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Content-based Image Retrieval (CBIR) is a very popular re-
search topic in Information Retrieval and Pattern Recognition.
Although extensive studies have been conducted, it is still a diffi-
cult task to find the user preferred images from image databases.
Relevance feedback, as an alternative and more powerful tech-
nique for iterative image retrieval, has been investigated in re-
cent years. Many statistical learning techniques have been em-
ployed to solve the relevance feedback problem. However, all
these techniques are typically used as binary classifiers in which
the imbalanced input dataset problem is ignored. In other words,
they do not consider the imbalanced dataset problem in rele-
vance feedback where the irrelevant images extremely outnum-
ber the relevant images. This imbalanced dataset setting would
lead the positive information (relevant images) to be overwhelmed
by the negative information (irrelevant images). Furthermore,
how to reduce the number of iterations in order to achieve the
optimal boundary between relevant and irrelevant images dur-
ing the learning procedure is also a critical problem for image
retrieval from large datasets.

In this dissertation, we first apply the framework of Biased
Minimax Probability Machine (BMPM) to the relevance feed-

i



back task in CBIR. Conventional relevance feedback techniques
typically treat equally with relevant and irrelevant images. How-
ever, the irrelevant instances often overnumber the relevant in-
stances practically. In order to handle the imbalanced prob-
lem, we present a BMPM-based methodology to capture the
user’s preference in the relevance feedback process. The pro-
posed scheme is evaluated against both synthetic and real-world
datasets, and promising results are obtained.

Second, we extend our BMPM learning strategy with active
learning to deal with the iteratively learning problem. Tradi-
tional CBIR systems usually need a number of feedback itera-
tions to achieve a satisfactory performance in the learning pro-
cedure. In order to overcome the problem, an active learning
framework with BMPM is proposed in this thesis. The sug-
gested scheme is validated by promising experimental results.

Finally, an efficient training algorithm for BMPM based on
Second Order Cone Programming (SOCP) is presented in order
to tackle the large scale learning problems. Experimental results
are reported to demonstrate the effectiveness of the suggested
algorithm.
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偏差分類在基於内容的圖像檢索中相關性反饋技術之應用 

摘要 

基於內容的圖像檢索(CBIR)是一個非常普遍的研究題目，並且在電腦領域吸引了

大量的研究興趣。雖然到目前爲止進行了廣泛的研究, 從圖像資料庫中檢索到渴

望的圖像仍然是一個困難和開放的問題。相關性反饋, 作為重複圖像檢索的一個

更加可行和強大的技術, 近年來被密集地研究了。許多統計學習技術被用來解決

相關性反饋問題。但是, 所有這些技術典型地被用作對稱的二進制分類器而輸入

資料集之非對稱問題被忽略。換句話說, 他們沒有考慮在相關性反饋中的不對稱

資料集的問題, 毫不相關的圖像在數量上遠遠超過相關的圖像。這個非對稱資料

集設置會使得正面資訊被消極資訊所淹沒。此外, 怎麼減少為了達到相關和毫不

相關的圖像之間優選的界限所需的機器學習疊代的數量是從大資料集中進行圖

像檢索的一個重要問題。 

在這份論文中，我們首先應用偏差最大最小概率機(BMPM)去對付 CBIR 中的非對

稱學習問題。正規的相關性反饋技術通常會平衡的處理相關和無關的訓練樣本。

然而， 在實際的相關性反饋任務裏，無關的訓練樣本數目通常要遠超出相關樣

本的數目。爲了處理這個非對稱的學習問題，我們提議在相關性反饋過程中使用

基於 BMPM 的方法來獲取用戶的首選項。在模擬數據集和真實世界數據集上的實

驗結果表明我們提出的方案能有效地改善檢索的性能。 

其次，我們擴大基於 BMPM 的學習策略並以活躍學習理論來應付重復學習問題。

在相關性反饋過程中，傳統的 CBIR 系統通常需要很大數量的反饋曡代以達到優

選的界限。爲了克服這個問題，在這份論文中我們提議一個集成了活躍學習理論

和 BMPM 的學習框架，並且通過了實驗核實其有效性。 

最後, 我們提出一個基於二次錐規劃(SOCP)的高效 BMPM 訓練算法，以用來處理

大規模學習問題。頗佳的實驗結果展示了我們所提出方法的有效性。 
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Chapter 1

Introduction

Owing to the rapid growth of digital devices, capturing and stor-
ing large amounts of multimedia data has become common [82].
Both government and commercial equipments generate giga-
bytes of image, video, and audio data, or a combination of
them [84, 90]. An extremely large amount of information is
out there. Growing needs of efficient retrieving, searching and
browsing such data is a natural conclusion of the requirement for
database systems. Multimedia information retrieval has been a
very active research topic in recent years, among which image
retrieval has become one of the most important and challeng-
ing problems [28, 29, 82]. In image retrieval, there are two re-
search communities, database management and computer vi-
sion, studying the same topic from two different viewpoints,
text-based and content-based approaches [84, 90].

In a traditional image retrieval system, it uses text keywords
or text descriptors for indexing and retrieval. However, there
are two main difficulties in keyword-based image retrieval. On
the one hand, there are differences in the interpretation of im-
age content. There are always inconsistencies in keyword as-
signments, since different users may use different keywords to
describe the same image concept. On the other hand, large
amount of manual effort is required to annotate the images in
database.

1
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Image DB Feature ExtractionLow-level FeaturesVisual FeaturesSimilarity Measure Query ImageRetrieval ResultPositive FeedbackNegative FeedbackRefinement Scheme
Final Result Relevance FeedbakNoYes User

Figure 1.1: A Representative CBIR Framework.

To overcome the difficulties of keyword-based image retrieval
approach, Content-based Image Retrieval (CBIR) has been pro-
posed [8, 9]. In contrast to the keyword-based approach, CBIR
uses the visual feature of images, such as color, texture, and
shape feature, for indexing and retrieval. This greatly reduces
the difficulties of the keyword-based approach, since the feature
extraction process can be made automatic and the image’s own
content is always consistent [10]. The CBIR process can be
summarized as follows:

1. Feature Extraction: Image Processing and Computer Vi-
sion techniques are used to extract low-level visual features
from images. Image features include color, texture, and
shape, etc. These features are usually represented by high-
dimensional vectors in the real domain.

2. Retrieval: For a given feature, a notation of similarity
measure is determined. The similarity measure is used to
rank the images in the collection.

Despite the extensive research efforts, the retrieval techniques
used in CBIR systems have a very limited recall even when the
best feature extraction and similarity measure algorithms are
used. That is only a very limited relevant items retrieved to the
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user in response to the initial query. This problem is recognized
as a major difficulty in information retrieval. There are two
major reasons that lead to this problem; they are, (1) the gap
between high-level concepts and low-level features; (2) subjec-
tivity of human perception. Therefore, for a particular image,
different users or the same user under different circumstances
may perceive differently [27, 29]. Thus, it is almost impossible
to find a feature extraction or similarity measure algorithm to
satisfy all situations.

In light of this, researchers figure out that refinements of the
query and similarity measurement during the retrieval process
are required to further improve the retrieval performance. Rele-
vance feedback is suggested as a solution for the problem of user
subjectivity. The goal of relevance feedback is to learn the users’
preference from their interaction, and it is a powerful technique
to improve the retrieval result in CBIR. Under this framework,
a set of images are presented to the user according to the query.
The user marks those images as either relevant or irrelevant and
then feeds back this information into the system. Based on this
feedback information, the system presents another set of images
to the user. The system learns user’s preference through this
iterative process and improves the retrieval performance. From
the experimental results of various CBIR systems, it shows that
relevant feedback is a promising direction for CBIR.

1.1 Problem Statement

Most of the current relevance feedback systems are based on the
statistical learning approach. Under this framework, the system
refines the query and improves the retrieval result by using the
feedback information provided by the user.

In the past years, relevance feedback techniques have evolved
from early heuristic weighting adjustment techniques to various



CHAPTER 1. INTRODUCTION 4Image QueryRetrieval ResultPositive/Negative Relevance FeedbackQuery Refinement/Parameters UpdateUpdate the Retrieval Result
User Feedback?

YesNo

Figure 1.2: Relevance Feedback Flow Chart.

machine learning techniques recently [27, 29, 82, 107]. In [52],
Self-Organizing Map (SOM) was proposed to construct the rele-
vance feedback algorithm. Besides the SOM, many popular ma-
chine learning techniques were also suggested, such as Decision
Tree [60], Artificial Neural Network [90], and Bayesian learn-
ing [111], etc. Moreover, many state-of-the-art classification
techniques were proposed to attack the relevance feedback, such
as Nearest-Neighbor classifiers [105], Bayesian classifiers [13] and
Support Vector Machines [29, 32, 107], etc. Typical relevance
feedback approaches by these classification models are based
on strict binary classifications [29, 32, 105] or one-class classifi-
cations [11]. However, the strict binary classifications treat the
relevance feedback problem as a strict binary classification prob-
lem, and they do not consider the imbalanced dataset problem
in relevance feedback, in which the number of irrelevant images
is significantly larger than the relevant images. This imbalanced
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dataset problem will lead the positive data (relevant images) to
be overwhelmed by the negative data (irrelevant images). The
one-class technique seems to avoid the imbalanced dataset prob-
lem, but the relevance feedback scheme cannot be done properly
without the help of negative information [27].

Recently, researchers proposed a novel classification model
for imbalanced dataset learning problems, named Biased Mini-
max Probability Machine (BMPM) [36, 38]. The BMPM con-
structs a classifier which deals with imbalanced learning tasks. It
provides a worst-case bound on the probability of misclassifica-
tion of future data points based on reliable estimates of means
and covariance matrices of the classes from the training data
samples, and achieves promising performance. Our experiments
show that the use of BMPM to handle the relevance feedback
problem can further improve the retrieval results compared to
the traditional techniques. However, since the relevance feed-
back involves large volume of images, the learning process need
a number of iterations to get the optimal boundary. The system
users may not have the patience to wait for such a long learning
time when they do the image query. How to reduce the number
of iterations in the relevance feedback procedure is also a crucial
problem. On the other hand, the original solvability of BMPM
model has some assumptions, which would lead to the failure of
the optimization problem.

Thus, the goals we want to achieve are:

1. To develop a relevance feedback framework that has the
advantages of the existing relevance feedback techniques,
and is able to address the imbalanced dataset problem.

2. To improve the retrieval result and reduce the number of
iterations required during the relevance feedback procedure
in Content-based Image Retrieval.

3. To make the solvability of Biased Minimax Probability Ma-
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chine more efficient and accurate, and remove the crucial
assumptions in its original solution.

1.2 Major Contributions

The main contributions of our work are:

1. Biased Minimax Probability Machine-based Frame-
work for Relevance Feedback. We apply the framework
of BMPM to the imbalanced learning problem in CBIR.
We propose a BMPM-based methodology to capture the
user’s preference in the relevance feedback process in which
BMPM addresses the imbalanced dataset problem. Our
strategy is to construct a biased classifier so that the pos-
itive examples would not be overwhelmed by the negative
examples since the negative ones are extremely larger than
the positive ones.

2. Biased Minimax Probability Machine Active Learn-
ing for Relevance Feedback. Traditional CBIR sys-
tems usually need a large number of feedback iterations
to achieve the optimal boundary during the learning pro-
cedure. How to reduce the iteration number is a crucial
problem for retrieving image from large dataset. We pro-
pose an active learning framework with BMPM to tackle
this problem.

3. Second Order Cone Program for Biased Minimax
Probability Machine. Training a BMPM on a dataset
of huge size with hundreds of thousands of samples is a
challenging problem. We propose an efficient algorithm to
solve this problem, which reformulate the BMPM frame-
work into a Second Order Cone Program. Our analysis of
the proposed algorithm shows that it is more efficient and
accurate than its original solution.
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Our evaluations show that:

1. BMPM produces better retrieval performance than tradi-
tional statistical learning models to handle the imbalance
learning task for relevance feedback in CBIR, including
Nearest Neighborhood and Support Vector Machines based
approaches in the literatures.

2. The retrieval performance of BMPM-based framework can
be further improved by incorporating active learning the-
ory.

3. It is more efficient and accurate to solve the BMPM prob-
lem for large dataset from the convex optimization angle.
Extensive experiments have been conducted to study vari-
ous appealing properties of the proposed algorithm. Com-
pared with its original solution, the proposed algorithm has
a much higher training accuracy, especially on datasets of
a huge size with hundreds of thousands of samples.

1.3 Thesis Outline

In the next chapter, we review the current progress of CBIR
and relevance feedback research. Furthermore, we present the
related works on imbalanced learning, active learning and con-
vex optimization. Chapter 3 presents how the imbalanced learn-
ing model, named BMPM, is applied to the problem of relevance
feedback. In Chapter 4, we conduct the research work of BMPM
active learning on relevance feedback in CBIR. We propose a
novel approach for the efficiency and accuracy issues on BMPM
for large scale learning problem in Chapter 5. Lastly, we con-
clude the thesis and describe some potential research directions
in Chapter 6.

Each chapter of the thesis is intended to be self-contained.
Thus, in some chapters, some definitions, formulas, lemmas,
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theorems or illustrative figures that have already appeared in
previous chapters, may be briefly reiterated for consistency and
completeness.

2 End of chapter.



Chapter 2

Background Study

Traditional database management systems are designed for man-
aging numerical and textual data, and searching such data is
usually based on straightforward comparisons of text and nu-
merical values. However, the simple method of retrieval is no
longer sufficient for the multimedia data, since the digitized rep-
resentations of image, video, audio, or data themselves do not
convey the reality of these media items [10, 103]. As a result,
content-based retrieval for multimedia data is given more and
more awareness [29, 84, 90]. Implementation of the content-
based retrieval facility is not based on a single representation,
but is closely related to an underlying data model, a priori
knowledge of the area of interest, and the framework for rep-
resenting queries. In this chapter we survey recent studies on
content-based retrieval for multimedia databases. Throughout
the discussion, we assume databases that manage only image
data though other nontextual information are also in the cate-
gory of multimedia databases.

2.1 Content-based Image Retrieval

There has seen a rapid growth in the size of digital image collec-
tions in recent years. A large number of image data are being

9
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generated by both commercial and individual entities everyday.
However, we cannot access or make use of the information un-
less it is organized so as to allow efficient browsing, searching,
and retrieval. With the efforts from two research communities,
Database Management and Computer Vision, image retrieval
has been a very important research topic since the 1970s. These
two research communities study image retrieval from different
angles, one being text-based and the other being content-based.

Under the text-based setting, the general framework of im-
age retrieval is to first annotate the images by keyword and then
use text-based database management systems to perform image
retrieval. Representatives of this approach are [9, 103]. Much
research efforts have been pursued along this research direction,
such as feature extraction, data modelling, multi-dimensional in-
dexing, and query evaluation. Nevertheless, there exists two ma-
jor difficulties, especially when the volume of image collections
is large with hundreds of thousands samples. One is the huge
amount of human labor required in manual image annotation.
The other difficulty comes from the rich content in the images
and the subjectivity of human perception which is more essen-
tial. That is to say, for the same image content different people
may perceive it differently. The perception subjectivity and an-
notation impreciseness may cause unrecoverable mismatches in
later retrieval processes.

In the early 1990s, the two difficulties faced by the manual
annotation approach when it became more and more crucial ow-
ing to the emergence of large scale image collections. In order to
tackle these problems, Content-based Image Retrieval (CBIR)
was proposed. Under the CBIR framework, images would be
indexed by their own visual content, such as color and texture.
Since then, many research efforts have been conducted and many
image retrieval systems, both for research and commercial, have
been developed [66, 73, 83, 95, 96]. This approach has also estab-
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lished a general scheme of image retrieval from a new perspec-
tive, although there are still many open problems to be handled
before such retrieval systems can be put into practice.

There are three fundamental aspects for Content-based Im-
age Retrieval, i.e., Image Representation, High Dimensional In-
dexing, and Image Retrieval Systems Design. In the following
subsections, we will give a brief review of these three parts.

2.1.1 Image Representation

Feature extraction is the fundamental task in Content-based Im-
age Retrieval [84]. Normally features may include both text-
based features (keywords) and visual features (color, texture,
shape, etc). We confine ourselves in the techniques of visual
feature extraction since the key point of feature extraction in
Content-based Image Retrieval does not lie in text-based fea-
ture extraction [8, 82].

It is obvious that no single best presentation for a particular
feature owing to the human perception subjectivity. For any
given feature, there exists multiple representatives which char-
acterize the feature from different perspectives.

Color Feature

Color feature, which is independent of image size and orientation
and relatively robust to background variety, is one of the most
important and widely used visual features in image retrieval [62,
64, 114]. Color Histogram, Color Moments, and Color Sets are
three most popular color features in the research communities
of Computer Vision and Pattern Recognition.

Color Histogram is the most commonly used color feature rep-
resentation in image retrieval. It denotes the joint probability
of the intensities of the three color channels. Swain and Bal-
lard [101] propose Histogram Intersection, a L1 metric, as the
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similarity measure for the Color Histogram. In order to take
into account the similarities between similar but not identical
colors, Ioka and Niblack et al. [41, 66] introduce a L2 metric in
comparing the histograms. In addition, since most Color His-
tograms are very sparse and thus sensitive to noise, Stricker and
Orengo [97] propose to use the cumulated Color Histogram.

To overcome the quantization effects as in Color Histogram,
Stricker and Orengo [97] propose to use Color Moments ap-
proach. The mathematical foundation can be characterized by
the moments. Only the first moment (mean), the second, and
third central moments (variance and skewness) are extracted as
the color feature representation since most of the information
is concentrated on the low-order moments. Weighted Euclidean
distance is employed to measure the color similarity.

Smith and Chang [92, 93] propose Color Sets as an approxi-
mation to Color Histogram in order to facilitate fast search over
large scale image collections. They first transform the (R, G, B)
color space into a perceptually uniform space (i.e., H, S, V), and
then quantize the transformed color space into M bins. A Color
Set is defined as a selection of the colors from the quantized
color space. Thus a binary search tree can be constructed to
allow fast search since Color Set feature vectors are binary.

Texture Feature

Texture refers to the visual patterns that have properties of ho-
mogeneity that do not result from the presence of only a single
color or intensity, and it is an innate property of virtually all
surfaces. It contains important information about the structural
arrangement of surfaces and their relationship to the surround-
ing environment. Extensive research results on this topic have
been reported in the past decades due to its importance and
usefulness in Computer Vision and Pattern Recognition. Now,
it further finds its way in image retrieval tasks.
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In [26], Haralick et al. propose the co-occurrence matrix rep-
resentation of texture feature. Under this framework, it first
constructs a co-occurrence matrix based on the orientation and
distance between image pixels, and then extracts meaningful
statistics from the matrix as the texture representation. Many
other researchers follow their footprint and further propose en-
hanced versions. For example, Gotlieb and Kreyszig [23] find
out that contrast, inverse difference moment and entropy had
the biggest discriminatory power.

Tamura et al. [102] explore the texture representation from
a different viewpoint. They develop computational approxima-
tions to the visual texture properties found to be important in
psychology studies. The six visual texture properties are coarse-
ness, contrast, directionality, linelikeness, regularity, and rough-
ness. The major distinction between the Tamura texture rep-
resentation and the co-occurrence matrix representation is that
all the texture properties in Tamura representation are visually
meaningful whereas some in co-occurrence matrix representa-
tion may not. This makes the Tamura texture representation
very attractive in image retrieval, and it has been employed
in many real image retrieval systems such as QBIC [17] and
MARS [40, 67].

After Wavelet transform was introduced and its theoreti-
cal framework was established, many researchers begin to em-
ploy Wavelet transform in texture representation. Smith and
Chang [94] use the statistics (mean and variance) extracted from
the Wavelet subbands as the texture representation. This ap-
proach achieves impressive results in real image dataset. Wavelet
transform is also associated with other techniques to achieve bet-
ter performance. Gotlieb and Kreyszig use Wavelet transform
to perform texture analysis together with KL expansion and
Kohonen maps [23].
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Shape Feature

In some image retrieval applications, it requires the shape rep-
resentation to be invariant to translation, rotation, and scaling.
Generally the shape representations can be divided into two cat-
egories, boundary-based and region-based. The former uses only
the outer boundary of the shape while the latter uses the entire
shape region. Fourier Descriptor and Moment Invariants are
the most successful representatives for these two categories.

The core of Fourier Description is to use the Fourier trans-
formed boundary as the shape feature. There are some com-
prehensive literature reviews on this topic in [74, 123]. In order
to take into account the digitization noise in the image domain,
Rui et al. propose a modified Fourier Descriptor which is both
robust to noise and invariant to geometric transformations [85].

The concept of Moment Invariant is to use region-based mo-
ments, which are invariant to transformations as the shape fea-
ture. Hu [33] identifies seven such moments. Since then, many
improved versions emerged based on his work. Yang and Al-
bregtsen [121] propose a fast method of computing moments in
binary images based on the discrete version of Green’s theorem.
Motivated by the fact that most useful invariants were found
by extensive experience, Kapur et al. develope algorithms to
systematically generate and search for a given geometry’s in-
variants [46].

Apart from 2D shape representations, there exist many meth-
ods developed for 3D shape representations. Wallace and Wintz [113]
present a technique for normalizing Fourier Descriptors which re-
tained all shape information, and was computationally efficient.
They also propose to use a hybrid structural/statistical local
shape analysis algorithm for 3D shape representation. Further-
more, Taubin and Cooper [104] propose to use a set of Algebraic
Moment Invariants to represent both 2D and 3D shapes, which
greatly reduced the computation required for shape matching.
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Summary

Many visual features have been explored, both previously in
Computer Vision applications and currently in Image Retrieval
applications as we could see from the above review. For each vi-
sual feature, there exist multiple representations, which model
the human perception of that feature from different perspec-
tives. There is also a need of developing new frameworks to
organize feature representations so that we could conduct effi-
cient retrieval from image databases.

2.1.2 High Dimensional Indexing

Efficient Multi-dimensional Indexing techniques need to be ex-
plored in order to make the Content-based Image Retrieval scal-
able to large scale image collections. There are two key chal-
lenges in such an exploration for image retrieval: High Dimen-
sionality, and Non-Euclidean Similarity Measurement. It is ob-
served that Euclidean measurement may not effectively model
human perception of a certain visual content [82]. Thus var-
ious other similarity measures need to be supported, such as
Histogram Intersection, Cosine, Correlation, etc.

Towards overcoming these obstacles, one promising approach
is to first perform dimension reduction and then use appropriate
multi-dimensional indexing techniques.

Even though the dimension of the feature vectors in im-
age retrieval is normally very high, the embedded dimension
is much lower. It is beneficial to perform dimension reduction
before we utilize any indexing technique. Two very popular ap-
proaches appeared in the literature, say Karhunen-Loeve Trans-
form (KLT) [7] and column-wise clustering [87]. Interested read-
ers may refer to the literatures for more details.

After we identify the embedded dimension of the feature vec-
tors, we need to select appropriate multi-dimensional indexing
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algorithms to index the reduced but still high dimensional fea-
ture vectors. Currently there are three major research com-
munities contributing in this area, i.e., Computational Geom-
etry, Database Management, and Pattern Recognition. The
existing popular multi-dimensional indexing techniques include
Bucketing algorithm, k-d tree, priority k-d tree, quad-tree, K-
D-B tree, hB-tree, R-tree and its variants R+-tree and R∗-
tree [24, 25, 88]. Furthermore, clustering and Neural Networks
which are widely used in Pattern Recognition also find their way
in multi-dimensional indexing area.

2.1.3 Image Retrieval Systems Design

Content-based Image Retrieval has become a very active re-
search area recent years [84, 90]. Many image retrieval system
have been built for both commercial and research objectives.
Most image retrieval systems support one or more of the fol-
lowing options: Random Browsing, Search by Example, Search
by Sketch, Search by Text. We have been provided a rich set
of search options today, but systematic studies involving actual
users in practical applications are still a long way off [29, 82].
In the subsequent sections we will review a few representative
systems and highlight their distinct characteristics.

QBIC

URL: http://wwwqbic.almaden.ibm.com/
QBIC [66] is developed in IBM and is the first commercial

Content-based Image Retrieval system, which stands for Query
By Image Content. It has profound significance on later Image
Retrieval systems.

In QBIC, it supports queries based on example images, user-
constructed drawings and sketches, and selected color and tex-
ture patterns, etc. The color feature used in QBIC are the aver-
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age (R,G, B), MTM (mathematical transform to Munsell) coor-
dinates, and a k-element color histogram. An improved version
of the Tamura texture representation is employed as its texture
feature. Its shape feature consists of shape area, circularity, ec-
centricity and a set of algebraic moments invariants. QBIC is
one of the few systems which take into account the high dimen-
sional feature indexing.

Photobook

URL: http://vismod.media.mit.edu/demos/photobook/
Photobook [73] is developed at MIT Media Lab which is a set

of interactive tools for browsing and searching images. There are
three sub-books in Photobook, from which shape, texture, and
face features are extracted respectively. Human can then query
each of the three sub-books based on corresponding features.

It is observed that there was no single feature which can best
model images from each and every domain. In order to tackle
this problem, Picard and Minka [75] proposed to include human
in the image annotation and retrieval iterations in the more re-
cent version of Photobook. They also proposed a “society of
model” approach to incorporate the human factor due to the
subjectiveness of human. Experimental results demonstrated
the effectiveness of their approach in interactive image annota-
tion.

VisualSEEk

URL: http://www.ctr.columbia.edu/VisualSEEk/
VisualSEEk [95] is developed at Columbia University, which

is a visual feature search engine. Main research features are
spatial relationship query of image regions and visual feature
extraction from compressed domain.

Color Set and Wavelet Transform based texture feature are
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the image features employed in the system. They also developed
binary tree based indexing algorithms to speed up the retrieval
process. It supports queries based on both visual features and
their spatial relationships in VisualSEEk. This enables a user
to submit a query by its sketch.

WebSEEk

URL: http://persia.ee.columbia.edu:8008/
WebSEEk [96] is also developed at Columbia University, which

is a World Wide Web oriented text/image search engine. It con-
sists of three main modules, i.e., image/video collecting module,
subject classification and indexing module, and search, browse
and retrieval module. Both keywords and visual content based
queries are provided in the system.

MARS

URL: http://jadzia.ifp.uiuc.edu:8000/
MARS [83] is developed at University of Illinois at Urbana

Champaign, which stands for Multimedia Analysis and Retrieval
System. MARS differs from other image retrieval systems in
both the research scope and the techniques used. It is an inter-
disciplinary research effort involving multiple computer research
communities: Computer Vision (CV), Database Management
System (DBMS), and Information Retrieval (IR). The system
characteristics of MARS are the integration of DBMS and IR,
integration of indexing and retrieval, and integration of com-
puter and human. The primary focus of MARS is not on find-
ing a single “best” feature representation, but rather on how
to organize various visual features into a helpful retrieval archi-
tecture which can dynamically adapt to different applications
and different users. Specifically MARS formally proposes a rel-
evance feedback architecture in image retrieval and integrates
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such technique at various levels during retrieval.

2.2 Relevance Feedback

Relevance feedback takes advantage of human-machine inter-
action to refine high-level queries represented by low-level fea-
tures [13, 29, 69, 70]. It is employed in conventional document
retrieval for automatically adjusting an existing query using in-
formation fed back from the user. In image retrieval applica-
tions, the user selects relevant images from previous retrieved
results and provides a preference weight for each relevant image.
The weights for the low-level feature, i.e., color and texture, etc.,
are dynamically updated based on the user’s feedback. The user
is no longer required to specify a precise weight for each low-level
feature to formulate the query model. Based on the feedback,
the hight-level concepts implied by the feature weights and rel-
evant feedbacks are automatically refined.

The similarities between the query and those images in the
database are computed during the process of relevance feedback.
The similarity between an image I in the database and the query
is calculated by:

S(I) =
∑

f

wfFf(I), (2.1)

where Ff(I) measures the similarity of the image I to the query
in feature level (e.g. color, texture, etc). Mahalanobis distance
is employed for feature similarity measurement:

Ff(I) = (~xf − ~qf)
TC−1

f (~xf − ~qf), (2.2)

where ~xf is the f -th feature vector of the image I, ~qf is the f -th
feature vector of the query and Cf is the covariance matrix of
the f -th feature components of the query. ~qf and Cf are decided
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by Eq. (2.3) and Eq.(2.4) respectively

~qf =

∑N
k=1 vk ~mkf∑N

k=1 vk

, (2.3)

Cf =

∑N
k=1 vk(~mkf − ~qf)(~mkf − ~qf)

T

∑N
k=1 vk

, (2.4)

where N is the number of relevant images, vk is the preference
weight for the k-th relevant image (positive feedback), and ~mkf

is the f -th feature vector of the k-th relevant image.
The low-level feature weight wf in Eq. (2.1) is updated by:

wf =

∑N
k=1 vk∑N

k=1 vkFf(K)
. (2.5)

The concept behind Eq. (2.5) is that: the smaller the average
feature distance over the relevant images, the better the feature
represents the query concept. Therefore, higher weight is given
to the feature that has smaller average feature distance over the
relevant images.

Currently, the image retrieval system requires the user to
manually provide a preference weight vk for each relevant im-
age, which denotes the degree of how much the user likes the
image. Here only positive examples are used [13]. However,
there exist examples that are not desired by the user but closer
to the query than some of the relevant images based on the
above calculation in some cases. Those examples will be re-
trieved, and their ranks may remain higher than some relevant
image during the whole interactive retrieval process. Hence, it
is important to use the information implied by the negative ex-
amples. Moreover, expressing the perception subjectivity via
providing numerical preference weights is a difficult task for the
users from time to time.
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2.2.1 Self-Organizing Map in Relevance Feedback

A system named PicSOM involves Self-Organizing Map (SOM)
as a relevance feedback technique [52]. The technique introduced
in the PicSOM system implements relevance feedback and si-
multaneously facilitates automatic combination of the responses
from multiple Tree Structured SOMs and all their hierarchical
levels. This mechanism aims at autonomous adaptation to the
user’s behaviour in selecting which images resemble each other
in the particular sense the user seems to be interested in. In the
subsequent section we will first introduce the theory of SOM,
and then give a brief introduction of its application in PicSOM.

The Self-Organising Map (SOM) [47] is an unsupervised and
self-organising neural algorithm which is widely used to visualize
and interpret large high-dimensional datasets. It can be used to
visualize multi-dimensional data, usually on a two-dimensional
grid. The SOM consists of a two-dimensional lattice of units.
A model vector mi is associated with each map unit i. The
map attempts to represent all the available observations x with
optimal accuracy by using the map units as a restricted set of
models. During the training phase, the models become ordered
on the grid so that similar models are close to and dissimilar
models far from each other [49].

The fitting of the model vectors is usually carried out by a
sequential regression process, where t = 0, 1, . . . , tmax − 1 is the
step index: For each input sample x(t), first the index c(x) of
the Best-Matching Unit (BMU) or the winner model mc(x)(t) is
identified by the condition

∀i :‖ x(t)−mc(x)(t) ‖≤‖ x(t)−mi(t) ‖ . (2.6)

The usual distance metric used here is Euclidean one [48]. After
finding the BMU, a subset of the model vectors constituting a
neighborhood centered around node c(x) are updated as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)). (2.7)
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Figure 2.1: The structure of a three-level one-dimensional TS-SOM. The solid
lines present parent-child relations and the dash lines represent neighbouring
nodes included in the BMU search space [52].

Here h(t; c(x), i) is the ‘neighborhood function’, a decreasing
function of the distance between the ith and c(x)th nodes on
the map grid.

To speed up the search of the BMU, Koikkalainen [48] in-
troduced a variant of SOM called the Tree Structured Self-
Organising Map (TS-SOM). TS-SOM is a tree-structured vector
quantization algorithm that uses normal SOMs at each of its hi-
erarchical levels. The structure of a TS-SOM in one-dimensional
case with three SOM levels is illustrated in Fig 2.1.

The PicSOM system presents the user in each round of the
image query a set of images s/he has not seen before. S/he
then marks the relevant images, and the system implicitly in-
terprets the unmarked images as negative ones. Because all the
database images have been previously mapped in their best-
matching SOM units at the time the SOMs were trained, it is
now easy to locate both the positive and negative images on each
level of every TS-SOM in use [49]. The map units are scored with
a fixed positive value for each positive image mapped in them.
Likewise, negative images contribute negative values. These val-
ues are selected so that the sum of all positive values equals plus
one, and the sum of all negative values equals minus one. The
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total sum of all values on each map is thus equal to zero.
The system remembers all image responses the user has given

since the query was started. Information on all the images seen
and the user’s opinions on them thus becomes stored in every
single SOM in the system. And this is the point where relevance
feedback enters the play. The basic idea is simple: the formation
of an SOM brings similar images in nearby map units. If a
particular SOM unit has been the best-matching one for many
positive images and for none or only few negative ones, it can
be deduced that its content coincides with the user’s opinion
well [47, 51]. By assumption, the neighbouring SOM units are
similar to it, and the images mapped in them can likewise be
supposed to be relevant for the user.

2.2.2 Decision Tree in Relevance Feedback

In data mining and machine learning, a decision tree is a predic-
tive model; that is, a mapping from observations about an item
to conclusions about its target value [63, 79]. More descriptive
names for such tree models are classification tree or reduction
tree. In these tree structures, leaves represent classifications and
branches represent conjunctions of features that lead to those
classifications. The machine learning technique for inducing a
decision tree from data is called decision tree learning.

Recently, researchers present a relevance feedback retriever
that learns decision trees from feedback information [60]. Based
on the learned Relevance Feedback Decision Trees (RFDT), in-
ferences are made about which images the user would most like
to see on a subsequent retrieval iteration. The retrieval preci-
sion increases after only one or two iterations, requiring that the
user provide feedback on only a handful of images.

The algorithm behind the Relevance Feedback Decision Tree
(RFDT) retriever operates as follows. On the first iteration,
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Figure 2.2: A simple Decision Tree illustration. Each internal node tests an
attribute, and each branch corresponds to a possible value for that attribute,
and each leaf node provides a classification, and each tree path corresponds
to a rule.

no feedback information exists, so the retriever performs an un-
weighted k-Nearest Neighbor retrieval. The user then marks the
retrieved images as relevant or irrelevant. This feedback is re-
layed back to the system and the second iteration begins. On
the second iteration, the algorithm is presented with the k + 1
labeled images. From these k + 1 training instances, a decision
tree is generated via C4.5. A decision tree is a method for re-
cursively partitioning a feature space such that each partition
is labeled by a single class value. The criteria for making se-
quential “cuts” in the space is a product of information theory
called “entropy” [89]. The algorithm continues to make select
cuts until all instances within a partition are of the same class;
the partition is then labeled with that class value. Once the
tree is formed, it can be used to select the next set of k images
to present to the user. To this end, the entire database of fea-
ture vectors can be classified via the learned tree. Thus, a leaf
has a record of all of the images that have been routed to it.
When all instances in the database have been filtered through
the decision tree, the instances contained in the leaves labeled
with class “relevant” are assembled into a list. From this list,
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the k images closest to the query are retrieved by executing an
unweighted k-Nearest Neighbor retrieval on the list. On the
next iteration, the retriever’s operation is identical to that on
the second iteration, except that now there are a total of 2k in-
stances labeled with user feedback, plus the query, from which
the system will induce a decision tree. Thus, each subsequent
iteration allows the retriever to learn from k more images than
the previous iteration [60]. This process continues until the user
becomes satisfied with the result or until the user’s patience is
expended.

2.2.3 Bayesian Classifier in Relevance Feedback

Considering the vector x in Rn that obeys Gaussian distribution,
the probability density function of x is:

p(x) =
1

(2π)
d
2 | ∑ |e

− 1
2 (x−ε)T

∑−1(x−ε), (2.8)

where x = [x1, . . . , xn], ε = [ε(x1), . . . , ε(xn)], and
∑

= ε{(x −
u)(x− u)T} [16, 99].

We can get the following Bayesian decision boundary function
that is the probability of x belongs to the ith class Ci:

gi(x) = lg pi(x) = −1

2
(x−εi)

TΣ−1
i (x−εi)−d

2
ln 2π−1

2
ln | Σi | + ln P (wi).

(2.9)
Bayesian classifier can be used to deal with the feedback

process in CBIR, and it treats positive and negative feedback
examples with different strategies. For positive examples, a
Bayesian classifier is used to determine the distribution of the
query space [99]. A ‘dibbling’ process is applied to penalize
images that are near the negative examples in the query and
retrieval refinement process. The proposed algorithm also has
the progressive learning capability that utilize past feedback in-
formation to help the current query.
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Figure 2.3: The decision boundary of the Bayes classifier is located at the
point of intersection of the two curves.

In the algorithm the probabilistic property of each image is
used in the relevance feedback process. This property contains
the conditional probability of each attribute value given the im-
age and can be updated on the fly by users’ feedbacks. It de-
scribes a single decision boundary through the feature space.
Another key idea is to treat positive and negative examples in
the feedback differently in the query refinement process, as pos-
itive examples often are semantically similar, while negative ex-
amples are not [12, 99].

2.2.4 Nearest Neighbor Search in Relevance Feedback

In Pattern Recognition, the k-Nearest Neighbor algorithm (kNN)
is a method for classifying objects based on closest training ex-
amples in the feature space [86, 115]. kNN is a type of instance-
based learning, or lazy-learning where the function is only ap-
proximated locally and all computation is deferred until classifi-
cation. The training examples are mapped into multi-dimensional
feature space. The space is partitioned into regions by class
labels of the training samples. A point in the space is as-
signed to the class c if it is the most frequent class label among
the k nearest training samples. Usually Euclidean distance is
used [105, 119].

The training phase of the algorithm consists only of storing
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+ ++ +++- -- -●- --- x + ++ +++- -- -●- --- x + ++ +++- -- -●- --- xX: Unknown record- - -
Figure 2.4: k-Nearest Neighbors of a record x are data points that have the k
smallest distance to x. 1-Nearest Neighbor (Left). 2-Nearest Neighbor (Mid-
dle). 3-Nearest Neighbor (Right).

the feature vectors and class labels of the training samples. In
the actual classification phase, the same features as before are
computed for the test sample whose class is not known. Dis-
tances from the new vector to all stored vectors are computed
and k closest samples are selected. The new point is predicted
to belong to the most numerous class within the set.

The best choice of k depends upon the data; generally, larger
values of k reduce the effect of noise on the classification, but
make boundaries between classes less distinct [2]. A good k

can be selected by parameter optimization using, for example,
cross-validation. The special case where the class is predicted
to be the class of the closest training sample (i.e., when k = 1)
is called the nearest neighbor algorithm.

The basic idea behind Nearest Neighbor Search for relevance
feedback is to constrain the search space for the nearest neigh-
bors for the next iteration using the current set of nearest neigh-
bors [105]. Usually one need compute the nearest neighbors of
the query feature vector in the corresponding feature space in
order to retrieve images that are similar in texture or color in
content-based retrieval. User identifies a set of retrieval exam-
ples relevant to the image, and that information is then used
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to compute a new set of retrievals. In order to compute the
new set of retrievals closer to the user’s expectation we modify
the similarity metric used in computing the distances between
the query and the database items. The distance between two
feature vectors is typically calculated as a quadratic distance of
the form (Q− F )TW (Q− F ) where Q is a query vector, F is a
database feature vector, and W is a positive semi-definite ma-
trix. During each iteration, the weight matrix is updated based
on a user’s feedback [105]. Given the updated weight matrix,
the next set of nearest neighbors is then computed. There are
also more recent methods, such as kernel-based ones that appear
to be more effective in learning but computationally prohibitive
for large scale datasets.

2.2.5 Support Vector Machines in Relevance Feedback

The method of incorporating Support Vector Machines (SVM)
into CBIR with relevant feedback is very sound [15, 27, 28]. The
information carried by positive and negative examples are used
to automatically update preference weights for positive relevant
images. This not only releases the users from providing accu-
rate preference weight for each positive relevant image but also
utilizes the negative information. Reasonable better results are
obtained compared to those of using positive feedbacks only. We
first give a brief introduction of SVM, and then describe how it
can be applied to Content-based Image Retrieval task.

Support Vector Machine (SVM) [112] is an approximate im-
plementation of the structural risk minimization principle. It
creates a classifier with minimized Vapnik-Chervonenkis dimen-
sion. SVM minimizes an upper bound on the generalization
error rate. The SVM can provide a good generalization perfor-
mance on pattern classification problems without incorporating
problem domain knowledge. Consider the problem of separating
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Kernel Function Inner Product Kernel: K(~x, ~xi), i = 1, 2, . . . , N

Gaussian RBF k(x,y) = exp(−‖x−y‖2
c

)

Polynomial ((x · y) + θ)d

Sigmoidal tanh(k(x · y) + θ)

Inverse Multiquadric 1√
‖x−y‖2+c2

Table 2.1: Types of Kernel Functions

the set of training vectors belonging to two classes:

{(~xi, yi)}N
i=1, yi = +1/− 1 (2.10)

where ~xi is an input pattern, and yi is the label, +1 denotes
positive example, −1 denotes the negative example. If those
two classes are linearly separate, the hyperplane that does the
separation can be easily calculated by:

~wT~x + b = 0 (2.11)

where ~x is an input vector, ~w is a weight vector, and b is a
bias. The goal of SVM is to find the parameters ~w0 and b0 for
the optimal hyperplane to maximize the distance between the
hyperplane and the closest data point:

~wT
0 ~xi + b0 ≥ 1 for yi = +1 (2.12)

~wT
0 ~xi + b0 < −1 for yi = −1 (2.13)

A linear separable example in 2D is illustrated in Fig. 2.5.
If the two classes are non-linearly separable, the input vec-
tors should be nonlinearly mapped to a high-dimensional fea-
ture space by an inner-product kernel function K(~x, ~xi). Ta-
ble 2.1 shows four typical kernel functions [32, 65]. An optimal
hyperplane is constructed for separating the data in the high-
dimensional feature space. This hyperplane is optimal in the
sense of being a maximal margin classifier with respect to the
training data.
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Figure 2.5: Many linear classifiers separate the data. However, only one
achieves maximum separation (Left). Maximum-margin hyperplanes for a
SVM trained with samples from two classes. Samples along the hyperplanes
are called the support vectors. (Right)

Usually the problem to separate the negative examples from
the positive examples turns out to be finding a nonlinear clas-
sifier. SVM can be used in this task, and it provides a good
generalization performance at the same time. Given ~w0 and b0,
the distance of a point ~x from the optimal hyperplane is defined
as

d(~w0, b0, ~x) =
| ~wT

0 ~x + b0 |
‖ ~w0 ‖ . (2.14)

The distance indicates how much an example belonging to one
class is different from the other one. These motivate us to use
SVM for automatically generating preference weights for rele-
vant images. Intuitively, the farther the positive examples from
the hyperplane, the more distinguishable they are from the neg-
ative examples. Thus, when we decide their preference weights,
they should be assigned with larger weights. Currently, we sim-
ply set the relation between the preference weights and the dis-
tance as a linear function in the numerical calculation. It can be
easily extended to nonlinear relation [32]. During the iterative
query procedure, the positive and negative examples selected in
the history are collected for learning at each query time.
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2.3 Imbalanced Classification

Recently many real-world machine learning and data mining
problems are characterized by imbalanced learning data, where
at least one class is under-represented relative to others. Exam-
ples include fraud detection [19], medical diagnosis [37], bioin-
formatics [61], text categorization [71, 72] and etc, but are not
limited to these. The problem of imbalanced data is often as-
sociated with asymmetric costs of misclassifying samples of dif-
ferent categories. Additionally the distribution of the test data
may differ from that of the learning sample and the true mis-
classification costs may be unknown at learning time. Although
much awareness of the issues related to data imbalance has been
raised, many of the key problems still remain open. In this the-
sis, we concentrate on the two-category case.

The problem of learning from imbalanced datasets occurs
when the number of samples in one class is significantly greater
than that of the others. Breiman et al. [5] discussed the rela-
tionship between the prior probability of a class and its error
cost. Categories with fewer examples in the training set have a
lower prior probability and a lower error cost. This is problem-
atic when true error cost of the minority class is higher than is
implied by the distribution of examples in the training set.

When learning methods are conducted to skewed datasets,
some algorithms will find an acceptable trade-off between the
true-positive and false-positive rates. However, others learn sim-
ply to predict the majority classes. Indeed, classifiers that al-
ways predict the majority class can obtain higher classification
accuracies than those that predict both classes equally well. Sev-
eral research efforts have been proposed for coping with skewed
data sets. For instance, in order to overcome the difficulty of
imbalanced datasets problems we could over-sample (i.e., dupli-
cate) examples of the minority class, under-sample (i.e., remove)
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Figure 2.6: Imbalanced Classification Illustration. The overall classification
accuracy is 86%, while the accuracy for the more important class is 0% (la-
beled as ‘•’) (Left). The overall classification accuracy is 83%, while the
accuracy for the more important class is 80% (labeled as ‘•’) (Right)

examples of the majority class, or both. We can also learn to
predict the minority class with the majority class as the default
prediction. Solutions also exist to weight examples in an effort to
bias the performance element toward the minority class and to
weight the rules themselves. Schemes of boosting the examples
of the minority class have also been proposed.

In [78], Provost gave an impressive summary about the re-
lated issues for imbalance dataset classification. He pointed out
that it would be a critical mistake to use the classifiers pro-
duced by standard machine learning algorithms without adjust-
ing the output threshold when studying problems with imbal-
anced data. He also pointed out that the normal classifier would
cause problems for the imbalanced dataset by operating on data
drawn from the same distribution as the training data. Weiss
and Provost [116] conducted an empirical study for imbalanced
dataset learning problems. From their research efforts, it is ev-
ident that the natural data distribution usually is not the best
distribution for learning and a different class distribution should
generally be chosen when the dataset size is limited.

A synthetic dataset is employed to take a systematic research
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effort about the imbalance classification problem on the specific
case [43, 44, 45]. It is evident that the performance of imbal-
ance dataset problems is related with three factors: complexity
of the problem, training set size and degree of the imbalance.
They found that independently of the training size, linearly sep-
arable domains are not sensitive to imbalance. It also compared
the effectiveness of several techniques for the imbalance prob-
lem: over-sampling, under-sampling and cost modifying. They
concluded that the bad performance of the imbalance dataset
problems is usually caused by small disjuncts that can not be
classified accurately.

In conclusion, the methods aiming to tackle with the imbal-
ance dataset problem can be summarized into three big cate-
gories [1]: Algorithm specific approach [80, 117], Pre-processing
for the data (under-sample, over-sample, progressive, active,
etc.) [1] and Post-processing for the learned model [18].

2.4 Active Learning

The fundamental objective of machine learning and data min-
ing is to obtain the general patterns from a limited amount of
data [108, 109]. For a long time, the majority of statistical ma-
chine learning scenarios commonly fall into one of two learning
tasks: supervised learning or unsupervised learning. Under
both learning frameworks, usually we first collect a significant
quantity of data that is randomly sampled from the underlying
data distribution, and we then induce a classifier or model. This
methodology is referred as passive learning. A passive learner
receives a random selected dataset from the world and then out-
put a classifier or model [106, 110].

The supervised learning task is to predict some additional
aspects of an input object [106]. The training data consist of
pairs of input objects, and desired outputs. The output of the
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Figure 2.8: A Representative Active Learner.

function can be a continuous value (called regression), or can
predict a class label of the input object (called classification).
The objective of the supervised learner is to predict the value of
the function for any valid input object after having seen a num-
ber of training examples (i.e., pairs of input and target output).
To achieve this, the learner has to generalize from the presented
data to unseen situations in a reasonable way. Examples of such
a learning scenario include the simple problem of trying to pre-
dict an employee’s salary given his/her occupation and the more
complex task of trying to predict the subject of an image given
the raw pixel values. Classification is the fundamental area of
supervised learning tasks. The objective of classification is to
create a mapping from input objects to labels. A typical exam-
ple of a classification task is text categorization, where we want
to automatically assign labels to a new text document based
on their textual content. The statistical learning approach to
tackle this problem is to collect a training set by manually la-
beling some number of documents. Then we employ a learner
together with the labeled documents to generate a mapping from
documents to labels. We call this mapping a classifier. And we
can use the classifier to predict new and unseen documents.

The other major area of machine learning is unsupervised
learning [106]. Compared with supervised learning, the essence
of unsupervised learning is that we are not given any concrete
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information as to how well we are performing. Unsupervised
learning encompasses clustering (where we try to find groups of
data instances that are similar to each other) and model build-
ing (where we try to build a model from our data). One major
topic of model building in machine learning is parameter esti-
mation which is central to statistics. Here, we have a statistical
model of a domain which contains a number of parameters that
need estimating. By collecting a number of data instances we
can use a learner to estimate these parameters. Collecting ex-
perimental data is crucial for accomplishing this task. Often
the most time-consuming and costly task in these applications
is the gathering of data. We have very limited resources for
collecting such data in many cases. Therefore, it is particularly
valuable to chose methods in which we can make use of these
resources as much as possible. We assume that we randomly
gather data instances that are IID (i.e., independent and identi-
cally distributed) in all settings. However, in many situations we
may have a way of guiding the sampling process. For example, in
the document classification task it is often easy to gather a large
pool of unlabeled documents. Now, instead of randomly picking
documents to be manually labeled for our training set, we have
the option of more carefully choosing (or querying) documents
from the pool that are to be labeled by choosing candidates that
fit certain profiles (e.g., “the most uncertain samples”). Further-
more, we need not declare our desired queries before hand. We
can determine our next query based upon the answers to our
previous queries instead. This process of guiding the sampling
process by querying for certain types of instances based upon the
data that we have seen so far is called active learning [106, 108].

In the subsequent sections we present two active learning
strategies: uncertainly-based sampling, which selects the sam-
ples for which the relevance function is most uncertain about,
and error reduction, which aims at minimizing the generaliza-
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tion error of the classifier. We also present a strategy for batch
selection.

2.4.1 Uncertainly-based Sampling

This strategy aims at selecting unlabeled instances that the
learner is most uncertain about [22]. The methodology is to
compute a probabilistic output for each instance, and select the
unlabeled instances with the probabilities closest to 0.5 [55].
Similar strategies have been also proposed on SVM classifier
with a theoretical justification [57, 68, 110].

In all cases, a function may be computed. This function
can be a distribution, a utility function, or a fellowship to a
class (e.g., distance to the hyperplane for SVM) [107]. Therefore
a function fy : x → [−1, 1] is trained with some adaptation,
where the most uncertain documents have an output close to
0. The cost function to minimize is then g(x) =| f(x) |. The
efficiency of a method depends on the accuracy of the function
estimation close to 0 under such a strategy. This is the area
where it is the most difficult to perform a good evaluation [22].

2.4.2 Error Reduction

Active learning strategies based on error reduction select in-
stances that, once added to the training set, minimize the error
of generalization [22, 81]. Let P (c | x) the (unknown) proba-
bility of an instance x to be in class c, and P (x) the (also un-
known) distribution of the instances. With a training set A with
pairs (x, c) sampled from P (x), P (c | x) provides the estimation
P̂A(c | x) of P (c | x). The expected error of generalization can
be written as:

EP̂A
=

∫
L(P (c | x), P̂A(c | x))dP (x) (2.15)
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with L a loss function which evaluates the loss between the esti-
mated distribution P̂A(c | x) and the true distribution P (c | x).

The optimal pair (x?, c?) is the one which minimizes this ex-
pectation:

∀(x, c) EP̂A?
< EP̂A+(x,c), (2.16)

with A? = A+ (x?, c?).
Roy and McCallum [81] propose to estimate the probability

P (c | x) with the function provided by the classifier, and esti-
mate P (x) over X. The estimation of the expectation becomes
the following with a maximum loss function:

ÊP̂A?
=

1

| J |
∑

x∈J

(1− max
c∈{−1,1}

P̂A?(c | x)), (2.17)

with J the set of unlabeled instances. But We don’t know the
label of each candidate. Roy and McCallum compute the expec-
tation for each possible label, which finally gives the following
cost function:

g(x) =
∑

c∈{−1,1}
EP̂A+(x,c)

P̂A(c | x), (2.18)

with P̂A(c | x) estimated with the function fy(x):

P̂A(c | x) =
c

2
(fy(x) + c), (2.19)

with fy(x) such as y encodes the training set A.

2.4.3 Batch Selection

In many real cases, it is often necessary to select batches of new
training examples [22, 30, 31]. Many active learning strategies
are made to select only one new training example. With no
particular extension, these methods can select several instances
very close in the feature space. In view of the power of current
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classification techniques, labeling a batch of very close instances
or only one of them always gives the same classification.

In [110], Tong and Koller propose to select batches yield-
ing minimum worst-case version space volume. However, this
method requires a lot of computations which make it infeasible
in practice. Based on the diversity of angles between the hyper-
planes in the version space, Brinker proposes a fast approxima-
tion of this strategy in [6]. The method selects instances close
to the SVM boundary one far from another, and also far from
the current training data.

2.5 Convex Optimization

2.5.1 Overview of Convex Optimization

Many machine learning and data mining problems can be for-
mulated as constrained optimization problems which can some-
times be expressed in convex form with proper mathematical
manipulations. These kinds of convex problems can be solved
very efficiently in practice. In addition, interior-point methods
are often employed to solve these problems to a specified accu-
racy within a polynomial operations of the problem dimensions.
Interested readers may refer to [4] for more details about convex
optimization theory.

First we would like to introduce some basic definitions of
convex problems.

Definition 2.1 Convex Set: A set S is convex if the line seg-
ment between any two points in S lies in S, i.e., if for any x1,
x2 ∈ S and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ S. (2.20)

Definition 2.2 Convex Function: A function f : Rn → R
is convex if domf is a convex set and if for all x1, x2 ∈ domf,
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and any θ with 0 ≤ θ ≤ 1, the following inequality holds:

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2). (2.21)

Definition 2.3 Convex Problem: A convex optimization prob-
lem is defined as one being in the following form:

min
x

f0(x)

s.t. fi(x) ≤ 0 1 ≤ i ≤ m,

hi(x) = 0 1 ≤ i ≤ k,

(2.22)

where x ∈ Rn is the optimization variable, f0, . . . , fm are convex
functions, and h0, . . . , hk are affine functions.

In the above definitions, the function f0 is usually called the
objective function or cost function. The inequalities are called
inequality constraints and the equations are called equality con-
straints. If there is no constraint, the problem is an uncon-
strained problem. The subsequent parts review several types of
convex optimization problems.

2.5.2 Linear Program

Definition 2.4 Linear Program: A convex optimization prob-
lem is called a Linear Program (LP) when the objective and con-
straint functions are all affine. The Linear Program problem has
the following general form:

min
x

cTx + d

s.t. G x ¹ h,

A x = b,

(2.23)

where G ∈ Rm×n and A ∈ Rp×n.
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Figure 2.9: Convex Optimization Problems Relational Graph. The Key:
Convex Optimization can be solved effectively in Polynomial time.

2.5.3 Quadratic Program

Definition 2.5 Quadratic Program: A convex optimization
problem is called a Quadratic Program (QP) if the objective
function is (convex) quadratic, and the constraint functions are
affine. The Quadratic Program problem is generally expressed
as:

min
x

1
2x

TPx + qTx + r

s.t. G x ¹ h,

A x = b,

(2.24)

where P ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n.

From the above definitions, one can see that quadratic pro-
grams include linear programs as a special case by taking P = 0.

2.5.4 Quadratically Constrained Quadratic Program

Definition 2.6 Quadratically Constrained Quadratic Pro-
gram: A convex optimization problem is called a Quadratically



CHAPTER 2. BACKGROUND STUDY 41

Constrained Quadratic Program (QCQP) if the objective func-
tion and the constraint functions are all (convex) quadratic. The
Quadratically Constrained Quadratic Program Problem is gen-
erally expressed as:

min
x

1
2x

TP0x + qT
0 x + r0

s.t. 1
2 xTPix + qT

i x + ri ≤ 0, i = 1, . . . , m

A x = b,

(2.25)

where Pi ∈ Sn
+, i = 0, . . . , m.

It is evident that quadratically constrained quadratic pro-
grams include quadratic programs and linear programs as spe-
cial cases.

2.5.5 Cone Program

In addition to convex optimization problems of standard forms,
another type of very useful generalizations are convex optimiza-
tion problems with generalized inequality constraints. One of
the simplest case is the Cone Program (CP), which is defined as
follows:

Definition 2.7 Cone Program: A convex optimization prob-
lem with generalized inequalities is called a Cone Program (CP)
if the objective function is linear and the inequality constraint
functions are affine:

min
x

cTx

s.t. F x + g ¹K 0

A x = b,

(2.26)

where K ⊆ Rk is a proper cone.
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2.5.6 Semi-definite Program

Definition 2.8 Semi-definite Program: A convex optimiza-
tion problem with generalized inequalities is called a Semi-definite
Program (SDP) if the objective function is linear and the in-
equality constraint functions are affine with the cone of positive
semi-definite k × k matrices, i.e., K is Sk

+. The Semi-definite
Program has the standard form as:

min
x

cTx

s.t. x1 F1 + . . . + xnFn + G ¹K 0

A x = b,

(2.27)

where G,F1, . . . , Fn ∈ Sk and A ∈ Rp×n.

Similarly, SDP problems include LP, QP and QCQP as spe-
cial cases. As a comparison of computational complexity, all of
them can be solved efficiently in polynomial time. Among these
four types of problems, in general, SDP is the hardest problem,
QCQP is easier than SDP, QP is easier than QCQP, and LP is
the easiest one.

2 End of chapter.



Chapter 3

Imbalanced Learning with
BMPM for CBIR

In recent years, Minimax Probability Machines (MPMs) have
demonstrated excellent performance in a variety of pattern recog-
nition problems. At the same time various machine learning
methods have been applied on relevance feedback tasks in Content-
based Image Retrieval (CBIR). One of the problems in typical
techniques for relevance feedback is that they treat the relevant
feedback and irrelevant feedback equally. Since the negative
instances largely outnumber the positive instances, the assump-
tion that they are balanced is incorrect as the data is biased.
In this chapter we study how Biased Minimax Probability Ma-
chine (BMPM), a variation of MPM, can be applied for relevance
feedback in image retrieval tasks. Different from previous meth-
ods, this model directly controls the accuracy of classification
of the future data to construct biased classifiers. Hence, it pro-
vides a rigorous treatment on imbalanced dataset. Mathemat-
ical formulation and explanations are provided to demonstrate
the advantages. Experiments are conducted to evaluate the per-
formance of our proposed framework, in which encouraging and
promising experimental results are obtained.

43
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3.1 Research Motivation

With the recent progress of hardware for capturing and storing
image data, CBIR has attracted a lot of research interests in the
past decades [84]. However two semantically similar images may
be located far from each other in the feature space, while two
absolutely different images may lie close to each other [83]. This
is known as the problem of semantic gap between low-level fea-
tures and high-level concepts [90]. Relevance feedback has been
shown to be a powerful tool to address this problem and improve
retrieval performance in CBIR [84]. Recently, researchers pro-
posed a number of classification techniques to attack relevance
feedback tasks including some state-of-the-art models such as
Support Vector Machines (SVMs) [27, 29, 32]. However most of
the classification techniques treat the relevance feedback prob-
lem as a strict binary classification problem and they do not
consider the imbalanced dataset problem, which means the num-
ber of irrelevant images are significantly larger than the num-
ber of relevant images. This imbalanced dataset problem would
lead the positive data (relevant images) to be overwhelmed by
the negative data (irrelevant images). An illustration has been
shown in Fig. 2.6.

MPM has been used as a novel and important tool to per-
form classification tasks [53]. Compared with traditional clas-
sification models, it has a promising accuracy performance on
pattern recognition tasks. In order to tackle the problem of
imbalanced dataset in CBIR, we propose to use a modified Min-
imax Probability Machine, called Biased Minimax Probability
Machine which can better model the relevance feedback problem
and reduce the accuracy degradation caused by the imbalanced
dataset problem [34, 36, 37].

The rest of this chapter is organized as follows. Section 3.2
reviews some related research efforts on relevance feedback and
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MPM. Section 3.3 formulates the relevance feedback technique
employing BMPM and shows the benefits compared with the
conventional techniques. We present the experimental results
and performance evaluation in Section 3.4. Finally, Section 3.5
concludes the work of this chapter.

3.2 Background Review

Here we will give a brief introduction on the related work of rel-
evance feedback in CBIR, the theory of MPM and its variations,
Minimum Error Minimax Probability Machine (MEMPM) and
Biased Minimax Probability Machine (BMPM).

3.2.1 Relevance Feedback for CBIR.

Relevance feedback techniques have been used as a powerful
tool for Content-based Image Retrieval [84, 120]. There are var-
ious of methodologies involving in that research area such as
Self-Organizing Map [52], Decision Tree [60], Artificial Neural
Network [21], and Bayesian Learning Network [100], etc. More-
over many popular classification techniques have been employed
to tackle the relevance feedback problem, such as Bayesian clas-
sifiers and SVM [27, 32], etc. Among them, SVM-based tech-
niques are the most promising and effective techniques to solving
the relevance feedback task.

3.2.2 Minimax Probability Machine

We here introduce the basic concept of MPM [53]. In pattern
classification problems, MPM provides very good empirical gen-
eralization performance.

Let us illustrate MPM in a binary classification case. Sup-
pose two random n-Dimensional vectors, x and y, represent two
classes of data, where x belongs to the family of distributions
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with a given mean x and a covariance matrix Σx, denoted as
x ∼ (x, Σx); similarly, y belongs to the family of distributions
with a given mean y and a covariance matrix Σy , denoted as
y ∼ (y, Σy). Here x, y, x, y ∈ Rn, and Σx, Σy ∈ Rn×n. In
the following discussion of this thesis, x represents the relevance
image class and y represents the irrelevance image class.

The MPM attempts to determine the hyperplane aTz = b

(a ∈ Rn, z ∈ Rn, b ∈ R) which can separate two classes of
data with maximal probability. The formulation for the MPM
model [54] is written as follows:

max
α,a 6=0,b

α s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ a} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ α,

(3.1)

where α represents the lower bound of the accuracy for future
data. Future points z for which aTz ≥ α, are then classified as
the class x; otherwise they are judged as the class y.

Later, Huang et al. [36] improved the model by removing
away the assumption that these two classes have the same im-
portance, and furthermore adding a bias to the more important
class. As we could observe from the above formulation, this
model actually assumes that two classes have the same impor-
tance. Hence it makes the worst-case accuracies for two classes
the same. However, in real applications, especially in relevance
feedback of Content-based Image Retrieval, two classes of data
are usually biased, i.e., the relevant class is often more impor-
tant than the irrelevance class and the quantities of both classes
are imbalanced. Therefore it is more appropriate to take the
inherited bias into account in this context. In the following sec-
tion, we will introduce Huang’s developments, two extensions of
MPM, i.e., MEMPM and BMPM.
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Figure 3.1: Decision lines comparison: MPM decision line (dotted red line),
BMPM decision line (dotted green line), SVM decision line (dotted blue line).

3.2.3 Extensions of Minimax Probability Machine

With exactly the same scenario as MPM, the mathematical
model of MEMPM is as following:

max
α,β,b,a6=0

θα + (1− θ)β s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

(3.2)

while BMPM is defined as:

max
α,β,b,a6=0

α s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0.

(3.3)
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3.3 Relevance Feedback using BMPM

In this section, we will first give a more detailed introduction
on BMPM. Next, we show the benefits of applying BMPM in
relevance feedback in Content-based Image Retrieval. We then
present how the BMPM based approach can be employed for
relevance feedback tasks in Section 3.3.3.

3.3.1 Model Definition

Given reliable {x, Σx}, {y, Σy} for two classes of data, we try to
find a hyperplane aTz = b(a 6= 0, z ∈ Rn, b ∈ R) with aTz > b

being considered as class x and aTz < b being judged as class
y to separate the important class of data x with a maximal
probability while keeping the accuracy of less important class of
data y acceptable.1 We formulate this objective as follows:

max
α,β,b,a6=0

α s.t.

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0,

(3.4)

where α represents the lower bound of the accuracy for the clas-
sification, or the worst-case accuracy of future data points x;
the similar for β. The parameter β0 is a pre-specified positive
constant, which represents an acceptable accuracy level for the
less important class y.

The above formulation is derived from MPM, which requires
the probabilities of correct classification for both classes to be an
equal value α. Through this formulation, the BMPM model can
handle the imbalanced classification in a direct way by changing
the value of α and β0. This model provides a different treatment

1The readers may refer to [39] for a more detailed and complete description.
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on different classes, i.e., the hyperplane aT
∗ z = b∗ given by the

solution of this optimization will favor the classification of the
important class x over the less important class y. Furthermore,
the derived decision hyperplane is directly associated with two
real accuracy indicators of classification of the future data, i.e.,
α and β0, for each class.

3.3.2 Advantages of BMPM in Relevance Feedback

From the above formulations, one could see that the optimiza-
tion in BMPM is similar to the one in the MPM, which is in
convex optimization format and could be efficiently solved in
polynomial time. Now, we show the mathematical differences
and the advantages of our proposed BMPM framework from an
analytical perspective for solving the relevance feedback problem
compared with SVMs and other conventional learning methods.

Obviously we see that BMPM is with the following con-
straints, in contrast to the one of MPM in Eq. (3.1) and the
one of MEMPM in Eq. (3.2)

inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0.

(3.5)

The difference indicates that the proposed BMPM framework
tries to improve the accuracy of relevant images while maintain-
ing an acceptable specificity of irrelevant ones. This method-
ology provides a rigorous way to handle the relevance feedback
problem by directly control the classification accuracy and this
is powerful for solving the imbalanced dataset problem in CBIR.
However, SVMs and other traditional learning models treat the
two classes equally without any bias or direct control, which is
not effective to model and solve the relevance feedback problem.
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3.3.3 Relevance Feedback Framework by BMPM

In this section we describe how to formulate the relevance feed-
back algorithm by employing the BMPM technique. Applying
BMPM based technique in relevance feedback is similar to the
conventional classification tasks. However, the relevance feed-
back needs to construct an iterative function to produce the re-
trieval results. The following strategy is our proposed approach
for retrieval task in CBIR.

Algorithm BMPM-based Relevance Feedback
Input: Qim (query image)
Output: Rim (images belong to the relevant class with similar semantic content)
1. Fq ⇐ Qim /* Feature extraction for query image */
2. Fq ⇐ x/y /* Assign label to query image */
3. For i = 1: MaxIt
4. Rim ⇐ Ri

im /* Update based on similarity measurement */
5. Involve feedback information using BMPM
6. R1

im,R2
im ⇐ Rim /* Separate returned images into two sets */

7. R1
im,R2

im ⇐ {x,y} /* Assign labels to classes by experts */
8. Classification task by BMPM
9. i ⇐ i + 1
10.End For
11.Return Rim

Figure 3.2: BMPM-based Relevance Feedback

After a certain number of iterations of relevance feedback,
our proposed strategy returns the Top-n most relevant images
and also learns a reasonable classifier to classify the imbalanced
image dataset.

3.4 Experimental Results

We implement BMPM-based learning scheme and apply to rel-
evance feedback in Content-based Image Retrieval. In this sec-
tion, we describe the iterative framework and show the exper-
imental results. We compare the performance of our proposed
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Dataset #Instances #Features #Classes

Synthetic Dataset 1000 2 10

Table 3.1: Overview of synthetic dataset.

Classes Mean Covariance

Class 1 [0,-3] [1, 0;0, 1.5]

Class 2 [0,-4] [1, 0;0, 1.5]

Class 3 [0,-5] [1, 0;0, 1.5]

Class 4 [1,-1] [1, 0;0, 1.5]

Class 5 [-1,1] [1, 0;0, 1.5]

Class 6 [-2,0] [1, 0;0, 1.5]

Class 7 [2,0] [1, 0;0, 1.5]

Class 8 [1,0] [1, 0;0, 1.5]

Class 9 [0,1] [1, 0;0, 1.5]

Class 10 (Relevant Class) [0,5] [1.5, 0;0, 1.5]

Table 3.2: Detailed information of synthetic dataset

approach with two classification models for relevance feedback:
MPM and SVM. The SVM algorithm deployed in our exper-
iments is based on modifying the codes in the libsvm library,
and MPM and BMPM schemes are adopted from the MPM and
BMPM packages respectively. Furthermore we choose the same
kernel and parameters (such as α, β0, etc.) for all the settings.
The experiments are evaluated on both a synthetic dataset and
a real-world image dataset. All our works are done on a 3.2GHz
machine with Intel Pentium 4 processor and 1Gb RAM.

3.4.1 Experiment Datasets

Synthetic Dataset

We generate a synthetic dataset to simulate the real-world im-
ages. The dataset consists 10 categories, 9 of which contains
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Figure 3.3: Visualization of synthetic dataset. Relevant class: red plus;
Irrelevant class: others. In the experiments, we use one versus all strategy
for the multi-class classification problem.

100 data points randomly generated by Gaussian Distribution
with different means and covariance matrices in a 2-dimensional
space. The remaining class contains 100 instances generated by
another mean and covariance matrix, representing the relevant
samples.

Real-world Dataset

The real-world dataset is chosen from the COREL image CDs.
We organize one dataset which contains various images with dif-
ferent semantic meanings, such as bird, pyramid, model, autumn,
dog, and glacier, etc. It is with 6 categories (we name it 6-Bird).
The class of bird which we recognize as the positive class con-
tains 50 images. The other 5 categories with each including 100
instances are regarded as the negative class.

Here we extract three different features to represent the im-
ages: color, shape, and texture. The color feature employed is the
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color histograms. We quantize the number of pixels into 10 bins
for each color channel (Hue, Saturation, and Value) respectively.
Then we obtain a 30-dimensional color histogram. We use edge
direction histogram as shape feature to represent the images [42].
First we compute the edge images by the Canny edge detector
and obtain the edge direction histogram by quantizing the re-
sults into 15 bins of 24 degrees. Therefore a 15-dimensional
edge direction histogram is used as the edge feature. We ap-
ply the wavelet-based texture in our experiments [91]. Gabor
Wavelet Decomposition [20] is first performed and we compute
the features for each Gabor filter output afterwards. Following
this approach we obtain a 16-dimensional vector to represent
the texture information for each image.

3.4.2 Performance Evaluation

Results on Synthetic Dataset

In our experiments, a category is first picked from the dataset
randomly, and this category is assumed to be the user’s desired
query target. The frameworks then improve retrieval results by
user’s feedback. During each iteration of the relevance feed-
back procedure, 10 instances are picked from the dataset and
labelled as either relevant or irrelevant samples based on the
ground truth of the dataset. For the first iteration, three pos-
itive and seven negative samples are randomly picked out and
the three learning schemes are applied with this initial set. For
the iterations afterward, each model selects 10 samples and the
number of the samples in the positive and negative regions are
recorded. The precision of each model is then computed. Fig-
ure 3.4 shows the evaluation results of top-50 returned results.
We can observe that BMPM outperforms the other models. The
SVM based approach achieves better performance than the one
of MPM in the application of relevance feedback in CBIR.
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Figure 3.4: The experimental results for three models on the synthetic
dataset: Top-50 returned samples are evaluated.

Results on Real-world Dataset

In the following, we present the experimental results by the al-
gorithms on real-world images. The metric of evaluation is the
Average Precision which is defined as the average ratio of the
number of relevant images in the returned images over the total
number of the returned images.

In the real-world dataset experiments, the iteration is sim-
ilar as the one of synthetic dataset, except that we need to
first perform feature extraction for the query images and image
database. In each iteration of the feedback process, 10 images
are picked from the database and labelled as either relevant or
irrelevant based on the ground truth of the database. The pre-
cision is then recorded, and the whole process is repeated for 10
times to produce the average precision in each iteration for the
proposed method.
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Figure 3.5: The experimental results for three models on the 6-Bird dataset:
Top-50 returned images are evaluated.

Figure 3.5 shows the evaluation results on the 6-Bird dataset.
From the results on the real-world dataset, we can observe that
our proposed BMPM-based methodology outperforms other ap-
proaches such as MPM and SVM. We also notice that the per-
formance of SVM is very competitive to BMPM, and MPM
achieves the worst performance in these three models. The rea-
son is that MPM cannot model the relevance feedback problem
as good as SVM and BMPM due to its assumption that both
positive and negative feedbacks are equal. From here we can see
how the bias works. In order to know the detailed comparison
of the three methods after a set number of iterations, we list the
retrieval results in Tables 3.3 and 3.4. From the results, we can
also see the similar results which verify our hypothesis.
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Learning Number of Iterations

Models 0 1 3 7 10

BMPM 5 12 16 26 ↑ 33 ↑
MPM 5 13 16 18 21

SVM 5 11 14 23 29

Table 3.3: Number of relevant images in Top-50 returned images.

Learning Models Top50@6-Bird Top30@6-Bird Top20@6-Bird

BMPM 0.68 ↑ 0.71 ↑ 0.75 ↑
MPM 0.42 0.47 0.55

SVM 0.63 0.66 0.70

Table 3.4: Average Precision after 10 Iterations.

3.4.3 Discussions

We have observed that the proposed BMPM-based scheme per-
forms better than the conventional approaches from the exper-
imental results. The traditional classification approaches, such
as regular SVM and MPM, without considering the bias in the
retrieval tasks is not appropriate in solving the relevance feed-
back problem. Furthermore, we know there are other methods to
address the imbalanced dataset problem in literature [18] [118].
We can also consider to include them in our scheme in the future.
Nevertheless, we have observed the promising results in demon-
strating the effectiveness of our proposed BMPM technique for
the relevance feedback problem in image retrieval.

3.5 Summary

In this chapter, we address the problem of imbalanced classifica-
tion needed with the relevance feedback in CBIR and present a
novel learning framework, the BMPM-based approach, to treat
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this problem more precisely. In contrast to the traditional meth-
ods, the BMPM does not adopt an indirect approach, but di-
rectly controls the worst-case classification accuracy in order to
impose a certain bias in favor of the relevant images. This pro-
vides a more effective way to handle imbalanced classification
problems. We evaluate the performance of the BMPM-based
relevance feedback on the synthetic dataset and the COREL
Image Dataset. The results on both datasets show that the
BMPM outperforms the other learning models on the problem
of relevance feedback.

2 End of chapter.



Chapter 4

BMPM Active Learning for
CBIR

In this chapter we apply Biased Minimax Probability Machine
(BMPM) Active Learning to address the problem of relevance
feedback in Content-based Image Retrieval (CBIR). In our pro-
posed methodology we treat relevance feedback tasks in CBIR
as an imbalanced learning task which is more reasonable than
traditional methods since the negative instances largely outnum-
ber the positive instances. Furthermore we incorporate active
learning in order to improve the framework performance, i.e.,
try to reduce the number of iterations used to achieve the opti-
mal boundary between relevant and irrelevant images. Different
from previous work, this model builds up a biased classifier and
achieves the optimal boundary using fewer iterations. Exper-
iments are performed to evaluate our method with promising
experimental results.

4.1 Problem Statement and Motivation

CBIR has attracted a lot of research interests in the past decades [90].
For CBIR, i.e., searching in image database based on their con-
tent, the focus was on Query By Example (QBE). A represen-
tative CBIR system contains four major parts: (1) image rep-

58
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resentation, (2) high-dimensional image indexing, (3) similarity
measurement between images, and (4) system design [124]. At
the early stage of CBIR research, researchers mainly focused on
the feature extraction for the best representation of the content
of images. However these features are often low-level features.
Therefore two semantically similar objects may locate far from
each other in the feature space, while two absolutely different
images may lie close to each other [124]. This is known as the
problem of semantic gap between low-level features and high-
level concepts and the subjectivity of human perception [27].
Although many features have been investigated for some CBIR
systems, and some of them have demonstrated good perfor-
mance, the problem has been the major encumbrance to more
successful CBIR systems.

Relevance feedback has been shown to be a powerful tool to
address the problem of the semantic gap and the subjectivity
of human perception in CBIR [27]. Widely used in text re-
trieval, relevance feedback was first introduced by Rui et al. [84]
as an iterative tool in CBIR. Since then it has become a ma-
jor research topic in this area. Recently, researchers proposed
a number of classification techniques to attack relevance feed-
back tasks, among which Support Vector Machine (SVM) based
techniques are considered as the most promising and effective
ones [27]. The major SVM techniques treat the relevance feed-
back problem as a strict binary classification problem. However,
these methods do not consider the imbalanced dataset problem,
which means the number of irrelevant images are significantly
larger than the relevant ones. This imbalanced dataset problem
would lead the positive data (relevant images) be overwhelmed
by the negative data (irrelevant images). Furthermore, how to
reduce the number of iterations in order to achieve the opti-
mal boundary in this learning task is also a critical problem for
image retrieval from large datasets.
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In this chapter, we propose a relevance feedback technique
to incorporate both Biased Minimax Probability Machine and
active learning to attack these two problems, which can better
model the relevance feedback problem and reduce the number
of iterations in the learning interaction.

4.2 Background Review

In text retrieval, relevance feedback was used early on and had
been proven to improve results significantly. The adoption of
relevance feedback in CBIR is more recent, and it has evolved
to incorporate various machine learning techniques into appli-
cations recently. In [60], Decision Tree was employed to model
the relevance feedback task. In [13], Bayesian learning was con-
ducted to attack the problem of relevance feedback. Apart from
these, many other conventional machine learning methods were
also proposed, e.g., Self-Organizing Map [52], Artificial Neural
Network [90], etc. Furthermore, many state-of-the-art classifica-
tion algorithms were suggested to model and solve the relevance
feedback problem, e.g., Nearest Neighborhood classifier [105]
and SVM [107], etc. Among these techniques, SVM-based tech-
niques are the most effective ones to address the relevance feed-
back task in CBIR.

However, conventional relevance feedback techniques by SVMs
or other learning models are based on strict binary classification
tasks. In other words, they do not consider the imbalanced
dataset problem in relevance feedback. Moreover, these tech-
niques always consume a number of iterations to obtain an op-
timal boundary which is not suitable for searching images from
large datasets. In order to address this imbalance classification
task and make relevance feedback more efficient, we propose the
Biased Minimax Probability Machine Active Learning to con-
struct the relevance feedback technique in CBIR.
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4.3 Relevance Feedback by BMPM Active Learn-

ing

In this section, we introduce the concepts of active learning and
BMPM. We then present and formulate our proposed BMPM
methodology with active learning, applying to relevance feed-
back.

4.3.1 Active Learning Concept

In supervised learning, often the most time-consuming and costly
process in designing classifiers is instance labelling when we face
large scale learning tasks. Instead of randomly picking objects
to be manually labelled for training, active learning is a novel
mechanism for selecting unlabelled objects based on the result of
past labelled objects. Under this framework, the learner could
construct a classifier with much fewer manually labelled sam-
ples (i.e., optimal data).

Based on the different criteria for optimal data, there are
three main types of active learning method: Most Informative,
Minimizing the Expected Error and Farthest First. In each it-
eration of learning, the samples with highest classification un-
certainty is chosen for manual labelling [124]. Then the classifi-
cation model is retrained with additional labelled samples. The
key challenge in active learning for relevance feedback is how to
measure the information associated with an unlabelled images.
In [56], various of distinct classifier models were first generated.
Then, the classification uncertainty of a test image is measured
by the amount of disagreement among the test images. Another
batch of methodologies measure the information associated with
a test sample by how far the sample is away from the classifi-
cation boundary. One of the most promising approaches within
this group is the SVM active learning developed by Tong and
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Chang [107].

4.3.2 General Approaches for Active Learning

Generally speaking the most important step in active learning
is to define a notion of a model M and the model loss Loss(M).
The definition of a model and the associated model loss can
be tailored to match the particular task at hand. Under this
framework, the next query that will result in the future model
with the lowest model loss is chosen. It is straightforward to
extend this framework to batch mode active learning. However,
in many situations this type of active learning is computationally
infeasible. Thus we shall just consider the simplified schema.

Algorithm General Schema for Active Learning
Input: M, MaxIt, pQueries
Output: M
1. For i=1:MaxIt /* we do MaxIt iterations */
2. For q in pQueries /* for each query in the potential queries */
3. Evaluate Loss(q)
4. End For
5. Select q whose Loss(q) is lowest
6. Update M with q and x ; /* update with the query and its response */
7. i++;
8. End For
9. Return M

Figure 4.1: General Schema for Active Learning.

When we are asking a potential query, q, we need to assess
the loss of the subsequent model, M ′. The posterior model M ′

is the original model M updated with query q and response x.
Since we do not know what the true response x to the potential
query will be, we propose to maintain a distribution over the
possible responses to each query. After asking a query where we
take the expectation over the possible responses to the query we
can then compute the expected model loss:

Loss(q) = ExLoss(M ′) (4.1)
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If we use this definition in the active learning algorithm we
would then choose the query that results in the minimum ex-
pected model loss.

In general, the common approach for active learning is as
follows. We first choose a model and model loss function ap-
propriate for the learning task. Given a potential query we also
choose a method for calculating the potential model loss. For
each potential query we then evaluate the potential loss incurred
and we then chose to ask the query which gives the lowest po-
tential model loss. This general schema is outlined in Fig. 4.1.

4.3.3 Biased Minimax Probability Machine

We assume two random vectors x and y represent two classes
of data with means and covariance matrices as {x, Σx} and
{y, Σy}, respectively in a two-category classification task, where
x,y,x,y ∈ Rn, and Σx, Σy ∈ Rn×n. We also use x and y to rep-
resent the corresponding class of the x data and the y data
respectively.

With given reliable {x, Σx}, {y, Σy} for two classes of data,
we try to find a hyperplane aTz = b (a 6= 0, z ∈ Rn, b ∈ R,
here the superscript T denotes the transpose) with aTz > b

being considered as class x and aTz < b being judged as class
y to separate the important class of data x with a maximal
probability while keeping the accuracy of less important class of
data y acceptable. The problem is formulated as:

max
α,β,b,a6=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0,

(4.2)

where α represents the lower bound of the accuracy for the clas-
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sification, or the worst-case accuracy of future data points x;
likewise β. The parameter β0 is a pre-specified positive con-
stant, which represents an acceptable accuracy level for the less
important class y.

Through this formulation, the BMPM model can handle the
biased classification in a direct way. This model provides a differ-
ent treatment on different classes, i.e., the hyperplane aT

∗ z = b∗
given by the solution of this optimization problem will favor the
classification of the important class x over the less important
class y.

4.3.4 Proposed Framework

Here we describe how to formulate the relevance feedback al-
gorithm by employing the BMPM technique and Active Learn-
ing. Applying BMPM-based techniques in relevance feedback is
similar to the traditional classification task. The challenge lies
in how to adopt an appropriate active learning strategy in our
framework.

Let Ii, i = 1, 2, ..., N be the images in the database, and
x,y be the relevant images and irrelevant ones respectively. For
each image Ii, we define Pi to be the probability that this image
belongs to a particular class x or y. More specifically we define
Pix=1 if the image Ii has been labelled to class x, and Pix=0 if
it has been classified to class y. Piy is defined similarly. If the
image has not been labelled, Pi is estimated by its k-Nearest
Neighborhood as:

Pix =
nx

k
(4.3)

piy =
ny

k
(4.4)

nx + ny = k (4.5)
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Figure 4.2: Illustration of the active learning strategy in our framework. We
define k = 20 for kNN algorithm. In this example, Pix = 60%, Piy = 40%,
so Gi = 0.9710. Attention: the base of log is 2.

where nx is the number of images which belongs to the class x
by kNN; likewise ny. In order to derive the expected information
gain when we label a certain image, we define the uncertainty
measurement as follows:

Gi = Φ(Pix, Piy), i = 1, 2, ..., N (4.6)

where Gi is the information measurement and Φ(·) is a function
on the class probabilities of image Ii. Moreover, we employ the
entropy to define the information measurement as

Gi = Φ(Pix, Piy) = −Pix log Pix − Piy log Piy (4.7)

Figure 4.3 is our proposed methodology for image retrieval
tasks in CBIR.

During the iterations of this strategy, we need specify the
value of k in kNN algorithm. It could be learned, or we can
just assign a reasonable number to it. After the iterations of
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Algorithm BMPMactive Loop Summary
1. Randomly pick n0 images from the pool and check their labels
2. Loop:
3. Learn a BMPM on the current images whose labels are known
4. Select m images from the dataset based on the criterion of Eq. (4.7)

with the Top-m highest values, and label them
5. Loop till local optimal boundary achieved or get to maximum number

of iterations

Figure 4.3: BMPMactive Loop Summary.

relevance feedback have been performed, BMPMactive returns
the Top−n most relevant images and learn a final BMPM based
on the label known images.

Algorithm BMPMactive Final Output
1. Learn a final BMPM from the labelled images
2. This decision line maybe the a local optimal one for the whole image dataset
3. The final BMPM boundary separates relevant images from irrelevant ones

Figure 4.4: BMPMactive Final Output.

When we train and engage BMPM active learning framework
in CBIR task, the choice of parameters is very direct, for exam-
ple a typical settings could be n0=10, m=10, k=100 and n=50.
Users can also set them empirically by experiences.

4.4 Experimental Results

In this section, we show the experimental results. The perfor-
mance of our proposed approach (we name it BMPMactive) are
compared with three different models for relevance feedback:
SVM, MPM and BMPM-based framework without active learn-
ing. All of them are based on Radial Basis Function Kernel. The
experiments are evaluated on two real-world image datasets: a
two-category and a ten-category image datasets. These image
datasets were collected from COREL Image CDs. All our works
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Figure 4.5: Example Images from COREL Image Database.

are done on a 3.2GHz machine with Intel Pentium 4 processor
and 1Gb RAM.

4.4.1 Experiment Setup

COREL Image Datasets

The real-world images are chosen from the COREL image CDs.
We organize the datasets which contain various images with dif-
ferent semantic meanings, such as bird, pyramid, model, autumn,
dog and glacier, etc.

(A) Two-Bird set. The 180 images in this dataset belong to
two groups - bird which contains 80 images, and pyramid which
consists of 100 images. And we assume the category of bird is
the relevant class.

(B) Ten-Dog set. The 980 images in this dataset fall into ten
categories - dog, autumn, bird, pyramid, Berlin, model, church,
wave, tiger, Kenya. In this dataset we assign the class of dog to
be the user desired group and it contains 80 images. The other
categories with each having 100 images belong to the irrelevant
class.

Image Representation

For the real-world image retrieval, the image representation is
an important step for evaluating the relevance feedback algo-
rithms. We extract three different features to represent the im-
ages: color, shape and texture.
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Figure 4.6: Evaluation on Two-Bird Dataset: Top-50 returned images are
evaluated.

The color feature employed is the color histograms since it
is closer to human natural perception and widely used in image
retrieval. We quantized the number of pixels into 10 bins for
each color channel (Hue, Saturation, and Value) respectively.
Thus we could get a 30-dimensional color histogram.

We use edge direction histogram as shape feature [42]. We
first calculate the edge images by Canny edge detector and ob-
tain the edge direction histogram by quantize it into 15 bins of
24 degrees. Therefore a 15-dimensional edge direction histogram
is generated as the edge feature.

Texture is an important cue for image feature extraction. We
apply the wavelet-based texture in our experiments [91]. Gabor
Wavelet Decomposition [20] is first performed and we compute
the features for each Gabor filter output afterwards. Following
this approach we use a 16-dimensional vector to describe the
texture information for each image.
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Figure 4.7: Evaluation on Ten-Dog Dataset: Top-50 returned images are
evaluated.

4.4.2 Performance Evaluation

In the following, we present the experimental results by this
algorithm on real-world images. The metric of evaluation is
Average Precision which is defined as the average ratio of the
number of relevant images in the returned images over the total
number of the returned images.

Precision and Recall are two very important performance
measurements, which are defined as the following,

Pre = ImageRelevant

ImageReturned
,

Rec = ImageRelevant

ImageRelevant in total
.

(4.8)

where ImageReturned is the number of images returned in each
iteration, ImageRelevant is the number of relevant images re-
trieved, and ImageRelevant in total is the total number of relevant
images in the pool. In general, recall increases as more images
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Figure 4.8: (a) Average Top-n accuracy over the Two-Bird dataset. (b)
Average Top-n accuracy over the Ten-Dog dataset.

are retrieved while precision decreases.
Since we define n0=10, m=10, and n=50 in the experiments,

two positive examples and eight negative examples are randomly
picked from the dataset for the first iteration, then BMPMActive,
BMPMRegular, MPM, and SVM are applied with the same start
point. For the iterations afterward, all the methods select 10 im-
age based on their own strategies. For SVM-based method in
our evaluation we select images closest to the boundary from the
dataset. In the iterative procedures, the number of returned rel-
evant images is recorded, and the maximum loop used to obtain
the average precision is set to be 10 times for all the methods.

Fig. 4.6 and 4.7 show the evaluation results on the Two-Bird
dataset and Ten-Dog dataset. From the results on the real-
world image datasets, we can see that our proposed framework
outperforms the other approaches, especially in the Ten-Dog
dataset. The reason is that BMPMActive based framework can
reach the optimal solution even when the imbalanced dataset
has a large size. Fig. 4.8 shows the average top-n accuracy for
the two different sizes of datasets. We considered the perfor-
mance of BMPMActive after each round of relevance feedback.
The graphs indicate that the performance noticeably increases
after each round. Furthermore, the performance of BMPMActive
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Learning Models Top50@2-Bird Top30@2-Bird Top20@2-Bird

BMPMActive 0.73 ↑ 0.79 ↑ 0.88 ↑
BMPMRegular 0.63 0.70 0.74

MPM 0.41 0.54 0.59

SV M 0.52 0.65 0.72

Learning Models Top50@10-Dog Top30@10-Dog Top20@10-Dog

BMPMActive 0.58 ↑ 0.77 ↑ 0.83 ↑
BMPMRegular 0.41 0.59 0.65

MPM 0.20 0.37 0.40

SV M 0.33 0.46 0.49

Table 4.1: Average Precision after 10 Iterations

framework degrades when the size and complexity of the dataset
are increased, which could be observed from the Figures.

In order to observe the detailed comparison of the four meth-
ods after 10 iterations, we list the retrieval results in table 4.1.
From the results, we can also see the similar results match-
ing the above comparisons. In the tables we notice that when
BMPMActive return most of the relevant images from the pool
within 10 iterations while for other approaches they take more
than 10 iterations. From this point we could say BMPMactive

based method achieves the optimal decision line much earlier
than other algorithms. Readers can also observe that the per-
formance of all these models on 2-Bird dataset is much better
than the one on 10-Dog dataset. That’s because of the different
size and complexity of the datasets.

4.5 Summary

In this chapter, we address the problem of biased classification
needed by the relevance feedback in CBIR and present a novel
learning tool, BMPM Active Learning, to treat this problem
more precisely and efficiently. In contrast to the traditional
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methods, the BMPM provides a more elegant way to handle
biased classification tasks. We evaluate the performance of the
BMPM based algorithm on the COREL image dataset and ob-
tain promising retrieval results.

2 End of chapter.



Chapter 5

Large Scale Learning with
BMPM

The Biased Minimax Probability Machine (BMPM) constructs
a classifier which deals with imbalanced learning tasks. It pro-
vides a worst-case bound on the probability of misclassification
of future data points based on reliable estimates of means and
covariance matrices of the classes from the training data sam-
ples, and achieves promising performance. In this chapter, we
apply the biased classification model to large scale imbalanced
classification problem, and develop a critical extension to train
the BMPM efficiently which is a novel training algorithm based
on Second Order Cone Program (SOCP). By removing some
crucial assumptions in the original solution to this model, we
make the new method more accurate and efficient. We outline
the theoretical derivations of the biased classification model, and
reformulate it into an SOCP problem, which could be efficiently
solved with global optima guarantee. We evaluate our proposed
SOCP-based BMPM (BMPMSOCP ) scheme in comparison with
traditional solutions on text classification tasks where negative
training documents significantly outnumber the positive ones.
Empirical results have shown that our method is more effective
and robust to handle imbalanced classification problems than
traditional classification approaches.

73
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5.1 Introduction

Biased classifiers have many applications [34]. The goal of con-
structing a two-category biased classifier is to make the accuracy
of the important class, instead of the overall accuracy, as high as
possible, while maintaining the accuracy of the less important
class at an acceptable level.

BMPM has emerged as a good classification technique, es-
pecially in imbalanced classification problem, and has achieved
excellent generalization performance in a wide variety of ap-
plications. It provides a worst-case bound on the probability
of misclassification of future data points based on reliable esti-
mates of means and covariance matrices of the classes from the
training data points.

5.1.1 Motivation

BMPM has been extensively studied as a state-of-the-art learn-
ing techniques in various areas, such as bioinformatics [37, 38],
information retrieval [69, 70] and statistical learning [35]. Most
of recent studies on BMPM are generally based on the Fractional
Program problem (we name it BMPMFP ) which could be solved
by Rosen Gradient method. However the problem formulation
has some crucial assumptions which would lead to failure of the
model. Another issue is that when applying the Fractional Pro-
gram (FP)-based BMPMFP into large real-world classification
problems, it would be very sensitive to data dimension and very
time-consuming.

Motivated from the serious defects of FP-based BMPM solu-
tion, we reformulate the model into an SOCP problem without
any loss of model information. Based on the efforts, the BMPM
could be efficiently trained and applied into large scale learning
problems.
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5.1.2 Contribution

We extend the model of BMPM to the problem of large scale
imbalanced classification, and propose a new training algorithm
to tackle the complexity and accuracy issues in BMPM learning
task. This model is transformed into an SOCP problem instead
of an FP one. Under this new proposed framework, the large
scale imbalanced classification problem could be modelled and
solved efficiently.

5.2 Background Review

5.2.1 Second Order Cone Program

In Second Order Cone Programs a linear function is minimized
over the intersection of an affine set and the product of second
order (quadratic) cones. SOCPs are nonlinear convex problems
that include linear and quadratic (convex) programs as special
cases, but are less general than Semi-definite programs (SDPs).
Several efficient primal-dual interior-point methods for SOCP
have been developed in the last few years [4].

A Second Order Cone Programming problem is as the follow-
ing form:

min fTx

s.t. ‖Aix + bi ‖≤ cT
i x + di i = 1, . . . , N,

(5.1)

where x ∈ Rn is the optimization variable, and the problem
parameters are f ∈ Rn, Ai ∈ R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn, and
di ∈ R. The norm appearing in the constraints is the standard
Euclidean norm, i.e., ‖ u ‖= (uTu)

1
2 . And we call the constraint

‖ Aix + bi ‖≤ cT
i x + di (5.2)

a second order cone constraint of dimension ni. The SOCP
problem in Eq. (5.1) is a convex programming problem since
the objective function and the constraints define a convex set.
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Second order cone constraints can be used to represent several
common convex constraints [58]. For example, when ni = 1 for
i = 1, . . . , N , the SOCP reduces to the Linear Program (LP)

min fTx

s.t. 0 ≤ cT
i x + di i = 1, . . . , N.

(5.3)

Another interesting special case arises when ci = 0, so the ith
second order cone constraint reduces to ‖ Aix + bi ‖≤ di, which
is equivalent (assuming di ≥ 0) to the (convex) quadratic con-
straint ‖ Aix + bi ‖2≤ d2

i . Thus, when all ci vanish, the SOCP
reduces to a quadratically constrained linear program (QCLP).
Furthermore, (convex) quadratic programs (QPs), quadratically-
constrained quadratic programs (QCQPs), and many other non-
linear convex optimization problems can be reformulated as SOCPs
as well [50].

5.2.2 General Methods for Large Scale Problems

Learning from the data is one of the basic ways that human per-
ceive the world and acquire the knowledge. Nowadays, there are
massive amounts of data available at an astonishingly increasing
pace on the Internet and in industrial applications. There are
classification tasks with a large number of classes such as the re-
trieval from image database with more than 1,000 classes. In a
problem of categorization of Web documents, gigabytes of data
with high dimension are processed. How to learn the patterns
from a huge volume of dataset is a crucial problem.

Although many methods for solving the optimization problem
of machine learning over large scale dataset are available [76,
77], we give a brief introduction on two prominent and popular
strategies which can be used to train learning models, such as
SVM, MPM etc, on a large dataset. They are decomposition
approach and analytical approach.
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The core of the decomposition algorithm is the divide and
conquer strategy which is a general principle for solving com-
plex problems [14]. In Computer Science, divide and conquer
is an important algorithm design paradigm. It works by recur-
sively breaking down a problem into two or more sub-problems
of the same (or related) type, until these become simple enough
to be solved directly. The solutions to the sub-problems are
then combined to give a solution to the original problem. A
divide and conquer algorithm is closely tied to a type of recur-
rence relation between functions of the data in question; data is
divided into smaller portions and the result calculated thence.
This technique is the basis of efficient algorithms for all kinds
of problems, such as sorting (quicksort, merge sort) and the dis-
crete Fourier transform (FFT).

For instance, training a Support Vector Machine requires the
solution of a very large quadratic programming (QP) optimiza-
tion problem. Sequential Minimal Optimization (SMO) breaks
this large QP problem into a series of smallest possible QP prob-
lems. These small QP problems are solved analytically, which
avoids using a time-consuming numerical QP optimization as an
inner loop. The amount of memory required for SMO is linear
in the training set size, which allows SMO to handle very large
training sets [77].

Another direction for fast training algorithm in data mining
is applying the optimization procedure during the model formu-
lation, and then solve it analytically.

Lots of machine learning algorithms employ the technique
which combines decomposition and analytical approach together
for the learning task on large scale datasets.
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5.2.3 Biased Minimax Probability Machine

In this section, we briefly present the biased minimax framework,
designed to achieve the goal of the imbalanced classification. We
first introduce the model definition of linear BMPM, and then
review the original method to solve the optimization.

Model Definition

We assume two random vectors x and y represent two classes of
data with mean and covariance matrices as {x, Σx} and {y, Σy},
respectively in a two-category classification task, where x, y, x,
y ∈ Rn, and Σx, Σy ∈ Rn×n. Assuming {x, Σx}, {y, Σy} for two
classes of data are reliable, BMPM attempts to determine the
hyperplane aTz = b with aTz > b being considered as class x and
aTz < b being judged as class y to separate the important class
of data x with a maximal probability while keeping the accuracy
of less important class of data y acceptable. It is formulated as
follows:

max
α,β,b,a6=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0,

(5.4)

where α and β represent the lower bounds of the accuracy for fu-
ture data classification, namely, the worst-case accuracy. Mean-
while, β0 is a pre-specified positive constant which represents an
acceptable accuracy for the less important class.

This optimization will maximize the accuracy for the biased
class x (the probability α) while maintaining the class y’s ac-
curacy at an acceptable level by setting a lower bound β0 as
indicated in the third constraint of optimization problem in
Eq. (5.4). The hyperplane a∗Tz = b∗ given by the solution of
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this optimization will favor the classification of the important
class x over the class y, and will be more suitable in handling
biased classification tasks.

Solving the Biased Minimax Probability Machine

In order to give a comprehensive comparison between our pro-
posed strategy and its original solution, we present the solvabil-
ity of this optimization problem in the following. According to
the research effort by Huang et al.[38], we first borrow Lemma 2
from [54].

Lemma 5.1 Given a 6= 0, b such that aTy ≤ b and β ∈ [0, 1),
the condition

inf Pr{aTy ≤ b} ≥ β

holds if and only if b − aTy ≥ κ(β)
√

aTΣya with κ(β) =√
β

1−β .

This lemma can be proved by using the Lagrangian multiplier
method and the work presented in [54]. Interested readers could
refer to [54] for more detailed description.

By using Lemma 5.1, we obtain the following transformed
optimization problem:

max
α,β,b,a 6=0

α (5.5)

s.t. −b + aTx ≥ κ(α)
√

aTΣxa , (5.6)

b− aTy ≥ κ(β)
√

aTΣya , (5.7)

β ≥ β0 , (5.8)

where κ(α) =
√

α
1−α , κ(β) =

√
β

1−β .

From constraints in Eq. (5.6) and Eq. (5.7), we eliminate b

from this optimization problem. Without considering the influ-
ence of magnitude of a on the optimal solution for the above
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problem, we set aT (x−y) = 1. In addition, since κ(α) increases
monotonically with α, maximizing α is equivalent to maximizing
κ(α). Thus the problem can be further modified to

max
α,β,a6=0

κ(α) (5.9)

s.t. 1 ≥ κ(α)
√

aTΣxa + κ(β)
√

aTΣya , (5.10)

aT (x− y) = 1 , (5.11)

κ(β) ≥ κ(β0) , (5.12)

where Eq. (5.12) is equivalent to Eq. (5.8) due to the monotonic
property of the function κ(·).

The maximum value of κ(α) under the constraints of Eqs (5.10-
5.12) is achieved when the right hand side of Eq. (5.10) is strictly
equal to 1. Otherwise we could always get a new solution con-
structed by increasing κ(α) with a small positive amount while
maintaining κ(β) and a unchanged, which will satisfy the con-
straints, and will be a better solution.

Considering Σx and Σy can be regarded as positive definite

matrices, we obtain κ(α) =
1−κ(β)

√
aT Σya√

aT Σxa
from Eq. (5.10). The

objective function is transformed into the following:

max
κ(β),a6=0

1− κ(β)
√

aTΣya√
aTΣxa

, (5.13)

which is a linear function with respect to κ(β), and
√

aTΣya
which is a positive term. Therefore, this optimization function
is maximized when κ(β) is set to its lower bound κ(β0). Thus,
the BMPM optimization problem is changed to:

max
a6=0

1−κ(β0)
√

aT Σya√
aT Σxa

s.t. aT (x− y) = 1,
(5.14)
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which is an FP problem in the following form,

max
a6=0

f(a)
g(a)

s.t. a ∈ A = {a|aT (x− y) = 1},
(5.15)

where f(a) = 1 − κ(β0)
√

aTΣya, g(a) =
√

aTΣxa . Further-
more, it is easy to see that the domain A is a convex set on
Rn, f(a) and g(a) are differentiable on A. Moreover, f(a) is
a concave function on A and g(a) is a convex function on A.

Then f(a)
g(a) is a concave-convex FP problem. Hence it is strictly

quasiconcave on A according to [37], and is solvable.
In its original work of this model, Rosen Gradient Projection

method [3] is employed to find the solution of this concave-
convex FP problem. It is observed that the inequalities in
Eq. (5.6) and Eq. (5.7) will become equalities at the optimal
point. The optimal b∗ will thus be obtained by

b∗ = a∗Ty + κ(β0)
√

a∗TΣya∗ = a∗Tx− κ(α∗)
√

a∗TΣxa∗.

5.3 Efficient BMPM Training

In this section, we present our research effort on the efficient
training issue on BMPM model. We state the main result, and
then introduce the kernelization procedure of BMPM model.

5.3.1 Proposed Strategy

Our main result is stated below.

Theorem 5.2 If x = y, then the minimax probability decision
problem of Eq. (5.4) does not have a meaningful solution: the
optimal worst-case misclassification probability that we obtain is
1 - a∗ =1. Otherwise, an optimal hyperplane H(a∗, b∗) exists,
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and can be determined by solving the convex optimization prob-
lem:

min
t,a6=0

t− aT (x− y)

s.t. ‖ Σ
1
2
xa ‖≤ 1,

‖ Σ
1
2
ya ‖≤

√
1−β0

β0
t,

(5.16)

and setting b to the value

b∗ = a∗Ty + κ(β0)
√

a∗TΣya∗ = a∗Tx− κ(α∗)
√

a∗TΣxa∗,

where a∗ is an optimal solution of Eq. (5.16), and t ∈ R is a new
optimization variable. The optimal worst-case misclassification
probability for class x and y is

Pr(Misclassificationx) = 1− α∗, (5.17)

Pr(Misclassificationy) = 1− β0, (5.18)

respectively. Furthermore, if either Σx or Σy is positive definite,
the optimal hyperplane is unique.

Proof 1 It is observed that the optimization problem of Eq. (5.4)
could be transformed to the following format:

max
α,b,a6=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β0.

(5.19)

By using Lemma 5.1, the above optimization becomes:

max
α,a6=0

α

s.t.
√

α
1−α

√
aTΣxa +

√
β0

1−β0

√
aTΣya ≤ aT (x− y).

(5.20)
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Since
√

α
1−α is a monotonic increasing function of α, we can

change variables and rewrite our problem as

max
α,a6=0

√
α

1−α

s.t.
√

α
1−α

√
aTΣxa +

√
β0

1−β0

√
aTΣya ≤ aT (x− y).

(5.21)

Considering Σx and Σy can be viewed as positive definite ma-
trices, we formulate the optimization as following:

max
α,a6=0

√
α

1−α

s.t.
√

α
1−α ≤

aT (x−y)−
√

β0
1−β0

√
aT Σya√

aT Σxa
,

(5.22)

which allow us to eliminate
√

α
1−α,

max
a6=0

aT (x−y)−
√

β0
1−β0

√
aT Σya√

aT Σxa
. (5.23)

It is observed that optimization problem of Eq. (5.23) is equiv-
alent to bound the denominator to 1, and then maximize its
numerator. Otherwise if the denominator has no bound, we
would have no way to get the optimal solution1. Furthermore
maximization of an item is equivalent to minimize its opponent.
Hence, we could obtain the transformed problem as

min
a 6=0

−aT (x− y) +
√

β0

1−β0

√
aTΣya

s.t.
√

aTΣxa ≤ 1.
(5.24)

And it could be further transformed to

min
t,a 6=0

t− aT (x− y)

s.t.
√

aTΣxa ≤ 1,√
aTΣya ≤

√
1−β0

β0
t.

(5.25)

1This is a common technique to tackle optimization problems.
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It is exactly a Second Order Cone Programming problem in
the form of:

min
t,a 6=0

t− aT (x− y)

s.t. ‖ Σ
1
2
xa ‖≤ 1,

‖ Σ
1
2
ya ‖≤

√
1−β0

β0
t.

(5.26)

The above problem is convex, feasible, and its objective is linear,
therefore there exists an optimal point, a∗. The linearity of the
objective function which is strict convex implies that the optimal
point is unique. This ends our proof of Theorem 5.2.

Lemma 5.3 The Second Order Cone Programming problem with
linear objective function and norm constraints is a convex opti-
mization problem and thus can be solved efficiently.

Proof 2 This can be directly observed from the properties of
convex optimization.

Many methods or packages can be used to solve this prob-
lem. For example, SeDuMi can solve this problem efficiently
with global optima guarantee [98].

5.3.2 Kernelized BMPM and Its Solution

We use the kernelization technique to map the n-dimensional
data points into a high-dimensional feature space Rf , in which
a linear classifier corresponds to a nonlinear hyperplane in the
original space [65].

Assuming the training data points are represented by {xi}Nx

i=1

and {yj}Ny

j=1 for class x and class y, respectively, we can formu-
late the kernel mapping as:

x → ϕ(x) ∼ (ϕ(x),Σϕ(x)) ,

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)) ,
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where ϕ : Rn → Rf is a mapping function. The corresponding
linear classifier in Rf is aTϕ(z) = b, where a, ϕ(z) ∈ Rf and
b ∈ R. Similarly, the transformed SOCP optimization in BMPM
can be written as:

min
t,a6=0

t− aT (ϕ(x)− ϕ(y))

s.t. ‖ Σ
1
2

ϕ(x)a ‖≤ 1,

‖ Σ
1
2

ϕ(y)a ‖≤
√

1−β0

β0
t.

(5.27)

To make the kernel work, we represent the final decision hy-
perplane and the optimization into a kernel form, K(z1, z2) =
ϕ(z1)

Tϕ(z2), namely an inner product form of the mapping data
points. We are not going to present a detailed kernelization pro-
cedure here. It’s a similar way as described in [39]. Readers
interested in the details can refer to [39].

We give out the kernelized optimization function for BMPM
as follows:

min
t,a6=0

t−wT (k̃x − k̃y)

s.t.
√

1
Nx

wTK̃T
xK̃xw ≤ 1,√

1
Ny

wTK̃T
yK̃yw ≤

√
1−β0

β0
t,

(5.28)

which is also a SOCP problem that has the similar form as the
one in Eq. (5.16) and can thus be solved in a similar way. The
notations in the above are defined similar to [37]. For an easy
reference, we summarize them in Tables ??-??.

5.4 Experimental Results

In this section we discuss the experimental evaluation of our pro-
posed biased learning algorithm in comparison to the state-of-
the-art approaches. For a consistent evaluation, we conduct our
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class number of samples

earn 3964

acq 2369

money-fx 717

grain 582

crude 578

trade 485

interest 478

wheat 283

ship 286

corn 237

Table 5.1: An overview of Reuters-21578 dataset with 10 major classes

empirical comparisons on three standard datasets for text doc-
ument classification: Reuters-21578 dataset, 20-Newsgroup data
collection and Enron Corpus dataset. For all three datasets, the
same data pre-processing procedure is applied: the stopwords
and numerical words are removed from the documents, and all
the words are stemmed and further converted into the lower
cases. In order to remove the uninformative word features for
dimension reduction, feature selection is conducted using the
Information Gain criterion [122]. In particular, 500 of the most
informative features are selected for each document in the three
datasets which is similar to the technique presented in [30].

5.4.1 Experimental Testbeds

The first dataset is the Reuters-21578 Corpus dataset 2, which
has been broadly used as a benchmark dataset for evaluat-
ing algorithms for text classification. In our experiments, the
ModApte split of the Reuters-21578 is used. There are a total
of 10,788 text documents in this collection. Table 5.1 shows a

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
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class number of messages

user 1 982

user 2 301

user 3 1306

user 4 2747

user 5 493

user 6 948

user 7 1493

user 8 264

user 9 1367

user 10 751

Table 5.2: A list of 10 selected users from the Enron Corpus dataset in our
experiments

list of the 10 most frequent topics contained in the dataset [30].
Due to the scope coverage of this paper, we only consider the bi-
nary text classification problem, i.e., justifying a text document
as relevant or irrelevant to a particular class without considera-
tion of the document being assigned to multiple categories. We
conduct 3 groups of evaluations on three predefined classes, i.e.,
earn, grain and ship, which are considered as the positive classes
in each group respectively.

The other two datasets are 20-Newsgroup data collection 3

and the Enron Corpus dataset 4. The 20-Newsgroup dataset is
a collection of approximately 20,000 newsgroup documents, par-
titioned nearly evenly across 20 different newsgroups. Among
these different groups, each one belongs to a different topic.
Some of the newsgroups are very closely related to each other,
e.g., comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware, while
others are highly unrelated, e.g., talk.politics.guns vs. comp.graphics.
Considering this issue, we select 3 out of 20 newsgroups with re-

3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://www.cs.cmu.edu/∼enron/
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lated topics and define them as the interested class in our study,
which are talk.politics.misc, talk.politics.guns and talk.politics.mideast.
Apart from that, the others are regarded as uninterested class.
In the Enron Corpus, there are a total of 200,399 messages be-
longing to 158 users with an average of 757 messages per user.
In our study, we random select 10 out of 158 users for eval-
uation. Each users contains approximately 180 messages. Ta-
ble 5.2 shows the details of this data collection used in our exper-
iments. In this selected dataset, we random define one particular
user as the interested category in our evaluation while others are
regarded as uninterested one. During this process, we conduct
our evaluations on 5 different selected users against the others,
and get the average performance.

5.4.2 Experimental Settings

Applying the BMPM-based technique in text classification is a
very straightforward task, where we just need to assume the
interested documents to be the more important class x in the
biased classification framework while assume the uninterested
ones to be the less important class y.

For performance measurement, the Receiver Operating Char-
acteristic (ROC) curve analysis is employed as our evaluation
metric [118]. It has been shown to be a more reliable metric
than other metrics when conducted on imbalanced classification
problems. The ROC curve plots a series of sensitivities against
the corresponding one minus specificities, or the true positive
rates versus the false positive rates for short. Moreover, if the
ROC curves are generated with good shapes evenly distributed
along their length, they can be used to evaluate biased learn-
ing algorithms by using the area under the curve. The larger
the area under the curve, the higher the sensitivity for a given
specificity, and hence the better the method’s performance [38].
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Two other measurements are used to demonstrate the effi-
ciencies of our proposed model and strategy. They are training
time performance and Test-Set Accuracy which consists of three
sub-measurements, i.e., Test-Set Accuracy on Class x (TSAx),
Test-Set Accuracy on Class y (TSAy) and the overall Test-Set
Accuracy on both classes (TSA).

To examine the effectiveness and efficiency of the proposed
learning model and solving strategy, three reference models are
used in our experiments. The first reference model is SVM
which is a state-of-the-art text classification technique. The
second reference model is based on kNN algorithm which is
a traditional classification model. We also include MPM for
performance comparison intention. Finally, BMPM has been
conducted based on both Fractional Programming and Second
Order Cone Programming strategies. By comparing with these
three models, we are able to determine the BMPM model is
more reliable to handle the imbalanced text classification prob-
lem, and the advantages of our proposed training approach.

To deploy efficient implementation of our scheme toward im-
balanced text classification tasks, both the BMPMSOCP and
the BMPMFP frameworks used in this study are programmed
in the Matlab language while SV M and kNN are in C lan-
guage. The testing hardware environment is on a Windows XP
system with 3.2GHz CPU and 1GB physical memory. To im-
plement the SOCP-based BMPM algorithm for our text clas-
sification tasks, we adopt the standard optimization package,
i.e., SeDuMe [98] and YALMIP [59], to solve the Second Order
Cone Programming problem in our algorithm efficiently. The
FP-based BMPM framework is based on the Rosen Gradient
Projection method described in [37]. For the base model of
MPM, we adopt the code shared by Lanckriet5. The SV M light

package is used in our experiments for the implementation of

5http://cosmal.ucsd.edu/∼gert/publications.html
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BMPMSOCP BMPMFP MPM SV M kNN

α 81.42 ± 0.22 ↑ 80.35 ± 0.13 ↑ 76.30 ± 0.28 - -

β 70.00 ± 0.00 70.00 ± 0.00 76.30 ± 0.34 - -

TSAx 83.10 ± 0.60 ↑ 81.07 ± 0.63 ↑ 74.91 ± 0.61 73.23 ± 1.59 71.60 ± 0.38

TSAy 72.61 ± 0.84 74.48 ± 0.69 75.20 ± 0.62 74.60 ± 0.47 69.40 ± 0.60

TSA 77.85 ± 0.04 77.70 ± 0.21 75.05 ± 0.37 73.90 ± 0.44 70.50 ± 0.55

Table 5.3: Lower Bound α and Test-Set Accuracy on the Reuter-21578
dataset (%)

SVM, which has been considered as the state-of-the-art tool for
text classification6. Since SVM is parameter sensitive, we con-
duct evaluations on a separate validation data collection to de-
termine the optimal parameters for deployment. Furthermore,
we adopt the kNN package implemented by Mount and Arya 7.

5.4.3 Performance Evaluation

In this section, we will first describe the results for the Test-
Set Accuracy performance on three datasets respectively. They
all have been extensively studied for text classification problems.
We will then provide the empirical results for the other two mea-
surements in these data collections: ROC analysis and training
time comparison.

Test-Set Accuracy Comparison

Table 5.3 shows the experimental results of TSA performance
averaging over 3 groups of evaluation, each of which is associated
with a predefined positive class in Reuters-21578 dataset.

First, as listed in the first and the second columns of Ta-
ble 5.3, we observe that the performance of the two classi-
fiers, BMPMSOCP and BMPMFP , outperform the other three

6http://svmlight.joachims.org/
7http://www.cs.umd.edu/∼mount/ANN/



CHAPTER 5. LARGE SCALE LEARNING WITH BMPM 91

models. Take the parameter α for example, BMPMSOCP and
BMPMFP achieves noticeably better performance than MPM ,
which makes the worst-case (maximum) misclassification prob-
ability much lower with the value 1 − α reduced. Given the
motivation that we want to make the accuracy of the more im-
portant class as high as possible, this demonstrates the efficien-
cies of BMPM for biased classification problems though the pa-
rameter β in both BMPMs are worse than the one in MPM .
Second, we compare the performance of the two BMPM clas-
sifiers with the traditional classifiers, i.e., SV M and kNN. The
results are listed in the fourth and fifth columns of Table 5.3. We
find that the average TSA performance, which is indicated as
TSA in the table, of these two learning methods becomes close
with the BMPM models. But for the TSA of the more important
class indicated as TSAx is much lower than BMPM models. For
example, the TSAx of BMPMSOCP is much better than kNN
though it shows the shortage in the TSA measurement. Finally,
we compare the performance of the proposed Second Order Cone
Program based algorithm, i.e., BMPMSOCP , to the Fractional
Program based methodology BMPMFP . It is evident that our
proposed learning algorithm outperforms its original approach.
For both α and TSAx, which denote the classification accu-
racy of the more important pattern, the proposed algorithm
BMPMSOCP is able to outperform the FP-based learning algo-
rithm noticeably.

In order to evaluate the performance substantially, the classi-
fication results of the 20-Newsgroup dataset and the Enron Cor-
pus dataset are listed in Table 5.4 and Table 5.5, respectively.
From the experimental results, we can see that our two BMPM
models achieve better performances than the other algorithms
in most of the cases while the BMPMSOCP generally outper-
forms the BMPMFP method. This result also indicates that
the proposed learning algorithm is robust when there is a global
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BMPMSOCP BMPMFP MPM SV M kNN

α 78.41 ± 0.46 ↑ 78.20 ± 0.55 ↑ 74.62 ± 0.33 - -

β 70.00 ± 0.00 70.00 ± 0.00 74.60 ± 0.39 - -

TSAx 76.20 ± 0.72 ↑ 75.40 ± 0.79 ↑ 73.40 ± 1.02 54.20 ± 0.49 53.90 ± 0.37

TSAy 71.40 ± 1.59 70.50 ± 1.37 75.81 ± 0.36 79.60 ± 1.13 78.41 ± 0.33

TSA 73.80 ± 1.35 72.95 ± 1.26 74.60 ± 0.37 66.92 ± 0.64 66.15 ± 0.17

Table 5.4: Lower Bound α and Test-Set Accuracy on the 20-Newsgroup
dataset (%)

BMPMSOCP BMPMFP MPM SV M kNN

α 76.20 ± 0.22 ↑ 74.31 ± 0.14 ↑ 69.82 ± 0.28 - -

β 70.00 ± 0.00 70.00 ± 0.00 69.82 ± 0.28 - -

TSAx 72.81 ± 0.26 ↑ 71.42 ± 0.28 ↑ 71.21 ± 0.34 54.60 ± 0.17 51.52 ± 0.32

TSAy 70.62 ± 0.61 70.20 ± 0.57 67.28 ± 0.24 83.41 ± 0.57 79.30 ± 0.79

TSA 71.70 ± 1.24 70.81 ± 1.20 69.23 ± 1.43 67.45 ± 0.29 66.40 ± 0.81

Table 5.5: Lower Bound α and Test-Set Accuracy on the Enron Corpus
dataset (%)

optima needed while the FP-based method may suffer critically
with the assumptions during the learning model formulation.

ROC Curve Analysis

We now compare our BMPM models with kNN in terms of the
ROC curve analysis. We generate the ROC curves as illustrated
in left parts of Figs (5.1 – 5.3). Note that we do not involve MPM
and SVM for comparison here, since it is not easy to generate
the ROC curves for SVM and MPM due to their model settings.

It is observed that the BMPMSOCP and BMPMFP perform
better than the kNN classifier for all three data collections, since
the BMPM curves are above of the one for kNN method at most
cases. In addition, usually not all the portions of the ROC curve
are of great interest. In general, those with a small false positive
rate and a high true positive rate are most important. In light of
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Figure 5.1: ROC Curve Performance Evaluation on Reuters-21578 Dataset.
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Figure 5.2: ROC Curve Performance Evaluation on 20-Newsgroup Dataset.

this, we show the critical portions in the right parts of Figs (5.1
– 5.3) detailedly when the false positive rate is in the range of
0.0 to 0.5 and the true positive rate is in the range of 0.5 to 1.0
respectively. In these critical regions, most parts of the ROC
curves of BMPMs are above the corresponding ones of kNN
model in all datasets along with the BMPMSOCP curves are
above the ones of BMPMFP , which again demonstrates the su-
periority of the BMPM models and our proposed BMPMSOCP

algorithm.
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Figure 5.3: ROC Curve Performance Evaluation on Enron Corpus Dataset.

Training Time Comparison

We record the runtime when conducting experiments on the
Reuters-21578 data collection. We divide the whole dataset into
three roughly equivalent portions. We run the experiments three
phases stage by stage: first we examine the runtime on one third
of the whole dataset; following that we add another one third
and record the time consumption; finally we conduct the evalu-
ation on the whole dataset. All these steps are deployed three
times given by three predefined positive classes respectively, and
we get the average performance.

Figure (5.4) compares the CPU-time of two BMPMs and
MPM on the task described above. It could be observed that
BMPMSOCP is substantially faster than the other two models
on all cases. From the experimental result, we can see that our
proposed strategy outperforms its original solution and MPM
in training time comparison while MPM is generally faster than
BMPMFP . We also find that the improvement of our algo-
rithm is more evident compared with the other two approaches
when the size of training instances is larger. This is because
the larger the size of the problem, the better the performance
we could expect. When more samples are conducted, the gap
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Figure 5.4: Training time performance of different models based on Matlab
for Three-Phase Reuters-21578 dataset (sec.*GHz )

for performance improvement begins to increase. As a result,
the difference between the two algorithms for BMPM starts to
become obvious. It is a crucial point for large scale imbalanced
text classification problems. This makes the BMPM conducted
on large scale classification problems practical.

5.5 Summary

The computational complexity of our method for BMPM is com-
parable to the quadratic program that one has to solve for SVM
and MPM. While we have presented this model from the view-
point of a convex optimization problem, we believe that there is
much to gain from exploiting analogies to the SVM and develop-
ing specialized optimization procedures for our model. Another
direction that we are currently investigating is the extension of
our model to multi-class classification.

2 End of chapter.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Image retrieval is getting more and more popular now than ever
before, due to the rapid growth of the Internet and the growing
use of image information in government and commercial organi-
zations. Many organizations produce huge volume of image data
everyday. Facing the massive data volume, end users find that
it is inefficient to browse a favorite image from Internet, and the
content providers have to face the tedious work of managing the
ever growing multimedia database. The urgent problem brings a
lot of attention to Content-based Image Retrieval (CBIR), which
is a state-of-the-art technology intending to solve the problem
by providing the people expected images based on their content.

In conclusion, we have proposed an imbalanced learning based
relevance feedback framework for CBIR, an active learning strat-
egy for relevance feedback, and an efficient training algorithm
for the Biased Minimax Probability Machine (BMPM) model.
Our research work has the following contributions:

1. We propose a BMPM-based methodology to capture the
user’s preference in the relevance feedback process in which
BMPM addresses the imbalanced dataset problem. The
experimental results on both synthetic dataset and real-
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world image collection demonstrate the effectiveness of our
proposed approach.

2. We present an active learning framework with imbalanced
learning theory to tackle the relevance feedback problem in
CBIR. Performance evaluation has shown that our frame-
work improves the performance compared to the traditional
methods for relevance feedback problem in CBIR.

3. We propose a Second Order Cone Program based algorithm
to solve BMPM model for large scale dataset learning tasks.
Our analysis and evaluation of the proposed algorithm show
that it is more efficient and accurate than its original solu-
tion which is a Fractional Program based method.

6.2 Future Work

In this thesis we describe the work we have done on relevance
feedback problem in CBIR and efficient training algorithm on
BMPM learning model.

A BMPM-based framework and an active learning framework
have been proposed. The frameworks themselves are quite flexi-
ble; many other features and constraints can be added into both
frameworks as their extensions. In the future, we may enhance
the frameworks by incorporating better feature extraction meth-
ods and similarity measurement algorithms into our frameworks.

The problem of imbalanced classification has a long and dis-
tinguished history. Many results on misclassification rates have
been obtained by making distributional assumptions. BMPM
makes use of the moment-based inequalities of Marshall and
Olkin to obtain distribution-free results for linear discriminants.
By converting this model into a Second Order Cone Program-
ming problem, the decision hyperplane is then determined more
accurately and efficiently. The computational complexity of our
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method is comparable to the quadratic program that one has
to solve for SVM and MPM. While we have viewed this model
from the angle of a convex optimization problem, we believe that
there is much to gain from exploiting analogies to the SVM and
developing specialized optimization procedures for our model, in
particular procedures that break the data into subsets. Another
direction that we are currently investigating is the extension of
our model to multiway classification.

2 End of chapter.
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