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Abstract - In recent years, Support Vector Ma-
chine (SVM) has become a very dynamic and popular
topic in the Neural Network community for its abili-
ties to perform classification, estimation, and regres-
sion. One of the major tasks in the SVM algorithm is
to locate the discriminant boundary in classification
task. It is crucial to understand various approaches
to this particular task. In this paper, we survey sev-
eral different methods of finding the boundary from
different disciplines. In particular, we examine SVM
from the statistical learning theory, the Convex hull
problem from the Computational Geometry’s point of
view, and Gabriel graph from the Computational Ge-
ometry perspective to describe their theoretical con-
nections and practical implementation implications.
Moreover, we implement these methods and demon-
strate their respective results on the classification
accuracy and run time complexity. Lastly, we con-
clude with some discussions about these three differ-
ent techniques.

I. Introduction

Given a data set which contains the data belonging to
two or more different classes, either linearly separable or
nonseparable, the problem is to find the optimal separat-
ing hyperplane (Decision Boundary) to separate the data
according to their class type. Support Vector Machines
(SVMs) have attracted wide interest as a mean to imple-
ment structural risk minimization for the problem of clas-
sification and regression estimation introduced by Vap-
nik in the late seventies [8]. This led to a recent explo-
sion of applications and deepening theoretical analyses,
that has now established SVMs along with neural net-
works as one of the standard tools for machine learning
and data mining. There are three key points needed to
understand SVM: (1) maximizing margins, (2) the dual
formulation, and (3) kernel functions. Most people in-
tuitively grasp the idea that maximizing margins should
help improve generalization. Kernel functions are used

to solve the problems in high-dimensional space. But
changing from the primal to dual formulation is typically
black magic for those unfamiliar with duality theory. If
the primal problem P has its dual promblem, it means
the solution of one problem could be recovered from that
to the other. For example, Lagrangian Dual problem is
formulated with the Lagrangian dual objective function
which statisfies the constraints of the primal problem,
and maintains any other constraints within the data set.
To better understand SVMs, a geometric interpretation
from the dual perspective along with a mathematically
rigorous derivation of the ideas behind the geometry, can
be useful.

Convex hull could be a simple intuitive geometric ex-
planation of SVM [2]. The convex hull of a set of points
is the smallest convex set which contains all the points.
It is also the fundamental construction for mathematics
and computational geometry. It turns out that finding
the nearest points of the two convex hulls is similar to
finding the separating hyperplane with maximum margin
in the SVM case [2].

From [1], we know that Convex hull could be used
to solve many problems, such as half space intersection,
Delaunay triangulation, Voronoi diagrams, etc.

The Voronoi diagram and Delaunay triangulation are
two of the possible representations for K-Nearest neigh-
bor rule. The K-Nearest neighbor rule can be seen as the
non-parametric decision rule which needs no prior knowl-
edge of the distributions [3]. Decision rules are used in
many areas such as pattern recognition and database.
They are used to determine the class membership for
a point based on some computational measurements for
the point. Despite simplicity and good performance of
K-Nearest neighbor rule, the traditional criticism of the
method is that it needs a large storage space for the en-
tire training data and the necessity to query the entire
training set in order to make a single membership classi-
fication. As a result, there has been considerable interest
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in editing the training set to reduce its size.
Just like SVMs choose support vectors which are a

small part of the whole training set to find the separat-
ing hyperplane, different proximity graphs (such as De-
launay triangulation and Gabriel graph) provide efficient
geometric apparatus for solving the problem and find the
decision boundary. The Gabriel graph of a set of points is
a subgraph of Delaunay triangulation for that set, which
is a dual of Voronoi diagram [3].

This paper tries to bring all these concepts to a unified
application domain. We use Convex hull to be a bridge
which connects SVM and Gabriel graph. Both of them
could be used in the classifier and have a good perfor-
mance not only on accuracy but also on time complexity.
We also performed experiments to show the performance
the two methods and made the discussion of their advan-
tages and drawbacks.

In the next section, we will present the three main con-
cepts for comparison: (1) SVM, (2) Convex hull, and (3)
Gabriel graph. In Section 3, we conduct a series of exper-
iments that will use the different data sets and demon-
strate the performance of the different methods. The
discussion of these results is in Section 4. Lastly, we con-
clude and make some final remarks in Section 5.

II. Related Background

In this section, we plan to take a survey on three differ-
ent concepts for finding the separating hyperplanes in a
data set. These concepts come from different disciplines
in Computer Science, ranging from Computational Ge-
ometry to statistical learning theory. We want to show
the similar relationship among these different concepts
arising from different disciplines.

We will start with the simplest case–linear separable
data. Later we will see that the analysis for the general
case, nonlinear-separable data , results in a very similar
programming problem.

A. Support Vector Machine

Given the training data, xi, yi, i = 1, · · · , l, yi ∈ {−1, 1},
xi ∈ Rn, suppose there exists a hyperplane which could
separate the positive from the negative data set. It means
that the points x which lie on the hyperplane satisfy
ω·x+b = 0, where ω is normal to the hyperplane, |b|/ ‖ω‖
is the perpendicular distance form the hyperplane to the
origin, and ‖ω‖ is the Euclidean norm of ω. Define the
margin is the sum of the distance of the separating hy-
perplane to the closest positive and negative points [4].
For the linearly separable case, SVM simply finds the
separating hyperplane with the largest margin. It could
be formulated as a set of linear constraints for all the

Fig. 1. Linear separating hyperplanes for the separable case

training data points as:

yi(ω · xi + b)− 1 ≥ 0, ∀i. (1)

From Fig. 1 and Eq. (1), we can calculate the margin
as 2/ ‖ω‖. Then we can find the separating hyperplane
with the largest margin under the constraint in Eq. (1)

by minimizing ‖ω‖2 in

min
1

2
‖ω‖2 (2)

subject to yi(x · ω + b) ≥ 1, i = 1, · · · ,m.
Let α = α1, α2, · · · , αm be them nonnegative Lagrange

multipliers, one for each inequality constraints in Eq. (1),
the solution to Eq. (2) equals to the solution to the con-
strained quadratic optimization problem using the Wolfe
dual theory [4] as,

LP ≡
1

2

∑

i,j

αiαjyiyjxixj −
∑

i

αi (3)

subject to 0 ≤ αi ≤ 1,
∑

i

αiyi = 0.

In the soft margin (nonlinear separable case) formula-
tion of [9], the generalized optimal separating hyperplane
is regarded as the solution to Eq. (4) as follows,

min(
1

2
‖ω‖2 + C

m∑

i=1

ξi) (4)

subject to yi(x·ω+b) ≥ 1−ξi, ξi ≥ 0, i = 1, · · · ,m,C > 0.

Similarly, the corresponding Lagrangian formulation is
defined as

LP =
1

2
‖ω‖2 + C

∑

i

ξi (5)

−
∑

i

αi{yi(xi · ω) + b)− 1 + ξi} −
∑

i

µiξi.
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The optimal solution to this problem satisfies the fol-
lowing Karush-Kuhn-Tucker (KKT) conditions [9]:

αi{yi(ω · ξi + b)− 1 + ξi} = 0, µiξi = 0.

So its Wolfe dual problem could be defined as

min
1

2

∑

i,j

αiαjyiyjxixj −
∑

i

αi (6)

subject to 0 ≤ αi ≤ C,
∑

i

αiyi = 0.

For solving high dimension problems, SVM maps the
space of covariates X to a Hilbert space H of a higher
dimension (maybe infinite), and fits an optimal linear
classifier in H.

It does so by choosing a mapping function φ:Rn→H
in such a way that φ(x) · φ(y) = K(x, y) for some known
and easy to evaluate set of functions, K. Sufficient con-
ditions for the existence of such a map are provided by
the Mercer’s theorem [9].

An example of the mapping function can be described
as follows. Set Qij = yiyjK(xi, xj), such that α · y = 0,
0 ≤ αi ≤ C, i = 1, · · · ,m. Due to the new mapping
function, the objective function is changed as follows

R(α) =
1

2
α · (Q · α) − α. (7)

From a Computational Geometric point of view, the
solution to the Convex hull problem provides a way to
locate support vectors [2]. In the next section, we sur-
vey some interesting properties on the computation of
Convex hull.

B. Convex hull

The separating plane is the hyperplane which is orthogo-
nal to the line segment and bisects the line segment which
connects the nearest points of the two convex hulls of the
data sets.

In Fig. 2, the convex hull of class A(B) consists of all
the points which could be written as convex combination
of the points in A(B). A convex combination of points
in A, u, is denoted by u=

∑
i∈A βixi, where i ∈ A ,βi ≥ 0,

and
∑
i∈A βi=1 and the convex combination of the points

in B, v, is denoted by v=
∑
j∈B βjxj , where j ∈ B, βj ≥

0, and
∑
j∈B βj=1. Assume U is the convex hull of A, V

is the convex hull of B [7].
The problem of finding two nearest points in the con-

vex hulls could be written as follows:

min ‖u− v‖ (8)

Fig. 2. Two closest points of the two convex hulls determine
the separating plane

such that u ∈ U, and v ∈ V.
If (ω, b) is the optimal solution of Eq. (3), and (u, v) is
the optimal solution of Eq. (8), with the fact that the
maximum margin of the two sets=2/‖ω‖ = ‖u− v‖, and
ω has the same direction with (u− v), so

ω =
2

‖u− v‖2
(u− v), b =

‖v‖2 − ‖u‖2

‖u− v‖2
.

We could introduce a new variable, σ, to Eq. (3) and
then rewrite

∑
i αiyi = 0 into two constraints

∑

i∈A
αiyi = σ,

∑

i∈B
αiyi = σ.

Now, we define βm = αm
σ , ∀m, so Eq. (3) could be

rewritten as follows

min
σ2

2

∑

m

∑

k

βmβkymykxmxk − 2σ (9)

such that 0 ≤ βi ≤ 1,
∑

i∈A
βi = 1,

∑

j∈B
βj = 1.

When σ = 2∑
m

∑
k
βmβkymykxmxk

, it is equivalent to

the following problem:

min
1

2

∑

m

∑

k

βmβkymykxmxk (10)

such that 0 ≤ βi ≤ 1,
∑

i∈A
βi = 1,

∑

j∈B
βj = 1.
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We now define the matrix P with columns:
y1x1, y2x2, · · · , ymxm. With this, we can obtain the fol-
lowing equation from Eq. (10) as

∑

m

∑

k

βmβkymykxmxk = ‖Pβ‖ .

If β satisfies the constraints, then Pβ = u − v,where
u ∈ U and v ∈ V . So Eq. (3) is equivalent to Eq. (8).

Except the algebraic description for convex hull, We
also could represent a convex hull with a set of facets and
a set adjacency lists giving the neighbors and vertices for
each facet. The boundary elements of a facet are denoted
as ridges. Each ridge signifies the adjacency of two facets.
In R3 and general position, facets are triangles and ridges
are edges.

A Delaunay triangulation in Rd could be computed
from a convex hull in Rd+1. To determine the Delaunay
triangulation of a set of points, we can calculate it by
lifting the points to a paraboloid and computing their
convex hull. The set of ridges of the lower convex hull
is the Delaunay triangulation of the original points [1].
Gabriel graph can be computed by discarding edges from
Delaunay triangulation. However, according to the time
consumed, this approach to obtain the Gabriel graph is
not a very attractive one when number of dimensions is
large.

C. Gabriel graph

In K-Nearest neighbor classification, we classify an ob-
ject (point) in d-dimensional space according to the dom-
inant class among its k-nearest neighbors from the train-
ing data set. It is useful if we can find some represen-
tatives from the training set to classify new point while
preserving a high accuracy. Both Voronoi diagram and
Gabriel graph can be used for such purpose. The general
idea is found in [3].

A Voronoi diagram is a partition of special points into
regions such that each region consists of points closer
to one particular node than to any other nodes. For
example, a set of points P := p1, p2, ... such that for each
cell corresponding to point pi, the points q in that cell
are nearer to pi than to any other point in P . In other
words, the points q satisfies the following inequality:

dist(q, pi) < dist(q, pj), pi, pj ∈ P, j 6= i.

Therefore, a new point in a Voronoi region must be closer
to the region’s node than to any other nodes. So, we
can assign the new point to the class represented by the
region’s node. Moreover, the boundaries of the Voronoi
regions separating those regions whose nodes are of differ-
ent class can be used as the decision boundary of the clas-

Fig. 3. Gabriel graph

sifier. However, it is clear that the nodes whose bound-
aries did not contribute to the decision boundary are re-
dundant and can be safely deleted from the training data.
Gabriel graph of a set, S, of points has an edge between
points p and q in S if and only if the diametral sphere of
p and q does not contain any other points. The resulting
points from the above process make up of the Gabriel
edited set. We shall see that decision boundary can be
constructed from those Gabriel neighbors (p and q) such
that p and q are of different classes (see Fig. 3).

The Gabriel edited set is always a subset of the Voronoi
edited set because of the fact that a Gabriel graph of a
set of points is a subgraph of Delaunay triangulation for
that set. Thus, Gabriel editing which is the procedure
of finding the Gabriel neighbors, reduces the size of the
training set more than Voronoi editing. Although, the
resulting Gabriel editing does not preserve the original
decision boundary, the changes occur mainly outside of
the zones of interest.

The Gabriel editing algorithm can be formulated as
follows:

1. Compute the Gabriel graph for the training set.
2. Visit each node, marking it if all its Gabriel neigh-

bors are of the same class as the current node.
3. Delete all marked nodes, exiting with the remaining

ones as the edited training set.
Clearly, the Gabriel graph can be computed by brute
force if for every potential pair of neighbors A and B,
we just verify if any other point X is contained in the
diametral sphere such that L2(A,X) + L2(B,X) <
L2(A,B) where L2 is the square of the distance be-
tween the two points.

III. Experiments and Results

A. Time Complexity

Table I summarizes the theoretical analyses from the re-
search result of Hush and Scovel [6] and Bhattacharya
[3], where n is the number of input points, d is the di-
mension. Here, εn is obtained through an appropriate
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TABLE I

Time Complexity

Methods Best Average Worst
Case Case Case

SVM O(n) uncertain O(n5 logn /εn)

Gabriel graph O(dn2) O(dn3) O(dn3)

normalization of objective function, R, and depends on
n. The Best Case for any algorithm is to visit each data
point once. For average case analysis with SVM, it typ-
ically requires some knowledge of the distribution over
problem instances. Moreover, it is not uncommon to see
run time estimates of m2 to m3 reported from experi-
ments with these types of algorithms [6]. But the bounds
of iteration steps to find the optimal solution could not
be made certain.

The Gabriel graph algorithm requires O(n2) opera-
tions to yield O(n2) pairs of Gabriel neighbors. For each
such pair of points (A,B), the algorithm requires O(nd)
operations. Hence the overall average complexity of the
algorithm is O(dn3).

From Table I, we see that Gabriel graph is more stable
in different cases (linear-separable or nonlinear-separable
cases and different data sets) but has poor performance
with data having high dimension. Even now we have not
found an exact way to measure the iterations that the
algorithm will take to compute the optimal solution. In
other words, the result of SVM is data-sensitive, i.e., it
changes with different data sets. The dimension has little
effect on SVM.

The worst case for SVM is that the algorithm of SVM
drives the criterion function to the optimum solution in

O(Cn
4

εn
) iterations. In each step it will take O(n logn)

time to determine whether the result satisfies the con-
straints for the optimal solution. Although this does not
happen often in the real world, it is a point to consider
when implementing the algorithm.

The following empirical experiments evaluate the per-
formance of SVM and Gabriel graph on two simple data
sets: (1) Iris data set and (2) Spiral data set. First, we
use Libsvm [5], an integrated software for support vec-
tor classification, (C-SVC, nu-SVC), regression (epsilon-
SVR, nu-SVR) and distribution estimation (one-class
SVM). It supports multi-class classification. The ba-
sic algorithm is a simplification of both SMO by Platt
and SVMLight by Joachims. It provides both C++ and
Java source codes. Second, we implement the Gabriel
graph [3] algorithm with Matlab. We run the two algo-
rithms under WINNT operating system and record the
result. In these experiments, the SVM parameters are
set according to Table II.

TABLE II

SVM parameters setting

Parameter Spiral Data Iris Data

Kernel Function Radial Basis Function Dot Product

Error Penalty(C) 1000 1000

Gamma for RBF 50 Default

TABLE III

Experiments on the Iris Data and the Spiral Data

Method Size Support Gabriel
of Data set Vectors Edited Set

Iris Data 100 2 2

Spiral Data 126 108 123

B. Iris Data and Spiral Data

The Iris data set consists of four measurements made
on each of 150 flowers. There are three pattern classes:
Virginica, Setosa, and Versicolor corresponding to three
different types of Iris. In this case, the reference set con-
sists of 150 feature vectors in 4-space each of which is
assigned to one of the three above mentioned classes. In
these experiments, we only choose two features of the two
classes (Iris-setosa and Iris-versicolor) of the Iris data:
petal length and petal width as the test data.

Table III shows the results when the Gabriel graph al-
gorithm and SVM are applied to the Iris data. We record
the number of support vectors and the size of Gabriel
edited set.

In the second example, we illustrate the two methods
on a two-spiral benchmark problem. The training data
with two classes indicated with the different labels are in
a two dimensional input space. (see Fig. 4 and Fig. 5)The
excellent generalization performance is clear from the de-
cision boundaries shown in the two methods’ experiment.
The results are shown in Table III.

IV. Discussions

As described in above sections, the Convex hull could
be one intuitive geometric explanation for SVM and it
also can be used to solve the Voronoi diagram problem.
In fact, the edited set of Voronoi diagram is the super
set of the edited set of Gabriel graph. There exist some
relationships between SVM and Gabriel graph.

Observation #1 From the two experiments, we ob-
serve that the number of support vectors is always
smaller than the size of the Gabriel graph edited
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Fig. 4. The boundary found by Gabriel graph

Fig. 5. The boundary found by SVM

set. Suppose support vectors are indeed the subset
of the Gabriel edited set, we could improve SVM
with Gabriel graph algorithm as follows:

1. Map the data to some other higher, possibly infi-
nite, dimension space, H and fit an optimal linear
classifier in that space.

2. Use the Gabriel graph algorithm to reduce the size
of the training data.

3. Using the SVM’s optimization steps to obtain the
solution to the quadratic problem and find the
separating plane.

As a result of applying the steps above, the reduced
training data will accelerate the convergence speed
of finding the optimal quadratic solution.

Observation #2 Moreover, the Gabriel graph’s formu-
lation is more rigid in the sense that it is not
parametrizable so that there is only a single solution
to Gabriel graph for a given input set. On the other
hand, SVM can be parameterized to achieve differ-
ent results for a given input set. For example, error
penalty can be modified to suit a user’s requirement.
Nonetheless, the Gabriel graph algorithm provides a
stable solution which can be used as a reference to

evaluate the average case of some SVM algorithms.
Observation #3 For the simple case, we can observe

that SVM and Gabriel graph could solve the problem
perfectly, if we select the proper parameter for SVM.

V. Conclusion

In this paper, we have demonstrated how the SVM and
Gabriel graph can be used for solving the classification
problem. Moreover, we have tried to show the relation-
ships among these two algorithms. The Gabriel graph
will render a superset of the SVM results through empir-
ical observations. We could try to improve SVM’s per-
formance in general by using the Gabriel graph’s training
data set reduction algorithm. In light of this, we plan to
investigate the following in the future:

1. Given the same input data set, compare which al-
gorithm is faster and more accurate in obtaining the
optimal decision boundary.

2. Theoretically prove that support vectors are the
subset of Gabriel edited set.
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