then build the indexing structure according to

these natural clusters information, nearest-neighbor search on the structure

will become more efficient and effective.

As mentioned in the previous chapter, most of the indexing structures do

not consider the natural clusters information. They may partition a natural

cluster into several different nodes.

Consequently, they seem to work fine for many cases in general, but fail to

retrieve similar database objects when the nearest-neighbor query lies on the

partition boundary. We call this the boundary problem.
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For example, those rectangle-based indexing methods like R-tree and R+-

tree are based on the input sequence of the data objects. So, they do not pay

any attention on the natural clusters information. For those partition-based

indexing methods like VP-tree, they partition the feature space based on the

median distances from the data objects to the vantage point. However, it

does not consider the natural clusters information as well. As a result, the

performance of the nearest-neighbor retrievals for these methods is reduced by

the boundary problem.

2.3 Data Clustering Methods for Indexing

We propose to use an efficient clustering algorithm for content-based indexing

to the indexing problems mentioned in the last section. Assume there exist

natural clusters in the data set, we can locate these clusters and build an in-

dexing structure based on these information.

Although the term of clustering is different in different fields, it refers to

an automatic unsupervised classification method in data analysis.

There are many different types of clustering algorithms, each has its own

advantages and disadvantages, from k-means clustering algorithm to Fuzzy

c means algorithm [37]. However, almost all the common clustering algo-

rithms [38, 39, 40, 41, 42, 43, 44] nowadays can divide into two groups. They

are “probabilistic clustering” [45] and “possibilistic clustering” [46]. In the

later part of this paper, we will have a brief discussion on these two main

classes of clustering algorithm.

In 1960’s, Zadeh proposed the “fuzzy set theory” [47]. In the fuzzy set
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theory, the degree that an instance belonging to a class is indicated by the

membership, which ranges between zero to one. Later on, researchers started

to apply fuzzy set theory in clustering and a number of fuzzy clustering algo-

rithms have been proposed [38, 39, 40, 41, 42, 43, 44].

The most famous fuzzy clustering method is the fuzzy c means cluster-

ing [39, 40, 41]. However, it is better to state that c means clustering does not

mean a specific algorithm but a class of algorithms. Recently, new methods of

fuzzy c means have been proposed. However, their main ideas are very similar

to the traditional c means clustering.

2.3.1 Probabilistic Clustering

The main property of “probabilistic clustering” is that they all obey the con-

straint:
i=c∑
i=1

uik = 1; k = 1, ..., n , (2.2)

where, uik is the membership value of instance k towards concept i, c is the

number of clusters, and n is the number of instances.

Here we illustrate some of the probabilistic clustering algorithms.

Fuzzy c Means Clustering (FCM)

Fuzzy c Means clustering [37] algorithm is the most common fuzzy clustering

algorithm. The basic idea of FCM is very similar to k-Means algorithm. It

assumes that the number of clusters c, is known a priori, and tries to minimize

the cost function:

Jfcm =
i=c∑
i=1

k=n∑
k=1

um
ikd

2
ik , (2.3)
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subject to the n probabilistic constraints,

i=c∑
i=1

uik = 1; k = 1, ..., n , (2.4)

where, uik is the membership value of instance k towards concept i, and

dik =
∥∥∥xk − vi

∥∥∥ . (2.5)

As m = 1 FCM converges in theory to the traditional k-means solution [48].

So, m is usually set larger than 1. Usually, 1.5 < m < 2.0.

The conditions for local Minimum for the cost function in Equation 2.3 are

derived using Lagrangian multipliers [49] and the results are:

uik =

( j=c∑
j=1

(dik

djk

)1/m−1
)−1

∀i, k , (2.6)

and

vi =

∑k=n
k=1

(
um

ikxk

)
∑k=n

k=1

(
um

ik

) ∀i . (2.7)

Minimization of Jfcm is performed by a fixed-point iteration scheme known

as the Alternating Optimization (AO) technique [50]. Figure 2.8 shows an

example of using FCM for clustering. Those dots in the figure represent the

input data objects and crosses stand for the cluster centers.

However, it is needless to say that, FCM is a wonderful method because

FCM introduce a “strange number” m. However, no one knows the physical

meaning of the parameter m. Also, there is no idea about how to make an

optimal choice of the parameter m. On the other hand, from the mathematical

point of view, the value m in Equation 2.3 is unnatural and unnecessary.
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There is another great problem on FCM and many other Probabilistic Clus-

tering algorithms. This is the problem of “Outliers” [51].

Outliers are vectors, or called data point, in the data domain which are so

distant from the rest of the other vectors in the data set. As a result, it would

be unreasonable to assign them high membership values to any of the c clus-

ters. The constraint in Equation 2.4 does not permit all the c memberships to

assume value lower than 1/c. For an outlier xk, all the ratios dik/djk will often

be close to unity, resulting in all the c membership values close to 1/c. Because

FCM and many other Probabilistic Clustering algorithms use the membership

value as a weighting to calculate the cluster centroid. These unreasonable high

membership values often cause improper positioning of the centroids. In fact,

if an outlier is very distant, one of the centroids may position itself at the

outlier’s position.

The problems caused by the outliers are referred to as “noise sensitivity”.

Researchers have developed many “noise resistant” clustering algorithm, and

a noise resistant clustering algorithm should have the following properties:

(1) An outlier should have low membership value to all the c clusters.

(2) Centroids generated by the algorithm on a noisy set should not deviate

significantly from those generated for the noiseless set, obtained by removing

the outliers.

The Noise Cluster Approach

In 1990’s, Dave [52] proposed the noise cluster approach to solve the problem

of noise sensitivity. In the noise cluster approach, we define a class of outliers,

called the noise cluster. An extra centroid is used as a “representative” (pro-

totype) for all the outliers.
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: data object

: cluster center

Figure 2.8: An example of fuzzy c means clustering.

Dave also proposed that this prototype has a constant distance δ from all

the vectors in the data domain. The memberships of the vectors in the data

set to the noise cluster are defined as:

u∗j = 1 −
i=c∑
i=1

uij , (2.8)

and the Dave’s objective function JNC is given by

JNC =
i=c∑
i=1

k=n∑
k=1

um
ikd

2
ik +

k=n∑
k=1

δ2

(
1 −

i=c∑
i=1

uik

)m

. (2.9)

The conditions for local minima of JNC are given by

vi =

∑k=n
k=1

(
um

ikxk

)
∑k=n

k=1

(
um

ik

) , ∀i , (2.10)

and

uij =

(
k=c∑
k=1

(
d2

ij

d2
kj

) 1
m−1

+

(
d2

ij

δ2

) 1
m−1

)−1

. (2.11)

The clusters (or partitions) are generated by Alternating Optimization.

The noise cluster approach works fine if the appropriate value of δ is given,
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however, there is no consistent method to find a good value of δ for a given

data set at present time. [53]

Competitive Learning (CL)

Competitive Learning [54, 55, 56] is another famous learning algorithm in

clustering. Applications using CL had applied in marketing [57, 58], image

processing [59, 60], and even in education [61].

Before having a short discussion on this learning algorithm, we better state

out the concepts behind this algorithm first. Actually, this algorithm has the

same concept with k-means algorithm [62, 63, 64]. It is to minimize the total

distance from each data point to the cluster center it belongs to. Recall what

we did in k-means algorithm, in every loop, we first check which cluster does

the data point belonging to. After this, we update the cluster center according

to those data points assigned to that cluster. As a result, the cluster center

moves towards to these data points and converge at the center of these data

points.

From the above observation, people try to develop another clustering algo-

rithm, called “Competitive Learning”, which have lower complexity. In com-

petitive learning, rather than considering ALL the N data point, it only takes

one data point at each time. The selected data points then attract the nearest

cluster centers toward itself. As a result, the effect is similar with those in

k−means algorithm.

Assuming the centroid of ith cluster is mi, with a small value of learning

rate α, the updated centroid minew in each loop is given from the old value of

centroid miold by:
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: data object

: cluster center

unaffected centers

the winner

selected data
object

Figure 2.9: An example of competitive learning clustering.

minew =


 miold + α × dij if dij is the smallest ,

miold otherwise .
(2.12)

Figure 2.9 shows an example of Competitive Learning.

By now, we may find that competitive learning is actually a special type

of probabilistic clustering. It is a Winner-Takes-All (WTA) version of proba-

bilistic clustering algorithms. However, it gives a lower complexity and usually

a shorter convergence time when compared with other types of probabilistic

clustering algorithms.

Also, competitive learning is seem to be a noise resistance algorithm. Be-

cause although outliers force the centroid goes toward itself, the effect of this

move decrease as the number of loop. As a result, if we can ensure the algo-

rithm runs enough of loops, we can even omit the effect of the outliers. As

competitive learning has such an advantage it is widely applied in many dif-

ferent field [57, 58, 59, 60, 61].
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However, there are two main problems on the competitive learning. The

first is called “died unit”. Imagine in a normal two clusters problem. In this

problem, everything go seem to be right and perfectly. However, in the initial-

ization state, we define the two centroids as follow:

Centroid 1:

Almost at the mean of these two clusters.

Centroid 2:

Very far away from these two clusters. The distance is enough to make this

centroid never be the winner.

Then after we start to run the competitive learning, you may find that both

the centroids seem to be state at the initial positions rather then moves toward

the center of these two clusters. It is because in competitive learning, only the

winning centroid will be updated. As a result, if there exist some centroid that

always lose in the competitive, the centroid will then never update and it is

called the “died unit”

Another problem is also about the initialization of centroids. Consider

there are two clusters in the data set. One of the cluster in the data set has

a large variance and large number of instance, another cluster is the reverse

of this one, it has a small variance and small number of instances. Then we

initialize both the centroids around the mean of the “big cluster”.

After the learning, you may also find that rather then getting the result of

two clusters with one big and one small, the result tell you that the centroid

of these two cluster are very near and the centroid of these cluster is almost



Chapter 2 Literature Review 32

same as the centroid of the “big cluster”.

It is because although the “small cluster” attracts the cluster centroid to-

ward itself, its effect decrease as number of loops and also the attraction for

the “small cluster” is too small when compare with the “big” one. As a result,

centroids may trapped in a big cluster and give wrong solution in clustering.

Rival Penalize Competitive Learning (RPCL)

RPCL [65] is actually a more general case of CL. The idea comes from the

weakness on resource distribution of CL. In CL, a cluster center can keep in

starvation if it is far away from the data. It can also always be the winner. As

a result, bad result may occur from such a clustering method.

RPCL solve this problem by adding two factors into the traditional CL.

The first one is called the “frequency sensitive”, and the second one is called

the “Rival Penalty”. Frequency sensitive means a cluster center will be pro-

hibited to win more if it wins too much times. As a result, starvation will not

occur and every cluster center have a chance to win. However, using frequency

sensitive alone is not enough, it is because frequency sensitive ensures every

cluster center have a chance to win. Assume there are three clusters in the

data but we think the number of cluster should be four. If frequency sensitive

is used, the data may be shared by all the cluster centers and give a wrong

result. Rival Penalty is a method to take the redundancy cluster center away

from the data. The main idea is that it gives penalty to the rival (or second

winner). As a result, those cannot get a cluster becoming a rival at all times,

and finally gets out from the data.
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minew =




miold + win numberi

total trial
αdij if dij < dik∀k,

miold − win numberi

total trial
βdij if dij is the 2nd smallest,

miold otherwise.

(2.13)

2.3.2 Possibilistic Clustering

Different from “probabilistic clustering”, “Possibilistic clustering” does not

obey the constraint shown in Equation 2.2.

On the other hand, a probabilistic clustering method such as FCM gives

inter-cluster information but no intra-cluster information. Consider the follows

four membership in a probabilistic clustering method, uik, uij, urk, urj. where

uik stands for the membership value of kth instance for ith cluster.

Suppose uik > urk, then the instance xk belongs to ith cluster with a higher

probability than to the rth cluster. This kind of information is called the inter-

cluster [66] information. However, no conclusion can be drawn from the values

uij and uik as to which of the instance among xk and xj belongs to the ith

cluster to a greater degree, that is, no inter-cluster information.

Possibilistic clustering is the reverse of probabilistic clustering, it tries to

generate memberships interpreted as typicalities. If typicality tik = α, then xk

belongs to the ith cluster with a possibility α. Suppose the typicalities gener-

ated from a possibilistic clustering method are, tik, tij, trk, andtrj. If tij > tik,

then we conclude that xj belongs to the ith cluster with a greater degree than

xk. However, no conclusions can be drawn from the values tij and trj as to the

relative degree to which xj belongs to the ith and rth clusters.

The Possibilistic c means (PCM) algorithm [67, 68] is one of the most
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famous possibilistic clustering algorithm. It tries to minimizes the objective

function:

JPCM =
i=c∑
i=1

k=n∑
k=1

tmikd
2
ik +

i=c∑
i=1

ηi

k=n∑
k=1

(
1 − tik

)m

. (2.14)

Here, η is a measure of the radius of the ith cluster and is called the “bandwidth

parameter”. The conditions for local minima for the cost function (Equation

2.14) is given by:

tik =

(
1 +

(
d2

ik

ηi

) 1
m−1

)−1

∀i, k, (2.15)

and

vi =

∑k=n
k=1

(
tmikxk

)
∑k=n

k=1

(
tmik

) ∀i. (2.16)

The minimization is an AO on Equation 2.15 and Equation 2.16. There

has several methods for choosing the value η [67].

One great problem for PCM is the objective function for PCM (Equation

2.14) can break down into a sum of c signal objective function. As a result,

the centroids do not “affect” each other during the optimization process. This

property often leads to “coincident clusters” [69]. Another problem for PCM

is the result of PCM heavily depends on the initialization. The authors of [67]

suggest to use FCM to initialize PCM. However, if an outlier is distant, PCM

will not be able to recover from the “bad” initial partition generated by FCM.
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Fuzzy Clustering Algorithms

In this chapter, we introduce two fuzzy clustering algorithms, Fuzzy Competi-

tive Clustering [23, 24] and Sequential Fuzzy Competitive Clustering. Both the

proposed algorithms are members of possibilistic clustering. Which means they

do not need to obey the constraint shown in Equation 2.2. After a description

on both the algorithms, we briefly explain the differences between FCC, SFCC,

and traditional clustering algorithms. We then conduct experiments on these

two clustering algorithms and some other clustering algorithms. At the end of

this chapter, we will make a comparison on their properties and performance

and state why SFCC is the most suitable clustering algorithm to be used in

multimedia indexing.

The aim for the proposed clustering algorithms is to generate clusters for

multimedia databases. A typical multimedia database usually consists of the

following properties:

1. High Dimensionality.

2. Huge Amount of Sample Points.

3. Contain Natural Clusters.

4. Many Noise in the Data.

35
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So, a clustering algorithm suits for multimedia database should be able to

perform well under databases with the above properties. In the remaining of

the chapter, we perform a series of experiments, and conclude that SFCC is

the most suitable clustering algorithm among all the tested algorithms.

3.1 Fuzzy Competitive Clustering

Fuzzy Competitive Clustering (FCC) is an extension of traditional statistical-

based clustering algorithm. The main difference between FCC and traditional

statistical-based algorithm is that in traditional competitive learning, the mea-

surement in the competition step is the absolute distance; however, in FCC

the measurement is the fuzzy membership value, which is a relative distance

measurement. We show in the later experiments that, it is more flexible and

robust when compared with those algorithms using absolute distance as a

measurement.

The algorithm of FCC is outlined as follows:

(Step 0) Initialization: Every cluster in FCC is described by a fuzzy

prototype [70, 71]. In the initialization step, we randomly pick k points as the

initial cluster prototype centers and every prototype has the same variance in

each dimension as the initial variance of the cluster prototypes.

(Step 1) Competition: Calculate the fuzzy membership value for each

data instance to each cluster prototype. The membership value uik for data

instance xk to cluster i is calculated from the equation:

uik =

∑a
j=1 ujik

a
. (3.1)

where a is the the number of attribute and ujik is the membership value of

data instance xk to cluster i in the jth dimension.
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ujik can be any fuzzy membership function. In our experiment, we use the

crisp function as the fuzzy membership function and it is defined as:

ujik =
σji + 1

σji + d(i, k) + 1
, (3.2)

where σji is the variance of ith cluster prototype in the jth dimension. d(i, k)

is the distance between instance xk and the ith cluster center.

We use the crisp function as the membership function because it has the

following property:

ujik ≤ 0.5 if d(i, k) ≥ σji. (3.3)

When we try to convert a fuzzy membership value into a boolean value.

It is common that we set the threshold as 0.5. So, by using crisp function,

the variance becomes the boundary between belonging (TRUE) or not be-

longing (FALSE) to the cluster. This feature gives an easy way to understand

the cluster properties. So, crisp function is used here instead of other functions.

After the calculation of fuzzy membership values, we increase the weighting,

wik, of the kth instance towards ith cluster if the membership value of this data

instance is the largest towards this cluster. The weighting is changed according

to the following equation:

wik =


 uik + η

(
1 − uik

)
if uik is the largest,

uik otherwise.
(3.4)

where, η, 0 ≤ η ≤ 1, is the learning rate.

The above process of wik is similar to the normalization process in tradi-

tional clustering algorithms. If uik is the the largest, then its weighting, wik
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should be the largest among wik for all k. Through this kind of normalization

like process, we let each cluster prototype interact with each other to prevent

generating coincident clusters [69]. Coincident clusters mean those clusters

having very similar cluster prototype and we cannot find a clear difference

between them.

(Step 2) Updating Cluster Fuzzy Prototypes: We update the cluster

prototype by

m
′
i =

∑n
k=1 w2

ikxk∑k=n
k=1 w2

ik

, (3.5)

σ
′
i =

∑n
k=1 wik

∥∥∥xi − mi

∥∥∥∑k=n
k=1 wik

. (3.6)

where, m
′
i is the new cluster centroid of the ith cluster and σ

′
i is the new vari-

ance vector of the ith cluster. A variance vector stores the variance of each

dimension for a cluster.

Steps 1 and 2 are iterated until the iteration converges or the number of

iterations reaches a pre-specified value. The final cluster prototypes are the

results of the FCC.

After FCC, every data point is assigned a membership value to a cluster

according to the Equation 3.1. If hard-cut boundary is used, the data point

belongs to the cluster that gives the highest membership value.

3.2 Sequential Fuzzy Competitive Clustering

In this section, we will introduce an efficient fuzzy clustering algorithm, se-

quential fuzzy competitive clustering (SFCC). In Chapter 4, we show how we
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make use of SFCC for content based indexing in order to lessen the boundary

problems mentioned in Chapter 2.

SFCC is an online clustering algorithm, which means that we do not need

to get the whole training data set before clustering. Actually, as the number of

data objects exist in database become larger and larger, it becomes impossible

to use offline clustering algorithms for such a database. So, off-line clustering

algorithm would be a suitable clustering algorithm for huge database.

The algorithm of SFCC is outlined as follows:

(Step 0) Initialization: Every cluster in SFCC is described by a fuzzy

prototype. In the initialization, we randomly pick k points as the k initial

cluster prototype centers and every prototype has the same variance in each

dimension as the initial variance of the cluster prototypes.

(Step 1) Competition: Randomly pick a data instance from the train-

ing data set, and calculate its fuzzy membership value for this instance to

each cluster prototype. The membership value of an instance to a cluster is

calculated by:

uik = λ
1

βT

i (
a∏

j=1

ujik)
1/a . (3.7)

where a is the the number of attribute, ujik is the membership value of data

instance xk to cluster i in jth dimension, T is the number of iterations so far,

and β is a constant used to control the adaptive rate. λi is a value used to

make sure that all the cluster prototypes have a chance to become the winner

cluster. It is defined as:
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λi = 1 − (
number of winning by clusteri

number of total loops
) . (3.8)

Similar to FCC, ujik can be any fuzzy membership function. In our exper-

iment, we use the crisp function as the fuzzy membership function and it is

defined as:

ujik =
σji + 1

σji + dj(i, k) + 1
. (3.9)

where σji is the variance of the ith cluster prototype in the jth dimension.

dj(i, k) is the distance between instance xk and the ith cluster center in the jth

dimension.

After we have calculated the membership value, we find the winner clus-

ter. The winner cluster is the cluster with the highest membership value.

(Step 2) Updates: After we found the winner and rival clusters, we

update these cluster prototypes by:

m
′
w = mw + αuiw(xk − mw) , (3.10)

σ
′
iw = σiw + αuiw(dj(i, k) − σiw) . (3.11)

where mw is the cluster centers of the winner cluster. σiw is the variance of

the winner cluster in ith dimension. α is the learning rate.

Steps 1 and 2 are iterated until the iteration converges or the number of

iterations reaches a pre-specified value. The final cluster prototypes are the

results of the SFCC.

After SFCC, we use the geometry mean of the membership value of the

pre-defined fuzzy membership function in each of the dimension as the final
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membership value of a data point. In our case, it is:

uik = (
a∏

j=1

ujik)
1/a . (3.12)

where a is the the number of attribute, ujik is the membership value of

data instance xk to cluster i in jth dimension.

If hard-cut boundary is used, the data point is belonging to the cluster that

gives the highest membership value.

3.3 Experiments

In this section, we perform some experiments to examine the performance of

FCC and SFCC. The experiments focus on the clustering performance in seven

respects, they are:

• Experiment 1: Data set with different number of samples.

• Experiment 2: Data set on different dimensionality.

• Experiment 3: Data set with different number of natural clusters in-

side.

• Experiment 4: Data set with different noise level.

• Experiment 5: Clusters with different geometry size.

• Experiment 6: Clusters with different number of data instances.

• Experiment 7: Performance on real data set.

Among all of the above experiments, the first three experiments are aimed

to examine the time complexity of the proposed clustering algorithm. After

that, the fourth to seventh experiments are aimed to examine the clustering
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accuracy of the proposed clustering algorithms.

All the clustering algorithms used here are coded in MATLAB, and con-

ducted on an Ultra Sparc 5 machine.

After each of the experiments, we compare the results of FCC and SFCC

with some other common clustering algorithms. These algorithms include,

competitive learning (CL), rival penalized competitive learning (RPCL), fuzzy

c means clustering (FCM) and k-means clustering (KM).

3.3.1 Experiment 1: Data set with different number of

samples

In experiment 1, we test the clustering algorithms with data set having different

number of sample points. We want to know the time complexity under these

situations.

Motivation

Usually, the time complexity of a typical clustering algorithm grows expo-

nentially with the number of data samples. However, multimedia databases

usually have a huge amount of sample points. In such a case, we need a clus-

tering algorithm in linear time complexity with the number of sample points.

In this experiment, we test our algorithms under the data set with different

number of sample points to check if they are linear time complexity with

number of sample points.
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Experimental Setting

In experiment 1, we test our method with synthetic data sets in the Gaussian

mixture distribution, whose probability density function can be written as

follows:

p(	x) =
n∑

j=1

αjG(	x, 	mj, ΣXj
), (3.13)

where n is the number of mixtures. Each weight, αj ≥ 0 and
∑n

j=1 αj = 1,

and each G(	x, 	mj, ΣXj
) is a single Gaussian function with the mean, 	mj and

the covariance matrix, ΣXj
.

In our experiments, we use the equal weight for each Gaussian mixture as

follows:

α1 = α2 = · · · = αn =
1

n
. (3.14)

We also use a diagonal matrix as the covariance matrix of each Gaussian

function:

ΣXi
=




σi 0 · · · 0

0 σi · · · 0
...

...
. . .

...

0 0 · · · σi




. (3.15)

We set σi and n as random variables with range from 1 to 10 for generating

the testing data set.

We randomly generate 3 different data sets in each of the 2-D, 3-D, 5-D,

and 10-D cases with the above setup and a fixed number of instances for each

of the data sets. Then we apply the clustering algorithms on them to obtain

the results.
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Experiment Results

After the clustering, we mark down the time it needs to finish clustering. The

results are summarized in Table 3.1-Table 3.4, Figure 3.1, and Figure 3.2.

From the experimental results, we conclude that Fuzzy c-means and Fuzzy

Competitive Clustering have the highest complexity when the number of data

instances is large. k-means algorithm seem to have an exponential increase

in computational time to the number of instances. However, as it takes little

number of iterations, the computational time is still small for k-means algo-

rithm.

For those competitive-based clustering algorithms, Competitive Learning,

Rival Penalized Competitive Learning, and Sequential Fuzzy Competitive Clus-

tering, they seem to be less sensitive to the number of instances. So, we

conclude that competitive based clustering algorithms are more suitable for

database with huge amount of samples inside.

Under high dimensional data, the computational time for Competitive

Learning and Rival Penalized Competitive Learning become more unpredictable.

This shows the evidence that the computational time for them are not very

related on the number of instances. Actually, we can prove in the later ex-

periments that the computational time for them are mainly related on the

distribution and the dimensionality of the data set.

3.3.2 Experiment 2: Data set on different dimensional-

ity

In experiment 2, we test the clustering algorithms under data sets with different

dimensionality.
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300 1500 3000 6000 9000

FCM 20.5591 50.2018 79.1989 171.9868 334.5710
KM 0.4884 2.6896 3.2299 7.5796 8.4775
CL 0.3598 0.4066 0.4249 0.6029 0.7944

RPCL 0.2114 0.4034 0.5344 0.5483 0.7024

FCC 7.3169 29.0409 53.5846 151.9438 270.2041
SFCC 0.9213 0.9914 1.0025 1.1132 1.2411

Table 3.1: The average time used (in second) for clustering data set in two
dimensions with different number of data instances in Experiment 1.

300 1500 3000 6000 9000

FCM 19.9911 94.8020 147.2157 422.6909 504.0983
KM 0.6086 2.7982 5.7552 8.2314 10.4216
CL 0.2823 1.1953 1.3771 2.5114 2.4085

RPCL 0.5299 1.1115 0.9497 1.3662 1.5093

FCC 7.1366 33.7620 62.7409 181.1739 367.9844
SFCC 1.2321 1.5268 1.5768 1.7702 1.8312

Table 3.2: The average time used (in second) for clustering data set in three
dimensions with different number of data instances in Experiment 1.

300 1500 3000 6000 9000

FCM 13.6461 131.2552 348.2287 860.7690 1526.1280
KM 1.7986 6.8853 12.3620 25.2378 32.5269
CL 1.2405 5.7927 4.8121 6.9584 13.3065

RPCL 1.7119 4.7748 3.8774 9.9629 2.7767

FCC 5.3039 36.7250 108.3956 214.4625 527.4522
SFCC 1.8356 1.9488 2.0623 2.2554 2.5156

Table 3.3: The average time used (in second) for clustering data set in five
dimensions with different number of data instances in Experiment 1.
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Figure 3.1: Results of Experiment 1. (a), (b), (c), and (d), the time needed for
clustering different number of data instances under 2-D, 3-D, 5-D, and 10-D
respectively.
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Figure 3.2: Results of Experiment 1. (a), (b), (c), and (d), the time needed for
clustering different number of data instances under 2-D, 3-D, 5-D, and 10-D
respectively.
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300 1500 3000 6000 9000

FCM 31.6585 175.1086 419.2682 1182.5000 2240.1000
KM 3.2584 10.6250 13.7535 30.3643 42.0067
CL 17.7092 10.2882 18.0297 13.6982 32.4412

RPCL 5.2192 8.9104 13.6194 18.5913 24.8490

FCC 7.1643 38.1214 272.2166 347.8854 648.0155
SFCC 2.7462 2.9621 3.2310 3.6732 4.0695

Table 3.4: The average time used (in second) for clustering data set in ten
dimensions with different number of data instances in Experiment 1.

Motivation

Dimensionality [72, 73] of the data set is another issue that affects the complex-

ity very much. Many clustering algorithms have an exponential computational

time that varies with the dimensionality of the data set. However, in a typ-

ical multimedia database, data are existed in high dimension. As a result,

we need to have a clustering algorithm that spends acceptable computational

time under high dimensional data.

Experiment Setting

Similar to Experiment 1, we use synthetic data sets in the Gaussian mixture

distribution to test our clustering algorithms in Experiment 2.

In Experiment 2, we randomly generate 3 different data sets with 1,500,

3,000, 6,000, and 9,000 data instances under dimensionality of 2-D, 3-D, 5-

D and 10-D. Then, we apply the clustering algorithms on the data sets and

obtain the results.
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Experimental Results

After the clustering, again, we mark down the time it needs to finish cluster-

ing. The results are summarized in Table 3.5, Table 3.6, Table 3.7, Table 3.8,

Figure 3.3, and Figure 3.4.

From the results of Experiment 2, we conclude that the computational time

for all the clustering algorithms increase as the dimensionality of the data sets

increase.

Among all of the tested clustering algorithms, those non-competitive based

clustering algorithms, including Fuzzy c-means, k-means, and Fuzzy Compet-

itive Clustering algorithm, are more sensitive to the data dimensionality than

those competitive based clustering algorithms.

Non-competitive based clustering algorithms seem to be more sensitive to

data dimensionality because they need to calculate all the distance pairs be-

tween cluster center and data point in every iteration. On the other hand,

given k clusters, competitive based clustering algorithm just need to calculate

k distance pairs in each iteration. Because the computational complexity for

each distance calculation increase with the dimensionality, the overall compu-

tational time of the clustering algorithm increase with the dimensionality.

Among all the tested clustering algorithms, our proposed algorithm, Se-

quential Fuzzy Competitive Clustering seems to be the least sensitive one.

The reason is because in SFCC, it uses membership value instead of the norm-

distance. According to Section 3.2, we know the computational complexity of

membership value is smaller than norm-distance; hence, SFCC seems to be

less sensitive to the increase of dimensionality.
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2-D 3-D 5-D 10-D

FCM 50.2018 94.8020 131.2552 175.1086
KM 2.6896 2.7982 6.8853 10.6250
CL 0.4066 1.1953 5.7927 10.2882

RPCL 0.4034 1.1115 4.7748 8.9104

FCC 29.0409 33.7620 36.7250 38.1214
SFCC 0.9914 1.5268 1.9488 2.9621

Table 3.5: The average time used (in second) for clustering data set with 1,500
data instances under different dimensionality in Experiment 2.

2-D 3-D 5-D 10-D

FCM 79.1989 147.2157 348.2287 419.2682
KM 3.2299 5.7552 12.3620 13.7535
CL 0.4249 1.3771 4.8121 18.0297

RPCL 0.5344 0.9497 3.8774 13.6194

FCC 53.5846 62.7409 108.3960 272.2166
SFCC 1.0025 1.5768 2.0623 3.2310

Table 3.6: The average time used (in second) for clustering data set with 3,000
data instances under different dimensionality in Experiment 2.

2-D 3-D 5-D 10-D

FCM 171.9868 422.6909 860.7690 1182.5000
KM 7.5796 8.2314 25.2378 30.3643
CL 0.6029 2.5114 6.9584 13.6982

RPCL 0.5483 1.3662 9.9629 18.5913

FCC 151.9438 181.1739 214.4625 347.8854
SFCC 1.1132 1.7702 2.2554 3.6732

Table 3.7: The average time used (in second) for clustering data set with 6,000
data instances under different dimensionality in Experiment 2.
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Figure 3.3: Results of Experiment 2. (a), (b), (c), and (d), the time needed for
clustering data under different dimensionality with number of instances equal
to 1,500, 3,000, 6,000, and 9,000 respectively.
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Figure 3.4: Results of Experiment 2. (a), (b), (c), and (d), the time needed for
clustering data under different dimensionality with number of instances equal
to 1,500, 3,000, 6,000, and 9,000 respectively.
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2-D 3-D 5-D 10-D

FCM 334.5710 504.0983 1526.1280 2240.1000
KM 8.4775 10.4216 32.5269 42.0067
CL 0.7944 2.4085 13.3065 32.4412

RPCL 0.7024 1.5093 2.7767 24.8490

FCC 270.2041 367.9844 527.4522 684.0155
SFCC 1.2411 1.8312 2.2554 4.0695

Table 3.8: The average time used (in second) for clustering data set with 9,000
data instances under different dimensionality in Experiment 2.

3.3.3 Experiment 3: Data set with different number of

natural clusters inside

Motivation

Besides data set size and dimensionality, the number of clusters that the clus-

tering algorithms need to find is also another important factor affecting the

time complexity of the clustering algorithms. In Experiment 3, we test our

clustering algorithms under data sets with different number of natural clusters

inside. Within each of the data sets, suppose it has k clusters, we cluster the

data set exactly into k clusters to check the time complexity of the clustering

algorithms.

Experiment Setting

Similar to Experiment 1, data sets used here are synthetic data sets in the

Gaussian mixture distribution. The dimensionality of these data sets are fixed

to 10 and the number of data points in each of the data sets are fixed to 5,000.

The number of natural clusters in these data sets vary from 5 to 25. In each

of the test cases, assumes there are k natural clusters inside, we then cluster

the data set into k clusters and then mark down the time used to complete
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the clustering.

Experimental Results

The experimental results are summarized in Table 3.9 and Figure 3.5.

In our experimental results, we found that as the number of clusters in-

creases, the execution time also increases. In each iteration, all the clustering

algorithms need to calculate the distance pairs between each cluster center

and data instances. So, when the number of candidate clusters increases, the

distance pairs needed to calculate increase also. This increase in distance cal-

culation makes the overall computation time increases.

Those non-competitive based clustering algorithms seem to have a sharper

increase in computation time as well as the number of candidate clusters.

Suppose, there exist n data instances in the data set. When we increase

one more candidate cluster in non-competitive based clustering, it increases n

distance calculations in each of the iterations. On the other hand, competitive

based clustering algorithms such as, CL, RPCL, and SFCC, just increase one

more distance calculation in each of the iterations. So, competitive based

clustering algorithms are less sensitive than non-competitive based clustering

algorithms to the number of candidate clusters.

3.3.4 Experiment 4: Data set with different noise level

Motivation

From Experiment 1 to Experiment 3, we are concerning the computational

complexity of the proposed clustering algorithms. However, start from Exper-

iment 4, we are focusing on the clustering accuracy.
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5 clusters 10 clusters 20 clusters 25 clusters

FCM 578.2570 596.8290 1010.3300 1267.4
KM 6.5468 32.3214 73.7572 84.3761
CL 3.2040 7.0011 15.7868 22.2145

RPCL 2.5823 5.7845 16.2451 19.7950

FCC 526.8512 896.7460 2518.2349 2699.6831
SFCC 5.0724 8.8657 16.5210 21.2301

Table 3.9: The average time used (in second) for clustering 10-D data set with
5,000 data instances and different number of clusters in Experiment 3.
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Figure 3.5: Results of Experiment 3. (a), and (b), the time needed for clus-
tering 10 dimensional data with 5,000 data instances with different number of
natural clusters inside.
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In a typical database, data are not noiseless. For most of the clustering

algorithms, clustering accuracy decreases as the noise level of the data. Even

worse that, some of the clustering algorithms trapped in local optimal solution

when the noise level is high. For a multimedia database, the noise level is

even higher than normal database does. So, clustering algorithms deal with

multimedia database should able to overcome this situation.

In this experiment, we examine our clustering algorithms on data sets with

different noise level. The aim of this is to prove that our proposed algorithms

work well under noisy data.

Experiment Setting

Similar to Experiment 1, data sets in this Experiment are synthetic data sets

in the Gaussian mixture distribution. Here are the setting for the data sets

used in Experiment 4:

1. The data sets are 10 dimensional data.

2. The total number of data instances are 1,000.

3. There are total 4 clusters.

4. The number of instances in all data sets are the same.

5. σi used for each cluster is fixed at 0.3.

6. Norm distance between any two clusters is 2.

7. We generate random noise from 3% to 20% of the total number of data

instances.

After we cluster the data set, we mark down the execution time and the

error percentage for each of the data sets as the experimental results.
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Experimental Results

We summarize the experimental results in Table 3.10, Table 3.11, and Figure

3.6.

From the experimental results, we conclude the experiment in the following

respects:

• Computational Complexity

The computational complexity seems not very sensitive to the noise level.

According to the computational complexity in big-Oh notation, none of

the tested clustering algorithms have count the term “noise level” in. So,

it is expected that the noise level of the data set does very little effect

on the computational complexity.

However, when the noise level of the data set increase to some extent,

the overall running time for clustering slightly decrease. This is because

the noise we generated are random noise. When the number of random

noise increase, the data set appears more likely to an uniform distribu-

tion. On the other hand, all the tested algorithms having the properties

that it stops when all the clusters center are standing at the mean of the

cluster’s data. Uniform distributed data are just fulfilling this require-

ment. So, the number of total iterations for clustering decrease when the

random noise level increase to some extent. This decrease in number of

total iterations finally reflects on decrease in the overall running time.

• Clustering Accuracy

As what we expected, the accuracy decrease when the noise level increase.

When the noise level increase, the cluster’s characteristic decrease, or in
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other words, covered by the noise. As a result, it is more difficult for a

clustering algorithm to locate the real underlying cluster characteristic.

Among all the tested clustering algorithms, we found that SFCC algo-

rithm are the least sensitive one to noise. Refer to Section 3.2, the at-

tracting power for a data point to a cluster prototype is proportional to

the membership value of this data point towards the cluster prototype.

For distant data point, its membership is small. Thus, the attracting

power for a distant data point is small too. This feature enables cluster

prototypes in SFCC to prevent from being attracted from noise or out-

liers.

On the other hand, in all the other tested algorithms and most of the

traditional clustering algorithms, the attracting power for a data point to

a cluster prototype (or cluster center) does not decrease as the distance

between them increase. As a result, those outliers can pull the cluster

prototypes with the same attracting power as those cluster’s data do.

This is why other clustering algorithms much more suffer from the noise

data than SFCC does. As FCM use the distance ratio between data

points and cluster prototypes to define the attracting power, it is the

most sensitive clustering algorithm among all of the tested algorithms.

Because the ratio is equally divided into k candidate clusters, which is a

very high value. Section 3.4.1 gives more details on this problem.

3.3.5 Experiment 5: Clusters with different geometry

size

Clusters used in Experiment 5 having a large different in variance (σi). It

means they have a large difference in their geometry size. It is aimed to see
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3 % 5 % 10 % 15 % 20 %

FCM 27.0217 26.7168 26.3275 27.1133 26.2898
KM 4.6742 4.3863 3.2213 2.7421 2.4890
CL 1.6739 1.6848 1.6109 1.3986 1.3827

RPCL 1.6109 1.3986 1.6848 1.3872 1.6763

FCC 25.8411 27.1746 27.7135 26.9207 25.9584
SFCC 3.5654 3.5702 3.5731 3.5811 3.5802

Table 3.10: The average time used (in second) for clustering 10-D data set with
1,000 data instances and different percentage of noise data in Experiment 4.

3 % 5 % 10 % 15 % 20 %

FCM 0.037 0.044 0.290 0.285 0.342
KM 0.030 0.043 0.119 0.140 0.214
CL 0.033 0.119 0.151 0.161 0.234

RPCL 0.039 0.164 0.207 0.279 0.255

FCC 0.042 0.067 0.070 0.112 0.142
SFCC 0.042 0.047 0.060 0.062 0.082

Table 3.11: The average error (in percentage) for clustering 10-D data set with
1,000 data instances and different percentage of noise data in Experiment 4.
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Figure 3.6: Results of Experiment 4. (a), and (b), the time needed for clus-
tering 10 dimensional data with 1,000 data instances with differnt percentage
of noise data. (c), the error percentage under the above setting.
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the behaviors of FCC and SFCC under this kind of data sets.

Motivation

In traditional clustering algorithms, they assume all the clusters are in the

shape of hyper-sphere. Within these hyper-spheres, they all have the same ra-

dius. As a result, to calculate the cluster label for a particular data point, it is

the same to calculate the distance between this datum and all the cluster cen-

ters, the one with the smallest distance is the cluster that the datum belongs

to. However, we know that clusters are not always with the same radius, or

even not in the shape of hyper-sphere. Thus, traditional clustering algorithms

seem to be weak in facing this kind of problems.

In this experiment, we want to know the performance of FCC and SFCC

under data sets with large variance difference between the clusters inside.

Experiment Setting

Similar to Experiment 1, data sets in this experiment are synthetic data sets

in Gaussian mixture distribution. Here are the setting for the data sets used

in Experiment 5:

1. The data sets are 10 dimensional data.

2. The total number of data instances are 1,000.

3. There are total 2 clusters.

4. The number of instances in all the data sets are the same.

5. σi used for the smaller cluster is fixed at 0.2.

6. Norm distance between any two clusters is 1.
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7. We define the ratio of σi between the larger cluster and smaller cluster

is α, and it varies from 2 to 10 in this experiment.

After we cluster the data sets, we mark down the execution time and the

error percentage for each of the data sets as the experimental results.

Experimental Results

We test the FCC and SFCC in the same way as Experiment 4. The experi-

mental results are summarized in Table 3.12, Table 3.13, and Figure 3.7.

From the experimental results, we conclude the experiment in the following

respects:

• Computational Complexity

As α increase, we found that the overall computational time slightly

increases. Actually, the computational complexity for each iteration in

all the clustering algorithms is not related to the α value. So, the overall

computational time is theoretically unrelated to α. However, as the data

distribution seems to be more complex when α is large, all the clustering

algorithms need more iterations in order to converge. So, the overall

computational time slightly increases as α.

• Clustering Accuracy

The clustering accuracy for all the clustering algorithms decrease as α

increase. it is very easy to understand why α affect the clustering ac-

curacy like this. As α increase, the complexity of the data distribution

increase too. As a result, the clustering accuracy decreases.

Among all the algorithms being tested, we found that FCC and SFCC

perform the best under small α value. However, when α becomes larger
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2 4 6 8 10

FCM 31.6569 31.7875 30.9754 34.2668 34.4200
KM 2.2530 2.5643 3.1370 3.5130 3.8254
CL 1.5389 1.7966 2.0512 3.0904 3.2359

RPCL 0.7963 1.6341 1.6036 1.8794 3.0973

FCC 10.2384 11.5259 11.3135 15.2393 15.1950
SFCC 2.0912 2.1036 2.0755 2.0986 2.1061

Table 3.12: The average time used (in second) for clustering 10-D data set
with 1,000 data instances and different α value in Experiment 5.

2 4 6 8 10

FCM 0.003 0.063 0.109 0.142 0.152
KM 0.003 0.103 0.163 0.201 0.237
CL 0.009 0.037 0.120 0.167 0.198

RPCL 0.013 0.071 0.131 0.198 0.229

FCC 0.002 0.038 0.056 0.110 0.320
SFCC 0.001 0.014 0.097 0.107 0.282

Table 3.13: The average error (in percentage) for clustering 10-D data set with
1,000 data instances and and different α value in Experiment 5.

and larger, the error percentage increases faster and faster. When α

becomes extremely high, FCC and SFCC even have the highest error

percentage.

According to Section 3.4.1, FCC and SFCC are not needed to obey Equa-

tion 3.16. As a result, when the relative distance between two cluster

centers are too small, unreasonable high membership value may assign

to data. This unreasonable high membership value finally reflects on the

decrease of clustering accuracy. So, when the relative distance between

two cluster centers is too small, the error percentage would even higher

than those of traditional clustering algorithms.
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Figure 3.7: Results of Experiment 5. (a), and (b), the time needed for cluster-
ing 10 dimensional data with 1,000 data instances and different α value. (c),
the error percentage at different α value under the above setting.
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3.3.6 Experiment 6: Clusters with different number of

data instances

In all the above experiments, the number of data instances are the same in

all the clusters. In this experiment, we are now examining the proposed al-

gorithms under data sets with different number of data instances in different

cluster.

Motivation

For a typical real data set, usually, we do not have any idea on how much data

instances should be included in a particular cluster. So, it is unacceptable for

an algorithm that can perform well only when all the clusters having the same

number of data instances. In this experiment, we are try to show that our

proposed clustering algorithms not only work fine for clusters having the same

number of data instances, but it also works well when the number is not equal.

Experiment Setting

Similar to experiment 1, data sets in this Experiment are synthetic data sets

in Gaussian mixture distribution. Here are the setting for the data sets used

in Experiment 6:

1. The data sets are 10 dimensional data.

2. The total number of data instances are 1,000.

3. There are total 2 clusters.

4. σi are fixed to 0.2 for all the clusters.

5. The number of instances in the cluster with less data points is fixed to

100.
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6. Norm distance between any two clusters is 1.

7. The ratio of the number of data points between two clusters is defined

as β.

8. We vary the value of β from 3 to 6 in Experiment 6.

After we cluster the data set, we mark down the execution time and the

error percentage for each of the data sets as the experimental results.

Experimental Results

We test the FCC and SFCC in the same way as Experiment 4. The experi-

mental results are summarized in Table 3.14, Table 3.15, and Figure 3.8.

From the experimental results, we conclude the experiment in the following

respects:

• Computational Complexity

The running time of all the tested algorithms seems to be unrelated to β.

Because the computational complexity for each iteration is not related to

β. So, the computational time in each iteration keeps constant no matter

how β varies. Also, the value of β does not affect the complexity of the

data distribution. So, the total number of iteration is also unrelated to β.

Combining these two factors, we conclude that the overall Computational

Complexity is unrelated to the value of β. So, the overall execution time

is unrelated to the value of β as well.

• Clustering Accuracy

From Figure 3.8, we found that the error percentage of all the tested

clustering algorithms increase as β increases. As we known, cluster cen-

ters tend to be staying at the mean of data points. So, if the data points
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3 4 5 6

FCM 11.8113 12.7360 11.9885 11.5392
KM 1.2475 1.5076 1.2575 1.9727
CL 1.0863 1.1717 1.2930 1.1023

RPCL 0.9263 1.3347 1.0168 1.0504

FCC 11.1114 11.4747 11.1365 11.3311
SFCC 3.5834 3.5980 3.6164 3.6274

Table 3.14: The average time used (in second) for clustering 10-D data set
with 1,000 data instances and different β value in Experiment 6.

in each cluster are different, cluster centers would shift to those clusters

with large number of data instances. This misplacing in cluster center

results in the clustering error. Larger the difference (β), more serious in

clusters misplacing, and thus higher error percentage.

Among all the clustering algorithms, k-means and SFCC seem to be the

least sensitive to β. For the k-means algorithm, as it uses hard-cut ap-

proach in calculation, it is hard for cluster centers in k-means algorithm

being attracted by data instance which does not belong to its cluster.

In the case of SFCC, the attracting power for a data point to a cluster

prototype is proportional to the membership value of this data point

towards the cluster prototype. For a distant data point, its membership

is small. Thus, the attracting power for a distant data point is small

too. As a result, this small attracting power brings the similar effect as

hard-cut in k-means algorithm.
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Figure 3.8: Results of Experiment 6. (a), and (b), the time needed for cluster-
ing 10 dimensional data with 1,000 data instances and different β value. (c),
the error percentage at different β value under the above setting.
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3 4 5 6

FCM 0.084 0.118 0.172 0.292
KM 0.003 0.002 0.009 0.010
CL 0.010 0.036 0.067 0.281

RPCL 0.013 0.049 0.060 0.079

FCC 0.141 0.186 0.239 0.283
SFCC 0.003 0.002 0.006 0.014

Table 3.15: The average error (in percentage) for clustering 10-D data set with
1,000 data instances and and different β value in Experiment 6.

3.3.7 Experiment 7: Performance on real data set

Motivation

So far from Experiment 1, we only deal with synthetic data sets. However,

it does not imply that the proposed clustering algorithms also work fine in

real data. In this experiment, we use a very famous real data set, iris data

set [74] to examine our proposed algorithms. We want to show our proposed

algorithms also work fine in real data sets.

Experiment Setting

We use iris data set in this experiment. In iris data set:

1. There are total 150 data instances equally divided into 3 clusters.

2. There are total 4 attributes in the data set.

3. There exist overlapping between different clusters

Same as other experiments, we perform clustering on this data set and

mark down the running time and error percentage.
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FCM KM CL RPCL FCC SFCC

3.2167 1.0390 0.8419 0.7531 1.9428 1.5500

Table 3.16: The average execution time (in second) for clustering iris data set
with 150 data instances and 4 attributes in Experiment 7.

FCM KM CL RPCL FCC SFCC

0.040 0.057 0.107 0.140 0.100 0.054

Table 3.17: The average error (in percentage) for clustering iris data set with
150 data instances and 4 attributes in Experiment 7.

Experimental Results

Our experiment shows that SFCC performing well under real data too. It gets

the best balance between execution time and clustering accuracy. It is at the

second position according to both speed and accuracy. However, other algo-

rithms may have a great tradeoff between speed and accuracy. For example,

Fuzzy c-means algorithm gets the lowest error percentage, however it takes

the longest running time. Similarly, Competitive Learning takes the shortest

running time but the highest error percentage. So, we conclude that SFCC

works fine under typical real data set.

3.4 Discussion

3.4.1 Differences Between FCC, SFCC, and Others Clus-

tering Algorithms

One of the great problem on Probabilistic Clustering algorithms is Outliers.

Outliers are vectors, or called data points, in the data domain which are so

distant from the rest of the other vectors in the data set, that it would be

unreasonable to assign them high membership values to any of the c clusters.
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Every Probabilistic Clustering algorithm obeys the constraint:

c∑
i=1

uik = constant; k = 1, ..., n . (3.16)

where, uik is the membership value of the kth instance to the ith cluster.

However, the above constraint does not permit all the c memberships to as-

sume value lower than 1/c. For an outlier xk, all the ratios dik/djk will often be

close to unity, resulting that all the c membership values close to 1/c. Because

FCM and many other Probabilistic Clustering algorithms use the membership

value as a weighting to calculate the cluster centroid. This unreasonable high

membership value often causes improper positioning of the centroids. In fact,

if an outlier is very distant, one of the centroids might position itself at the

outlier’s position.

On the other hand, possibilistic clustering also raise another problem. Use

Possibilistic c means (PCM) algorithm [67, 68] as an example. The objective

function for PCM can break down into a sum of c single objective functions.

As a result, the centroids do not affect each other during the optimization pro-

cess. This properties often leads to coincident clusters. Another problem for

PCM is that the result of PCM depends heavily on initialization. The authors

of [67] suggest to use FCM to initialize PCM. However, if an outlier is distant,

PCM will not able to recover from the bad initial partition generated by FCM.

However, FCC and SFCC do not have the above problems. It is because in

FCC and SFCC, we do not have the constraint as in Equation 3.16. Hence, we

can assign a small value of uik to an instance, if it is needed to do so. Also, as

every cluster prototype interacts with each other, FCC and SFCC would not

generate coincident clusters like PCM. As we use fuzzy prototype to describe

the cluster in FCC and SFCC, they can be used to find the information of the
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FCC SFCC FCM KM CL RPCL

Fuzzy Yes Yes Yes No No No
Inter-cluster data Yes Yes Yes Yes Yes Yes
Intra-cluster data Yes Yes No No No No
Noise-Resistant Yes Yes No No Yes Yes∑c

i=1 uik = 1 Not - Yes Yes - -
Needed

Complexity in each O(nkd) O(kd) O(nkd) O(nkd) O(kd) O(kd)
iteration

Knowledge on Yes Yes No No No No
each dimension

Table 3.18: Comparison on the properties between FCC, SFCC, and several
traditional clustering algorithms.

cluster in each dimension.

We summarize the feature of these clustering algorithms in Table 3.18. In

the table, n is the number of total instances, k is the number of candidate

clusters, and d is the dimensionality of the data.

3.4.2 Why SFCC?

In this section, we explain why SFCC is a fuzzy clustering algorithm suitable

for multimedia database.

In a typical database, it usually consists of a huge amount of data instances

in very a high dimension. So, the computational complexity of the algorithm

should not be exponential with the number of instances or the dimensionality

of the data. According to our experimental results, all the non-competitive

based clustering algorithms having an exponential increase in computation

complexity to the number of instances and dimensionality of the data. On the
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other hand, competitive based algorithms give an acceptable complexity under

huge amount of data instances and high dimensionality. This is the first point

makes SFCC suitable for clustering in multimedia database.

In our experimental results, they also shows that SFCC having a better

clustering accuracy than Competitive Learning and Rival Penalized Competi-

tive Learning under noisy data and data in complex distribution. Noisy data

in complex distribution is what a typical property in multimedia database.

In conclusion, SFCC is more suitable than other traditional clustering al-

gorithms in clustering of multimedia database.



Chapter 4

Hierarchical Indexing based on

Natural Clusters Information

In this chapter, we present a hierarchical indexing approach. We call the

indexing structure generated from this approach Sequential Fuzzy Competitive

Clustering Binary Tree (SFCC-b-tree). In the rest of this chapter, we will first

present the advantages of hierarchical indexing approach and the details of

SFCC-b-tree. Then, it is followed by a description on the searching method

for the SFCC-b-tree and experiments on its performance analysis.

4.1 The Hierarchical Approach

In non-hierarchical indexing structure, usually there is no clear relationship

between each level or node. This behavior makes us difficult to update the in-

dexing structure and perform 100% nearest-neighbor search. In our indexing

structure, we use a hierarchical approach such that relationship can be found

in nodes between two levels. This feature enables us to update the indexing

structure easily. Moreover, we can backtracking in the hierarchical structure

in order to perform the 100% nearest-neighbor search.

The hierarchical approach divides the vector space into a sequence of nested

74
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C C1 2 3C C

C C6
4

5

Figure 4.1: Cluster C3 and C4 are the sub-cluster of C1. Cluster C5 and C6
are the sub-cluster of C2. There is no overlapping area between those clusters
in the same level. C1 and C2 in level one. C3, C4, C5, and C6 in level two.

clusters. Every cluster in the sequence is a subset of its parent cluster. Also,

those clusters having the same parent cluster do not have any overlapping with

each of the other. Figure 4.1 so the idea of the hierarchical nested clusters.

The hierarchical clustering approach can also be represented as follows. Let

the feature vector set with n vectors be X, where

X = {xi}n
i=1 .

A cluster, C, is a subset of vectors within X. The hierarchical approach

breaks X into a sequence of clusters C1, C2, C3, ..., Cm satisfying the following:

Ci ∩ Cj = ∅, 1 ≤ i, j ≤ m, i �= j ,

and

C1 ∪ C2 ∪ . . . ∪ Cm = X .

A cluster Y is nested into cluster Z if and only if every component exists

in cluster Y can be found in cluster Z as well. A hierarchical clustering is a
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sequence of clusters in which each cluster is nested into the previous cluster in

the sequence.

After the hierarchical clustering, we use a mapping function to map the

generated clusters into a binary tree structure. After the binary tree structure

is generated, it supports nearest-neighbor search. At the top level, a nearest-

neighbor query q is compared to the clusters in the immediate lower level. The

cluster that q having the highest similarity will be selected. The elements in

the selected cluster will be the result of the query q if they satisfy the criteria

of being the nearest-neighbor search. Otherwise, the search and comparison

will proceed to the lower levels until that we get a final result. On more details

about the nearest-neighbor search, Section 4.2.5 present how to make use of a

branch-and-bound algorithm to speed up the searching.

4.2 The Sequential Fuzzy Competitive Clus-

tering Binary Tree (SFCC-b-tree)

In this section, we introduce the hierarchical SFCC binary tree. Also, we

outline the procedure of how to use SFCC clustering algorithm to build the

SFCC-b-tree.

Given a set of data set, we can use SFCC to generate two non-overlapping

clusters within the data set. With these non-overlapping clusters (or subsets),

we can generate the nested clusters structure very easily. The basic idea is

that we apply SFCC on the data set and divide it into two non-overlapping

clusters each time and then continue to do SFCC clustering on each of the

subset hierarchically until each of the final sub-clusters contains a number of

elements which less than a pre-specified number of elements. After we get all
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these clusters, we are able to build the SFCC-b-tree easily.

4.2.1 Data Structure of SFCC-b-tree

In the SFCC-b-tree, there are two kinds of tree node. These two kinds of tree

node are:

• The Leaf Node, and

• The Non-leaf Node.

The underlying definition of them is:

Definition 4.1 (Tree Node) A Tree Node contains the following entries:

1. Cluster Prototype: The cluster prototype which is generated from

SFCC clustering algorithm. This represents the distribution of the data

instances within this subtree.

2. Boundary Table: It is the smallest hyper-cube (SHC) that encloses

all the data instances in the subtree. The reason for a tree node includes

this entry is we can make use of this hyper-cube to perform overlapping

check. The nearest-neighbor search result can only exist in a tree node if

there are overlapping between the hyper-cube of the query and the hyper-

cube of the tree node.

3. Number of Instances in this subtree: Same as its name, it is

the total number of instances exist in the subtree. The reason to include

this entry in the tree node is not for speeding up the searching time.

However, it is a convenience to keep the total number of instances in

database maintenance, so we also include this entry in the tree node.
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4. Left Child Pointer: If the tree node is a non-leaf node, then it is a

pointer in tree node type which points to the left child of the tree node.

If the tree node is a leaf node, then it is a NULL pointer.

5. Right Child Pointer: Having similar setting with the Left Child

Pointer. However, Right Child Pointer is a pointer pointing to the right

child of the tree node.

6. Leaf pointer: It is a pointer to indicate whether a tree node is a leaf

node or not. For a leaf node, it is a pointer pointing to the data array.

A data array contains a cluster of at most M data instances calculated

by SFCC. M is the maximum number of data instances in a leaf node.

For a non-leaf node, Leaf pointer is a NULL pointer.

Based on the Definition 4.1, a SFCC-b-tree satisfies the following proper-

ties:

Property 4.1 Each leaf node contains between 1 and M data point(s).

Property 4.2 Each non-leaf node has two children.

Property 4.3 According to [75], it is easy to calculate Ni, the total number

of instances in the subtree with root node i from its child nodes. Suppose node

i has two child nodes i + 1 and i + 2, then Ni is given by:

Ni = Ni+1 + Ni+2 .

4.2.2 Tree Building of SFCC-b-Tree

After an introduction of the data structure of SFCC-b-tree, we present the

algorithm for building the hierarchical binary tree by using SFCC clustering

algorithm.
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Given a set of data, we perform top-down SFCC clustering and build a

SFCC-b-tree based on the clusters. The basic idea is that we apply SFCC

to cluster the data set into two sub-clusters each time and then continue to

do SFCC clustering hierarchically to each of the sub-clusters until each of

the final sub-clusters contains less than a pre-specified number of data points.

With these SFCC clusters, we can build a binary tree structure.

Algorithm 4.1 BuildTree(D, P , M)

� Input: A set of data objects D, a SFCC-b-tree node P (P is empty at the first time),

and the maximum node size M

� Output: A SFCC-b-tree

1 if D’s size is greater than M then do

2 create a non-leaf node Q

3 add Q as a child node of P if any

4 use SFCC to cluster D into two sub-sets D1 and D2

5 BuildTree(D1, Q, M)

6 BuildTree(D2, Q, M)

7 return Q

8 else

9 create a leaf node L for D

10 add L as a child node of P if any

11 return L

12 end if

13 calculate the node information of D and store it in the corresponding entry of P

4.2.3 Insertion of SFCC-b-tree

In this section, we present the idea of how to insert data instances into an

already built SFCC-b-tree.
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The basic idea of updating the SFCC-b-tree is to first find out where should

the instance located. Then we either add or delete it from the tree. After this,

we update the information of the node if it is needed.

Algorithm 4.2 Insert(T , P , M)

� Input: A SFCC-b-tree T , a data instance want to insert into the SFCC-b-tree P , and

the maximum node size M

� Output: An updated SFCC-b-tree

1 N ← the root node of T

2 while N is not a leaf node do

3 N ← the node that gives the highest membership value to data instance P

among its child nodes if any

4 end while

5 associate P to N

6 if N ’s size is larger than M then do

7 split the node N into 2 sub-nodes by using SFCC

8 end if

9 update the information of N ’s ancestors if necessary

The performance of the indexing tree for searching may be reduced after

some individual data point insertions. The more the insertions, the worse the

performance. The reason is that the insertion algorithm dose not fully consider

the overall distribution of the inserted data point and the original data so that

it cannot guarantee to keep the natural clusters. The searching performance

will then be worse. As a result, we may have to rebuild the indexing structure

after a certain amount of data points have been inserted.
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4.2.4 Deletion of SFCC-b-Tree

The basic idea of deletion is similar to insertion. Algorithm 4.3 shows the

algorithm for deleting an instance from a already built SFCC-b-tree.

Algorithm 4.3 Delete(T , P , M)

� Input: A SFCC-b-tree T , a data instance want to delete from the SFCC-b-tree P , and

the maximum node size M

� Output: An updated SFCC-b-tree

1 N ← the root node of T

2 while N is not a leaf node do

3 N ← the node that gives the highest membership value to data instance P

among its child nodes if any

4 end while

5 if P is associated with N then do

6 remove P from node N

7 update the information of N ’s ancestors if necessary

8 if the size of N ’s parent node less than M then do

9 merge all N parent node’s child nodes

10 end if

11 end if

4.2.5 Searching in SFCC-b-Tree

In this section, we present the k-nearest-neighbor (k-NN) search algorithm

for SFCC-b-tree. We also present the pruning rules used in nearest-neighbor

search.

In our proposed indexing structure, tree nodes in the same tree level do

not overlap with each other. Indexing structure having this property is very

suitable to use the branch-and-bound algorithm proposed in [32] to compute
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the k nearest neighbors to a given query. So, we apply a modified branch-and-

bound algorithm for k-NN search in SFCC-b-tree.

The basic idea of the modified branch-and-bound algorithm consists of two

stages. First, we divide the feature set into disjoint subsets hierarchically (by

SFCC in our method). Then we order it in a tree structure. In the second

stage, we test the node with the pruning rules and search it in a suitable order.

In SFCC-b-tree, every tree node is actually represents a natural cluster in

the database. As a consequence, a data instance is more likely to locate in the

node which gives the data instance a higher membership value. Follow this

idea, we should search the data query from the tree node in the sequence from

high membership value to low membership value, according to the membership

value that the tree node gives the data query.

However, no matter what the order we used in k-NN search, if you search

all the tree nodes before getting the results, the efficiency should be too low

to accept. So, we apply a pruning rule in our branch-and-bound algorithm to

prune out those nodes which are impossible to contain any query result in it.

The rule is:

Rule 4.1 (General Exclusion Rule) Given a tree node T , and a k-NN query

q in d dimension, T does not contain any possible k-NN search solution if

∀ j = 1, 2, . . . , d:

qj − b � Tcj + Tbj � qj + b ,

and

qj − b � Tcj − Tbj � qj + b .
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where, qj is the coordinate of q in dimension j, b is the boundary distance for

k-NN search, Tcj is the cluster center of T in dimension j, and Tbj is half of

the length of the smallest hyper-cube (Section 4.2.1) in dimension j get from

the boundary table (Section 4.2.1) of tree node T .

The proof of Rule 4.1 can be easily shown in simple logic. Given any two

hyper-cube, they can only have overlapping if and only if at least they have

overlapping in any one of the dimension. Follow this idea, we can get the Rule

4.1.

Make use of Rule 4.1, we propose an algorithm to check if there overlap

between tree node T and the query hyper-cube with the query q as the center

and length 2b, b is the k-NN search boundary distance, in each dimension.

Algorithm 4.4 OverlapTest(T , q, b)

� Input: A SFCC-b-tree node T , a query point q in d dimenion, the k-NN search bound-

ary distance b

� Output: A boolean value, it is TRUE if there exist overlap, FALSE if there does not

exist overlap.

� Internal variable: Integer i, qj is the coordinate of q in dimension j, Tcj is the cluster

center of T in dimension j, and Tbj is half of the length of the smallest hyper-cube

1 for i=1 to d do

2 if (qj − b � Tcj + Tbj � qj + b) or (qj − b � Tcj − Tbj � qj + b) then

do

3 return TRUE

4 end if

5 end for

6 return FALSE

Traditional pruning algorithm uses L2-distance as a measurement, as a re-

sult, the calculation involve all the d dimensions. In our pruning algorithm,
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we only need to deal with all the d dimensions in the worst case. In average,

we only need to run d/2 number of loops to get the boolean result. So, our

proposed overlap check algorithm is more efficient on average.

Having the overlap checking algorithm, we make use of it and develop a

searching algorithm for k-NN search. The algorithm are shown in Algorithm

4.5.

Algorithm 4.5 SFCC-knnSearch(Q, P , b)

� Input: A query point Q, a SFCC-b-tree node P (P is the rootnode at the first time),

the query boundary square b (b has infinite length at the first time)

� Output: The set of results for knn similar search R

1 if P and b do not have overlapping then do

2 return R

3 end if

4 if P is a non-leaf node then do

5 Calculate the membership value for Q towards child node D1 and D2 of P

6 if D1 has higher membership value then do

7 SFCC-knnSearch(Q, D1, b)

8 SFCC-knnSearch(Q, D2, b)

9 else

10 SFCC-knnSearch(Q, D2, b)

11 SFCC-knnSearch(Q, D1, b)

end if

12 else

13 Perform linear knn search within the leaf node

14 Update R and b

15 return R and b

16 end if
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Algorithm 4.5 is a depth first based high probability first searching algo-

rithm. In the proposed k-NN search algorithm, every tree node is first checked

by the overlap check algorithm. If there exists possible k-NN search result, its

child node that gives higher membership value to the query is further exam-

ined. This process continue until it reaches a leaf node. As the data number in

a leaf node is not very large, we perform a linear search in the leaf node, mark

down those possible results, and backtrack one level. This process continues

until all the subtrees are either pruned or searched.

4.3 Experiments

In this section, we perform a series of experiments to examine the performance

of our proposed indexing structure. In our experiments, we use different kinds

of data together with different parameters in order to measure the efficiency

of the SFCC-b-tree with modified branch-and-bound algorithm for 100% k-

nearest-neighbor search.

4.3.1 Experimental Setting

We conducted 4 different experiments to measure the efficiency of the SFCC-b-

tree indexing structure for 100% nearest-neighbor search. All the experiments

were conducted on an Ultra Sparc 5 machine and both the SFCC-b-tree and

VP-tree used for comparison was implemented in C++.

Before we have a description on every experiment, we define a new mea-

surement here. Because we are now doing 100% k-NN search, so traditional

measurement such as recall and precision cannot be used here, as what they

measure is accuracy but not efficiency.
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In a nearest-neighbor retrieval, the most time-consuming part is to calcu-

late the distances between a query and the feature vectors. Therefore, the

efficiency of an indexing structure is almost proportional to the number of

these distance computations. On the other hand, the efficiency of our index-

ing structure is defined based on the efficiency of the linear search because

it has the worst efficiency in searching among other methods. Our searching

efficiency is defined as:

Definition 4.2 (Efficiency Measurement)

efficiency = 1− # of distance computations for the checked method

# of distance computations in linear search
. (4.1)

In the above definition, the efficiency of the linear search is 0 because it

needs to compute the distance between every feature vector and the query.

Also, the total number of distance computations for linear search is equal to

the size of the data set. So, we can convert Equation 4.1 into:

efficiency = 1− # of distance computations for the checked method

size of the data set
. (4.2)

Here, we use an example to illustrate what is the practical meaning for this

efficiency. For example, if the searching efficiency of a method is 0.7, then the

methods needs only approximately 30% of the searching time needed by the

linear search for retrieval. Our experiments are focus on the following respects:

• Experiment 8: Test for different leaf node sizes.

• Experiment 9: Test for different numbers of dimensions.

• Experiment 10: Test for different sizes of data sets.

• Experiment 11: Test for different data distributions.
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We want to find out how the above parameters affect the overall efficiency

of our indexing method. In each of the experiment, we first build a SFCC-b-

tree in batch mode for each of the testing data set and then perform k-nearest

neighbor searches to calculate the efficiency with Equation 4.2. Finally, we

have a brief discussion and conclusion after each experiment.

4.3.2 Experiment 8: Test for different leaf node sizes.

In Experiment 8, we test our indexing structure with different leaf node sizes.

Motivation

In SFCC-b-tree, every leaf-node should contain less than a pre-defined number

of data instances. However, as we perform linear search in the leaf node. It

means that the larger the leaf-node size, the higher the overhead while per-

form linear search within a leaf-node. So, the overall efficiency is related to

this pre-defined value.

In this experiment, we want to find out the relationship between the leaf-

node sizes and the overall efficiency of the SFCC-b-tree.

Experimental Setting

In this experiment, similar to Experiment 1, we use synthetic data sets in the

Gaussian mixture distribution to test our proposed indexing method. After

indexing, we perform 100% k-nearest neighbor retrieval.

In our SFCC-b-tree, in order to find out the most suitable leaf-node size,

we test it with several different leaf node size. The leaf node size varies from

1% to 20% of the total data size. Then, we mark down three figures from

the experiments. They are: Indexing Structure Construction Time, Searching
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Node Size 100, 200, 500, 1000, and 2000.
Size of Data Set 10,000.
Data Type Clustered data with 100 Gaussian

mixtures.
Dimensionality 2, 5, 10, 20.
Number of Database Objects Retrieved 10, 20, 50, 100, 500, and 1,000.

Table 4.1: Details of the parameters in Experiment 8.

Time, and Searching Efficiency.

In order to make a comparison with other indexing structure, we use the

same setting to build a VP-tree and measure its figures for reference. Table

4.1 shows the details of the parameters setting in Experiment 8.

Experiment Results

Table 4.2 and 4.3 shows the building time of the indexing structures. Table

4.4 and 4.5 shows the searching time for 100% k-NN search. Figure 4.2 and

4.3 summarizes the experimental results.

From the experimental results, we found that:

1. The smaller the node size, the better the efficiency.

2. The smaller the node size, the longer the construction time.

3. The larger the number of database objects retrieved, the worse the effi-

ciency.

From the experimental results, we find that smaller leaf-node size leads to

better performance. When the leaf-node size is small, the SFCC-b-tree having

a higher resolution power, it helps to prune out those impossible nodes more



Chapter 4 Hierarchical Indexing based on Natural Clusters Information 89

efficiently. As a result, the efficiency for indexing structure having small leaf-

node size is better.

It seem to be a tradeoff that the indexing structure construction time is

higher for those indexing structure with small leaf-node size. However, as the

construction phase is a pre-process and only does once. So, we would prefer to

use a smaller leaf-node size. From the experiment, it finds that 1% (size=100)

to 2% (size=200) of the total data set size is a suitable leaf-node size of SFCC-

b-tree.

When, compared with VP-tree, SFCC-b-tree always have a better perfor-

mance than VP-tree, no matter in efficiency or searching time. As VP-tree

does not consider the natural cluster information, it is expected that SFCC-

b-tree have a higher performance than VP-tree.

However, the construction time for SFCC-b-tree is higher than VP-tree

when the leaf-node size is extremely small, for example, 1% of the total data

set size. It is because similar to many competitive based clustering algorithms,

SFCC converges slower in small amount of data with loosely structure. So,

when the leaf-node size is too small, SFCC needs a long time to converge.

This slow converge rate in clustering leads to the long construction time for

SFCC-b-tree with small leaf-node size.

4.3.3 Experiment 9: Test for different dimensionality.

In Experiment 9, we want to test the performance of SFCC-b-tree under dif-

ferent dimensionality.
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Node Size 100 200 500 1,000 2,000

2-D 152.83 77.62 31.54 15.40 6.34
5-D 317.83 157.04 61.23 35.37 13.82
10-D 523.51 261.30 97.76 43.15 18.60
20-D 924.18 468.29 164.87 83.91 37.66

Table 4.2: The average time used (in second) for building SFCC-b-tree with
different leaf-node size in Experiment 8.

Node Size 100 200 500 1,000 2,000

2-D 224.56 210.63 206.53 202.06 192.11
5-D 316.89 287.50 285.04 285.19 256.89
10-D 422.99 422.05 409.17 395.08 384.23
20-D 669.11 659.43 649.79 632.90 592.04

Table 4.3: The average time used (in second) for building VP-tree with differ-
ent leaf-node size in Experiment 8.

Node Size 100 200 500 1,000 2,000

20-D k = 10 0.01 0.05 0.09 0.10 0.11
k = 20 0.01 0.08 0.10 0.11 0.13
k = 50 0.05 0.09 0.11 0.12 0.14
k = 100 0.08 0.12 0.13 0.14 0.18
k = 500 0.19 0.25 0.26 0.27 0.27
k = 1,000 0.48 0.59 0.62 0.73 0.81

Table 4.4: The average time used (in second) for searching the k-nearest neigh-
bors in SFCC-b-tree with different leaf-node size in Experiment 8.
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Node Size 100 200 500 1,000 2,000

20-D k = 10 3.11 3.15 3.20 3.24 3.59
k = 20 3.17 3.20 3.22 3.24 3.25
k = 50 3.16 3.22 3.23 3.27 3.27
k = 100 3.18 3.23 3.25 3.30 3.31
k = 500 3.23 3.42 3.78 3.92 3.98
k = 1,000 5.04 5.13 5.23 5.36 5.39

Table 4.5: The average time used (in second) for searching the k-nearest neigh-
bors in VP-tree with different leaf-node size in Experiment 8.

Node Size 100 200 500 1,000 2,000

2-D k = 10 0.9695 0.9469 0.8938 0.8835 0.8766
k = 20 0.9620 0.9393 0.8866 0.8844 0.8674
k = 50 0.9461 0.9259 0.8780 0.8716 0.8628
k = 100 0.9291 0.9063 0.8757 0.8741 0.8599
k = 500 0.8557 0.8466 0.8415 0.8388 0.8342
k = 1,000 0.7790 0.7891 0.7673 0.7650 0.7501

5-D k = 10 0.8956 0.8845 0.8763 0.8748 0.8639
k = 20 0.8881 0.8825 0.8761 0.8734 0.8608
k = 50 0.8824 0.8758 0.8726 0.8712 0.8597
k = 100 0.8766 0.8741 0.8710 0.8696 0.8581
k = 500 0.8420 0.8405 0.8392 0.8361 0.8328
k = 1,000 0.7634 0.7618 0.7586 0.7535 0.7475

10-D k = 10 0.8515 0.8390 0.8366 0.8281 0.8073
k = 20 0.8419 0.8369 0.8335 0.8250 0.7928
k = 50 0.8414 0.8358 0.8320 0.8244 0.7928
k = 100 0.8409 0.8302 0.8298 0.8240 0.7871
k = 500 0.7624 0.7605 0.7603 0.7602 0.7545
k = 1,000 0.5150 0.5145 0.5143 0.5140 0.5070

20-D k = 10 0.6184 0.5778 0.5774 0.5761 0.5382
k = 20 0.6032 0.5679 0.5677 0.5670 0.5304
k = 50 0.6026 0.5679 0.5676 0.5639 0.5301
k = 100 0.5826 0.5580 0.5673 0.5520 0.5220
k = 500 0.5187 0.5094 0.5092 0.5066 0.4811
k = 1,000 0.3376 0.3375 0.3368 0.3348 0.3277

Table 4.6: The average efficiency for perform 100% k-NN search in SFCC-b-
tree with different leaf-node size in Experiment 8.
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Node Size 100 200 500 1,000 2,000

2-D k = 10 0.8148 0.7767 0.7126 0.6375 0.5000
k = 20 0.8032 0.7610 0.6876 0.6187 0.4625
k = 50 0.7719 0.7329 0.6627 0.5875 0.4585
k = 100 0.7313 0.6985 0.6283 0.5625 0.4375
k = 500 0.5912 0.5532 0.5358 0.5063 0.3880
k = 1,000 0.5405 0.5163 0.4845 0.4619 0.3750

5-D k = 10 0.6533 0.6406 0.6460 0.6203 0.4250
k = 20 0.6336 0.6234 0.6209 0.6093 0.4125
k = 50 0.6125 0.5938 0.5822 0.5844 0.4000
k = 100 0.6000 0.5767 0.5666 0.5594 0.3375
k = 500 0.5407 0.5266 0.5203 0.4750 0.2750
k = 1,000 0.5062 0.5000 0.4735 0.3375 0.2459

10-D k = 10 0.6015 0.5766 0.5406 0.4875 0.4000
k = 20 0.5718 0.5500 0.5398 0.4749 0.3946
k = 50 0.5030 0.4734 0.4343 0.4000 0.3375
k = 100 0.4961 0.4641 0.4249 0.3937 0.3250
k = 500 0.4766 0.4282 0.3906 0.3687 0.3125
k = 1,000 0.3008 0.3000 0.2979 0.2625 0.2250

20-D k = 10 0.3828 0.3577 0.3260 0.2937 0.2899
k = 20 0.3750 0.3469 0.3258 0.2875 0.2790
k = 50 0.3523 0.3296 0.3250 0.2850 0.2715
k = 100 0.3297 0.3250 0.3125 0.2750 0.2680
k = 500 0.3078 0.3031 0.3000 0.2726 0.2662
k = 1,000 0.2883 0.2782 0.2344 0.2125 0.2000

Table 4.7: The average efficiency for perform 100% k-NN search in VP-tree
with different leaf-node size in Experiment 8.
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Figure 4.2: Results of Experiment 8. (a), (b), (c), and (d) are the average
efficiency for perform 100% k-NN search with different leaf-node size under
2-D, 5-D, 10-D, and 20-D respectively in Experiment 8.
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Figure 4.3: Time used (in second) to build the indexing structure with different
leaf-node size.

Motivation

Usually, the dimensionality of the data set in multimedia database is high and

not fixed. However, many existing indexing structures are not quite applicable

in high dimensional data. As a result, they perform not very well in multime-

dia database.

SFCC-b-tree is aimed to deal with multimedia database, so, it is expected

to work under high dimensional data. In this experiment, we want to find out

whether SFCC-b-tree works well under high dimensional data and how the

dimensionality of data affect its performance.

Experimental Setting

In Experiment 9, we use data with different dimensionality together with sev-

eral other parameters to test the efficiency of SFCC-b-tree. Table 4.8 shows

the details of the parameters. After indexing, we perform 100 different 100%

k-nearest neighbors retrieval for SFCC-b-tree and VP-tree.
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Dimensionality 2, 5, 10, 20.
Number of Database Objects Retrieved 10, 20, 50, 100, 500, and 1,000.
Node Size 100, 200, 500, 1000, and 2000.
Size of Data Set 10,000.
Data Type Clustered data with 100 Gaussian

mixtures.

Table 4.8: Details of the parameters in Experiment 9.

Experiment Results

We use some tables and figures to show the experiment results. Figure 4.4

shows the average efficiency of the indexing structures under different dimen-

sionality and Figure 4.5 shows the construction time for them.

After the experiment, here are the observations:

1. The higher the dimensionality, the worse the efficiency.

2. The higher the dimensionality, the longer the construction time.

3. The larger the number of database objects retrieved, the worse the effi-

ciency.

From the experimental results, we find that under low dimensions, SFCC-

b-tree works very good. The searching efficiency of SFCC-b-tree under high

dimensional data (20-D) is also acceptable. In 20-D data set, the efficiency of

SFCC-b-tree is still higher than 0.5 for 100-nearest neighbors search.

On the other hand, given the same leaf-node size, the building time for

SFCC-b-tree is shorter than VP-tree does. So, we conclude that SFCC-b-tree

performs better than VP-tree in high dimensional data.



Chapter 4 Hierarchical Indexing based on Natural Clusters Information 96

Dimensionality 2 5 10 20

m = 100 152.83 317.83 523.51 924.18
m = 200 77.62 157.04 261.30 468.29
m = 500 31.54 61.23 97.76 164.87
m = 1,000 15.40 35.37 43.15 83.91
m = 2,000 6.34 13.82 18.60 37.66

Table 4.9: The average time used (in second) for building SFCC-b-tree with
different dimensionality and leaf-node size, m, in Experiment 9.

Dimensionality 2 5 10 20

m = 100 224.56 316.89 422.99 669.11
m = 200 210.63 287.50 422.05 659.43
m = 500 206.53 285.04 409.17 649.79
m = 1,000 202.06 285.19 395.08 632.90
m = 2,000 192.11 256.89 384.23 592.04

Table 4.10: The average time used (in second) for building VP-tree with dif-
ferent dimensionality and leaf-node size, m, in Experiment 9.

The reason for SFCC-b-tree performs better is we do not use L2-distance

in the construction phase. So, it does not suffer from the problem of high

dimensionality which is stated in [76].

4.3.4 Experiment 10: Test for different sizes of data

sets.

In Experiment 10, we test the performance of SFCC-b-tree with different sizes

of data sets. The aim of this experiment is to find out if our method is suitable

for huge database.
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Dimensionality 2 5 10 20

m = 200 k = 10 0.01 0.05 0.07 0.05
k = 20 0.01 0.08 0.10 0.08
k = 50 0.02 0.09 0.11 0.09
k = 100 0.08 0.12 0.13 0.12
k = 500 0.10 0.25 0.26 0.25
k = 1,000 0.38 0.42 0.49 0.59

Table 4.11: The average time used (in second) for searching the k-nearest
neighbors in SFCC-b-tree with different dimensionality and leaf-node size, 200,
in Experiment 9.

Dimensionality 2 5 10 20

m = 200 k = 10 0.55 0.85 1.67 3.15
k = 20 0.74 0.88 1.67 3.20
k = 50 0.89 0.92 1.70 3.22
k = 100 0.91 1.02 1.75 3.23
k = 500 1.57 2.33 3.04 3.42
k = 1,000 3.04 4.53 5.10 5.13

Table 4.12: The average time used (in second) for searching the k-nearest
neighbors in VP-tree with different dimensionality and leaf-node size, 200, in
Experiment 9.
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Dimensionality 2 5 10 20

m = 100 k = 10 0.9695 0.8956 0.8515 0.6184
k = 20 0.9620 0.8881 0.8419 0.6032
k = 50 0.9461 0.8824 0.8414 0.6026
k = 100 0.9291 0.8766 0.8409 0.5826
k = 500 0.8557 0.8420 0.7624 0.5187
k = 1,000 0.7790 0.7634 0.5150 0.3376

m = 200 k = 10 0.9469 0.8845 0.8390 0.5778
k = 20 0.9393 0.8825 0.8369 0.5679
k = 50 0.9259 0.8758 0.8358 0.5679
k = 100 0.9063 0.8741 0.8302 0.5580
k = 500 0.8466 0.8405 0.7605 0.5094
k = 1,000 0.7891 0.7618 0.5145 0.3375

m = 500 k = 10 0.8938 0.8763 0.8366 0.5774
k = 20 0.8866 0.8761 0.8335 0.5677
k = 50 0.8780 0.8726 0.8320 0.5676
k = 100 0.8757 0.8710 0.8298 0.5673
k = 500 0.8415 0.8392 0.7603 0.5092
k = 1,000 0.7673 0.7586 0.5143 0.3368

m = 1,000 k = 10 0.8835 0.8748 0.8281 0.5761
k = 20 0.8844 0.8734 0.8250 0.5670
k = 50 0.8716 0.8712 0.8244 0.5639
k = 100 0.8741 0.8696 0.8240 0.5520
k = 500 0.8388 0.8361 0.7602 0.5066
k = 1,000 0.7650 0.7535 0.5140 0.3348

m = 2,000 k = 10 0.8766 0.8639 0.8073 0.5382
k = 20 0.8674 0.8608 0.7928 0.5382
k = 50 0.8628 0.8597 0.7928 0.5301
k = 100 0.8599 0.8581 0.7871 0.5220
k = 500 0.8342 0.8328 0.7545 0.4811
k = 1,000 0.7501 0.7475 0.5070 0.3277

Table 4.13: The average time used (in second) for perform k-NN search in
SFCC-b-tree with different dimensionality and leaf-node size, m, in Experi-
ment 9.
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Dimensionality 2 5 10 20

m = 100 k = 10 0.8148 0.6533 0.6015 0.3828
k = 20 0.8032 0.6336 0.5718 0.3750
k = 50 0.7719 0.6125 0.5030 0.3523
k = 100 0.7313 0.6000 0.4961 0.3297
k = 500 0.5912 0.5407 0.4766 0.3078
k = 1,000 0.5405 0.5062 0.3008 0.2883

m = 200 k = 10 0.7767 0.6406 0.5766 0.3577
k = 20 0.7610 0.6234 0.5500 0.3469
k = 50 0.7329 0.5938 0.4734 0.3296
k = 100 0.6985 0.5767 0.4641 0.3250
k = 500 0.5532 0.5266 0.4282 0.3031
k = 1,000 0.5163 0.5000 0.3000 0.2782

m = 500 k = 10 0.7126 0.6460 0.5406 0.3260
k = 20 0.6876 0.6209 0.5398 0.3258
k = 50 0.6627 0.5822 0.4343 0.3250
k = 100 0.6283 0.5666 0.4249 0.3125
k = 500 0.5358 0.5203 0.3906 0.3000
k = 1,000 0.4845 0.4735 0.2979 0.2344

m = 1,000 k = 10 0.6375 0.6203 0.4875 0.2937
k = 20 0.6187 0.6093 0.4749 0.2875
k = 50 0.5875 0.5844 0.4000 0.2850
k = 100 0.5625 0.5594 0.3937 0.2750
k = 500 0.5063 0.4750 0.3687 0.2726
k = 1,000 0.4619 0.3375 0.2625 0.2125

m = 2,000 k = 10 0.5000 0.4250 0.4000 0.2899
k = 20 0.4625 0.4125 0.3946 0.2790
k = 50 0.4585 0.4000 0.3375 0.2715
k = 100 0.4375 0.3375 0.3250 0.2680
k = 500 0.3880 0.2750 0.3125 0.2662
k = 1,000 0.3750 0.2459 0.2250 0.2000

Table 4.14: The average time used (in second) for perform k-NN search in
VP-tree with different dimensionality and leaf-node size, m, in Experiment 9.
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Figure 4.4: Results of Experiment 9. (a), (b), (c), and (d) are the average
efficiency for perform 100% k-NN search under different dimensionality with
leaf-node size 100, 200, 500, and 1,000 respectively in Experiment 9.
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Figure 4.5: Time used (in second) to build the indexing structure with different
dimensionality.

Motivation

A typical multimedia database usually exists in a huge size. So, those indexing

structures deal with multimedia database should be able to work fine under

huge data sets.

In this experiment, we want to find out if our method suitable for those

large data sets. If it is suitable for large data sets, it is also suitable for

multimedia databases.

Experimental Setting

Similar to others experiments, we test the efficiency of 100% nearest-neighbor

retrieval for the indexing structures. In this experiment, we use different sizes

of data sets together with other parameters which are shown in Table 4.15.

From Experiment 8, we find that 2% (200) of the total data set size is a

suitable value of the leaf-node size. So, we fix the leaf-node size to 200 in this
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Size of Data Set 1,000, 20,000, and 50,000.
Dimensionality 10.
Number of Database Objects Retrieved 10, 20, 50, 100, 500, and 1,000.
Node Size 200.
Data Type Clustered data with 100 Gaussian

mixtures.

Table 4.15: Details of the parameters in Experiment 10.

experiment.

Experiment Results

Again, we use some tables and figures to show the experiment results. Figure

4.6 shows the average efficiency of the indexing structures under different di-

mensionality and Figure 4.7 shows the construction time for them.

After the experiment, here are the observations:

1. The larger the data set size, the better the efficiency.

2. The larger the data set size, the longer the construction time.

3. The larger the number of database objects retrieved, the worse the effi-

ciency.

From the experimental results, we find that searching efficiency increase

with the size of data set. The reason for this can refer to Experiment 8. We

know from Experiment 8 that smaller leaf-node size leads to better efficiency.

In other words, if we keep the ratio of (data set size / leaf-node size) constant,

increase the data set size has the same effect to decrease the leaf-node size.

So, it is not surprising that the searching efficiency increase with the size of

data set.
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Data Set Size 1,000 20,000 50,000

m = 200 SFCC-b-tree 20.07 952.23 2050.67
VP-tree 3.74 1679.73 8145.10

Table 4.16: The average time used (in second) for building indexing structure
with different data set size for 10-D data set in Experiment 10.

Data Set Size 1,000 20,000 50,000

m = 200 k = 10 0.01 0.02 0.10
k = 20 0.01 0.04 0.11
k = 50 0.02 0.04 0.11
k = 100 0.05 0.06 0.18
k = 500 0.06 0.21 0.33
k = 1,000 0.18 0.45 0.64

Table 4.17: The average time used (in second) for searching the k-nearest
neighbors in SFCC-b-tree with different data set size in Experiment 10.

According to the construction time, VP-tree is more sensitive to the number

of data size than SFCC-b-tree. It is because for VP-tree, it needs to check all

the data instances in a tree node when building new child nodes. However, as

we show in Experiment 1, SFCC is a competitive based clustering algorithm,

and it is not sensitive to the number of samples. As a result, the construction

time for SFCC-b-tree is less than VP-tree.

Data Set Size 1,000 20,000 50,000

m = 200 k = 10 0.171 3.258 8.273
k = 20 0.171 3.347 8.290
k = 50 0.189 3.371 8.336
k = 100 0.196 3.469 8.427
k = 500 0.354 5.497 11.226
k = 1,000 0.431 8.933 18.432

Table 4.18: The average time used (in second) for searching the k-nearest
neighbors in VP-tree with different data set size in Experiment 10.
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Data Set Size 1,000 20,000 50,000

m = 200 k = 10 0.805 0.845 0.863
k = 20 0.799 0.844 0.862
k = 50 0.743 0.824 0.862
k = 100 0.679 0.795 0.851
k = 500 0.188 0.674 0.762
k = 1,000 0.000 0.648 0.739

Table 4.19: The average efficiency for searching the k-nearest neighbors in
SFCC-b-tree with different data set size in Experiment 10.

Data Set Size 1,000 20,000 50,000

m = 200 k = 10 0.487 0.512 0.739
k = 20 0.485 0.491 0.735
k = 50 0.437 0.442 0.730
k = 100 0.325 0.420 0.691
k = 500 0.037 0.384 0.657
k = 1,000 0.000 0.372 0.640

Table 4.20: The average efficiency for searching the k-nearest neighbors in
VP-tree with different data set size in Experiment 10.
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Figure 4.6: The average efficiency for perform 100% k-NN search with different
data set sizes.
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Figure 4.7: Time used (in second) to build the indexing structure with different
data set sizes.

4.3.5 Experiment 11: Test for different data distribu-

tions.

In Experiment 11, we test our indexing method for different distributions.

Motivation

In our indexing method, we have an assumption that there exist natural clus-

ters in the data. However, we want to make sure that our indexing method

works fine when this assumption is weak.

Experimental Setting

In this experiment, we use clustered data with different numbers of Gaussian

mixtures together with an uniform data set to test the indexing methods. Ta-

ble 4.21 shows the setting of the parameters in this experiment. For each

setting of parameters, we perform 100% k-nearest neighbor retrieval and the

average results are used for analysis.
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Data Type Clustered data with 10 and 100
Gaussian mixtures together with
uniform data set.

Size of Data Set 10,000.
Dimensionality 10.
Number of Database Objects Retrieved 10, 20, 50, 100, 500, and 1,000.
Node Size 200.

Table 4.21: Details of the parameters in Experiment 11.

Experiment Results

We use some tables and figures to show the experiment results. Table 4.22

shows the indexing structure construction time, Table 4.23 and Table 3.3 show

the searching time for k-NN search, and Figure 4.8 shows the average efficiency

of the indexing structures in Experiment 11.

After the experiment, here are the observations:

1. The more the Gaussian mixtures, the worse the efficiency.

2. The number of Gaussian mixtures seem unrelated to the indexing struc-

ture construction time.

3. The larger the number of database objects retrieved, the worse the effi-

ciency.

From the experimental results, we find that more the Gaussian mixtures,

worse the efficiency. It is because when the the number of Gaussian mixtures

increase, our assumption in SFCC-b-tree becomes weak. Also, as the number

of small clusters increases, the indexing structure may have more nodes. This

worsen the searching performance because more decisions have to be made for

determining whether the node is going to be examined.
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Number of Gaussian Mixtures 10 100 Uniform

m = 200 SFCC-b-tree 264.54 261.30 263.91
VP-tree 423.65 422.05 422.05

Table 4.22: The average time used (in second) for building indexing structure
with data set having different number of Gaussian mixtures in Experiment 11.

Number of Gaussian Mixtures 10 100 Uniform

m = 200 k = 10 0.01 0.05 0.06
k = 20 0.01 0.08 0.07
k = 50 0.02 0.09 0.11
k = 100 0.03 0.12 0.15
k = 500 0.08 0.25 0.38
k = 1,000 0.12 0.59 0.51

Table 4.23: The average time used (in second) for searching the k-nearest
neighbors in SFCC-b-tree with data set having different number of Gaussian
mixtures in Experiment 11.

Number of Gaussian Mixtures 10 100 Uniform

m = 200 k = 10 3.12 3.15 3.21
k = 20 3.15 3.20 3.24
k = 50 3.21 3.22 3.33
k = 100 3.20 3.23 3.38
k = 500 3.36 3.42 3.78
k = 1,000 5.05 5.13 5.26

Table 4.24: The average time used (in second) for searching the k-nearest
neighbors in VP-tree with data set having different number of Gaussian mix-
tures in Experiment 11.
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Number of Gaussian Mixtures 10 100 Uniform

m = 200 k = 10 0.9811 0.8390 0.8073
k = 20 0.9543 0.8369 0.7951
k = 50 0.9379 0.8358 0.6643
k = 100 0.9210 0.8302 0.5464
k = 500 0.8462 0.7605 0.2148
k = 1,000 0.7764 0.5145 0.0429

Table 4.25: The average efficiency for searching the k-nearest neighbors in
SFCC-b-tree with data set having different number of Gaussian mixtures in
Experiment 11.

Number of Gaussian Mixtures 10 100 Uniform

m = 200 k = 10 0.6403 0.5766 0.4518
k = 20 0.6204 0.5500 0.3946
k = 50 0.5844 0.4734 0.2812
k = 100 0.5512 0.4641 0.2631
k = 500 0.4750 0.4282 0.1682
k = 1,000 0.3312 0.3000 0.0371

Table 4.26: The average efficiency for searching the k-nearest neighbors in VP-
tree with data set having different number of Gaussian mixtures in Experiment
11.
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Figure 4.8: The average efficiency for performing 100% k-NN search with data
set having different number of Gaussian mixtures in Experiment 11.

4.4 Summary

In this section, we have a summary on the performance of SFCC-b-tree.

After a series of experiment, we find that our indexing method has a good

searching performance in general. Also, we have shown that our algorithm

outperforms VP-tree in indexing and retrieval. From the experimental results,

we find that in order to have a better searching efficiency, the SFCC-b-tree

should have a small leaf-node size. 2% of the total data set size seem to be a

good leaf-node size for SFCC-b-tree.

Also, as the relationship between each level is very clear in SFCC-b-tree.

It enables us to update the SFCC-b-tree very easily.



Chapter 5

A Case Study on SFCC-b-tree

In this chapter, we have a case study on the proposed indexing method. We

divide this chapter into five sections. In the first section, we explain the moti-

vation of the case study and why we choose “web document database” for the

case study. In the second section, we explain how we build up the database.

Then, in the third section, we illustrate how we do the data pre-processing. It

includes data cleaning, feature extraction, and others. In the fourth section of

this chapter, we build the indexing structure and test its performance. The

experimental results and explanation are included in this section too. Finally,

we have a conclusion in the fifth section.

5.1 Introduction

We use web document database in our case study. Based on our assumption,

data form natural clusters. Therefore, if we first extract the natural clusters

information and use these information to build the indexing structure for data

retrieval, the data retrieval will become more efficient and effective.

However, all the experiments in Chapter 4 are based on synthetic data sets.

So, we want to examine our proposed algorithm in real life data set. If the

110
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experimental results agree with our assumptions, then it is save to use the

proposed indexing algorithm on other real life applications too.

We believe that there exist natural clusters in a web document database.

In a typical web document, it usually contains keywords which can describe

the document. For an example, those web document about “snow” may con-

tain keywords like cold, white, and so on. Similarly, those document about

“fire” may contain another set of keywords like hot, danger, and so on. As

a result, we can assume that natural clusters exist in a web document database.

In the next section, we illustrate how we get the web document to form a

database.

5.2 Data Collection

We have collected over 10,000 web documents from the internet. We get the

documents in the following ways:

1. Set the Start Page:

We first set our school web page (http://www.cse.cuhk.edu.hk/index.html)

as the start page. Then we download this web page as the first web doc-

ument in our web document database.

2. Find Hyper-linkages in the Web Page:

After we set a start page, the second step is finding out all the hyper-

linkages that exist in that web page. A hyper-linkage in web page means

a virtual linkage between two web page. Users are able to go from one

web page to another through the hyper-linkage.
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All the hyper-linkages being found are stored in a queue. For example,

if we find n hyper-linkages in the web page, then the queue will contain

n elements, with each of the element representing a hyper-linkage.

3. Download Another Web Page from the Queue:

After we find all the hyper-linkages within a web page, we pick a new

page from the front of the queue and start to download this web page.

At the same time, we find if there are any new hyper-linkages in this

page. If there exist hyper-linkage, the new linkage will put at the end of

the queue for downloading later.

Then, we loop back to Step 2, until either the queue is empty or the total

number of web page excess a pre-defined value.

By doing this, the web page is downloaded in a beneath first order.

5.3 Data Pre-processing

After we get all the web documents (or web pages), we perform data pre-

processing. The aim of data pre-processing is to clean up those dummy data

and extract those useful information from the web document. It consists of

four different steps in data pre-processing, they are:

1. Removing Stop Words:

In a web document, it usually contains many stop words. Stop words

means those very common terms, variants of a given term, and the use

of different terms with similar meanings.

Before we pass the web document for Stemming. We first check all the

words in the web document with a list or stop words (or stop list). Then,
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all the stop words will be eliminated from the document.

We need to delete those stop words because in any measurements de-

pending on the word frequencies, they tend to diminish the impact of

frequency differences among less common words. Also, these words carry

little meaning by themselves, therefore, they may result in a large amount

of unproductive processing if left them in the document. So, we need to

delete those stop words before further pre-processing.

2. Stemming:

After removing those stop words, we then perform stemming. We need

to stem the document because given a word, it may occur in many dif-

ferent forms. For example, compute, computed, computing, and various

other words all have the same basic form and all deal with a set of closely

related concepts. So, if a user use such a word as the query, the system

may not be able to relate those words to one concept. This is clearly

undesirable.

Stemming is a way to deal with the above problem. Stemming strips

off word endings, reducing them to a common core or stem. In the

above example, the stem might be “comput”. For a given document,

stemming brings together the various forms of the word, resulting in a

higher frequency count and thus in greater significance for the term.

3. Keywords Extraction:

After stemming, we extract those keywords from the document. In our

case study, we have a keywords list with a total of 5,000 words and phase

in both Chinese and English. Then, we compare those words left after

stemming with that in keywords list to make a frequency histogram of

the keywords.
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However, we do not use all the 5,000 keywords to build a 5,000-D database.

Because it seems to be too large for a normal indexing structure. So, we

use those keywords with the top 100 frequency count. As a result, our

web document database is a 100-D database.

Also, after keywords extraction, we only keep those document contain

those 100 keywords that mention above. By now, our database is a 100-D

database with 7,328 web documents inside.

4. Normalization:

Given two documents with different number of words, it appears that the

keywords frequency for the longer document is higher than those for the

shorter one. So, a long document seems to be more related to any topic

if we just use the keywords frequency count to describe a document, and

this is clearly undesirable.

So, we need to normalize the frequency count for each document in the

database. For example, assume the frequency count for the words “ap-

ple”, “boy”, and “cat” being appeared in a document is 10, 20, and 30

respectively. Then, after normalization, their value will become 10/(10

+ 20 + 30) = 0.167, 20 / 60 = 0.333, and 0.500 respectively.

After normalization, the web document database is ready and we index it

by SFCC-b-tree and VP-tree. After the indexing, we perform k-NN search on

them. The Experimental results are shown in the next section.
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Data Type Real life web document.
Size of Data Set 7,328.
Dimensionality 100.
Number of Database Objects Retrieved 10, 20, 50, 100, 500, and 1,000.
Node Size 500.

Table 5.1: Details of the parameters in Chapter 5.

SFCC-b-tree 447.35
VP-tree 1,058.37

Table 5.2: The time used (in second) for building indexing structure with web
document database in Chapter 5.

5.4 Experimental Results

In this section, we show the experimental results of the case study. After that,

we discuss and conclude our experimental results. Table 5.1 summarize the

web document database we use in the case study.

We have built the SFCC-b-tree and VP-tree for indexing. After then, we

perform 100 different k-NN search to examine the performance of them. Table

5.2 shows the building time for these indexing structures. Table 5.3 and Figure

5.1 show the searching time for k-NN search. Table 5.4 and Figure 5.2 show

the searching efficiency for the k-NN search.

From the experiment, we find that SFCC-b-tree needs a shorter build-

ing time than VP-tree. This result agrees with those show in Chapter 4. The

searching time and efficiency for SFCC-b-tree is also better than VP-tree when

the number of data objects retrieved is not very large.
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SFCC-b-tree VP-tree

m = 500 k = 10 0.24 10.11
k = 20 0.32 10.10
k = 50 0.38 10.15
k = 100 0.41 10.25
k = 500 0.43 10.71
k = 1,000 0.55 11.29

Table 5.3: The average time used (in second) for searching the k-nearest neigh-
bors with web document database in Chapter 5.

SFCC-b-tree VP-tree

m = 500 k = 10 0.28 0.18
k = 20 0.24 0.17
k = 50 0.20 0.17
k = 100 0.16 0.16
k = 500 0.03 0.13
k = 1,000 0.02 0.12

Table 5.4: The average efficiency for searching the k-nearest neighbors with
web document database in Chapter 5.
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Figure 5.1: The average time used (in second) for searching the k-nearest
neighbors with web document database in Chapter 5.
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Figure 5.2: The average efficiency for searching the k-nearest neighbors with
web document database in Chapter 5.

5.5 Summary

From the case study, we find the performance of SFCC-b-tree agrees with our

assumption. This means that there exist natural clusters in the web document

database. However, in the case study, we find that when the number of data

objects retrieved is large, the efficiency of SFCC-b-tree drops quickly. It is

because SFCC-b-tree uses natural clusters information to build the indexing

structure. However, it does not ensure that a balance indexing tree will give.

As a consequence, when the number of data objects retrieved is too large, the

efficiency of SFCC-b-tree drops quickly.

However, in a typical k-NN search, the number of data objects retrieved is

not very large, usually less than 50. Therefore, we can conclude that SFCC-

b-tree performs well in both synthetic and real data.



Chapter 6

Conclusion

6.1 An Efficiency Formula

In this section, we try to use a formula to describe the searching efficiency. Af-

ter we have this formula, we can predict the performance before we build the

indexing structure and optimize the performance according to the predicted

value.

6.1.1 Motivation

In real life databases, their sizes are usually very huge. As a result, it is better

to build the indexing structure once only. On the other hand, we also want

the indexing structure has a good performance. Therefore, we need an effi-

ciency formula to predict the efficiency of the indexing structure given a set of

parameters.

Having this efficiency formula, we can:

1. Predict the efficiency of the indexing structure before we build it out.

This save a lot of time and resources.

118
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k11 k12 k21 k22 k31 k32 k41 k42 K
-0.0001 1.088 -0.2244 0.333 -0.0001 0.960 0.1830 0.126 0.6761

Table 6.1: The values of constants for Equation 6.1.

2. Compare the efficiency between different indexing structures without re-

ally building it out. This enables us to choose a suitable indexing struc-

ture when we index a given database.

6.1.2 Regression Model

We use the data from Chapter 4 to perform the regression. From the experi-

mental results, we know that the searching efficiency is related to:

1. Dimensionality (D),

2. Data set size (S),

3. Maximum leaf-node size (M), and

4. Number of data objects retrieved (R).

So, the efficiency formula is related to these parameters. Also, as we do

not know the degree of the efficiency formula, we assume the formula is in the

form:

efficiency = k11R
k12 + k21D

k22 + k31M
k32 + k41S

k42 + K. (6.1)

where k11, k12, k21, k22, k31, k32, k41, k42, and K are real-valued constant.

After having this model, we use regression tool to find those constants and

their values are listed in Table 6.1.



Chapter 6 Conclusion 120

Real Efficiency Predicted Efficiency Difference
0.28 0.16 0.12
0.24 0.16 0.08
0.20 0.15 0.05
0.16 0.14 0.02
0.03 0.07 0.04
0.02 -0.02 0.04

Table 6.2: The differences between the real efficiency and the predicted effi-
ciency.

So, Equation 6.1 becomes:

efficiency = 0.1830S0.126−0.0001R1.088−0.2244D0.333−0.0001M0.960+0.6761.

(6.2)

We examine the error of the efficiency formula by comparing the efficiency

from the case study in Chapter 5 with the predicted efficiency from the effi-

ciency formula. The results are listed in Table 6.2.

From Table 6.2, we find that the average difference between the real effi-

ciency and the predicted efficiency is 0.06. It means that if we use the efficiency

formula to predict the efficiency of an unseen database.

6.1.3 Discussion

From the equation, we can estimate the efficiency by giving the parameter

values. Apart from this, we can also find out the relationship between these

parameters and the efficiency easily.

First, we know from Equation 6.2 that the efficiency is actually a sum of

five terms. They are:

1. 0.1830S0.126,
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2. −0.0001R1.088,

3. −0.2244D0.333,

4. −0.0001M0.960, and

5. 0.6761.

So, we plot their value in Figure 6.1 to find their effect to efficiency under

different values.

From Figure 6.1, we we can also find out the relationship between these

parameters and the efficiency easily. Here are the relationships.

1. Dimensionality (D): As the values of −0.2244D0.333 are always nega-

tive, it causes degradation to the efficiency. Also, it has the largest mag-

nitude among all the other functions. Therefore, dimensionality causes

the major degradation to the efficiency of SFCC-b-tree.

2. Data set size (S): The values of 0.1830S0.126 are positive and increase

as S. Therefore, the larger the data set size, the higher the efficiency.

Also, it has the second largest magnitude among all the other functions.

Therefore, data set size causes a great contribution to the efficiency of

SFCC-b-tree.

3. Maximum leaf-node size (M): The values of −0.0001M0.960 are al-

ways negative and decrease as M . So, the larger the maximum leaf-node

size, the lower the efficiency. The magnitude of −0.0001M0.960 is not

very large when compared with other functions, such as those about D

and S. So, the effect of M on the efficiency of SFCC-b-tree is not very

large.
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Figure 6.1: Plotting of equation y = axb with different values of a and b.
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4. Number of data objects retrieved (R): The values of −0.0001R1.088

are always negative and decrease as M . So, the larger the maximum leaf-

node size, the lower the efficiency. Also, The magnitude of −0.0001R1.088

is not very large when compared with other functions, such as those about

D and S. So, the effect of R on the efficiency of SFCC-b-tree is not very

large.

6.2 Future Directions

In this section, we suggest some possible future directions for SFCC-b-tree.

1. Hybrid Method for SFCC-b-tree:

(a) A more balanced tree: SFCC-b-tree used the natural clusters

information to build the indexing structure. However, whether the tree

balance is not a consideration of SFCC-b-tree. As a result, SFCC-b-tree

may perform worse than those indexing structures having considered this

issue, when the number of objects retrieved is extremely large. So, it is

better to use a hybrid model to build the indexing tree in order to make

a more balanced tree.

(b) Smaller leaf node size: Also, SFCC-b-tree is not very efficient

when the data set size is small (size ≤ 100). So, we suggest to use

another suitable clustering algorithm for small data sets. As a result, we

can use a smaller leaf node size in the tree and it will increase the overall

efficiency of retrieval.

2. The Relationship Formula: Although the model we are using now is

already very complex, the relationship formula presented in Section 6.1

is still based on some assumptions. We do not know that what the real
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model of the relationship formula is. Therefore, more research is needed

to find out a better model for the relationship formula.

6.3 Conclusion

In this thesis, we have presented two fuzzy clustering algorithms, FCC and

SFCC. Also, we have used SFCC to build up an indexing structure, SFCC-b-

tree, in a hierarchical approach. We have also analyzed our methods by using

some experiments and a case study.

From the experiments and case study, it is concluded that: (1) FCC and

SFCC outperform many other clustering algorithms. (2) SFCC-b-tree is ef-

ficient to produce 100% nearest-neighbor search results and it outperforms

VP-tree for indexing and retrieveal in many aspects. (3) SFCC-b-tree works

fine in high dimensional data (100-D data), and in multimedia data.

According to the experimental results, we also work out a efficiency formula

for predicting the searching efficiency of SFCC-b-tree.
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