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Abstract of thesis entitled:
Using Biased Support Vector Machine in Image Retrieval with Self-

Organizing Map
Submitted by Chan Chi Hang
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2004

With the rapid growth in the volume of digit images, searching and
browsing in a large collection of images is gaining importance. In a tra-
ditional image retrieval system, it uses text keywords or text descriptors
for indexing and retrieval. However, the keyword-based image retrieval
systems require large amount of manual effort to annotate the images in
database, and it reduces the scalability of the system. Content-Based
Image Retrieval (CBIR) has been proposed to overcome the difficulties
of keyword-based image retrieval approach in early 1990’s. In contrast
to the keyword-based approach, CBIR uses the visual features, such as
color, texture, and shape feature, for indexing and retrieval. Since the
feature extraction process can be made automatic, this greatly reduces
the difficulties of the keyword-based approach. However, it is difficult
to use low-level image features to represent high-level image concepts,
and the CBIR systems have a very limited recall even the best feature
extraction and similarity measure algorithms are used.

In this thesis, we make use of the relevance feedback architecture
to learn image similarity through interactions with users. The goal
of relevance feedback is to learn user’s preference from their interac-
tion, and it is a powerful technique to improve the retrieval result in
CBIR. In recent years, many intra-query learning techniques have been
proposed to solve the relevance feedback problem, in which the prior
information from past queries are ignored. Among these techniques,
Support Vector Machines (SVM) have shown promising results in the
area. More specifically, in relevance feedback applications the SVMs
are typically been used as binary classifiers with the balanced input
data assumption. In other words, they do not consider the imbalanced
dataset problem in relevance feedback, i.e., the non-relevant examples
outnumbered the relevant examples. In this thesis, we propose to apply
our Biased Support Vector Machine (BSVM) to address this problem.
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Moreover, we apply our Self-Organizing Map-based inter-query tech-
nique to reorganize the feature vector space, in order to incorporate the
information provided by past queries and improve the retrieval perfor-
mance for future queries. The proposed combined scheme is evaluated
against real world data. Promising results demonstrating the effective-
ness of our proposed approach.
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Chapter 1

Introduction

With the rapid growth in the volume of digital images, searching and

browsing in a large collection of images are gaining importance. In a

traditional image retrieval system, it uses text keywords or text descrip-

tors for indexing and retrieval. However, there are two main difficulties

in keyword-based image retrieval [21, 46]; they are,

• Differences in interpretation of image content: There are

always inconsistencies in keyword assignments, since different in-

dexers may use different keywords to describe the same image

concept. Moreover, the retrieval system that uses words to de-

scribe image concept suffers from two well-known language related

problem called synonymy and polysemy. Synonymy describes that

several words have the same meaning. Polysemy describes that

the words have multiple meanings.

• Non-scalability: Large amount of manual effort is required to

annotate the images in database. Since it is hard to extract the

keywords from an image automatically, and many image retrieval

systems that adopted the keyword-based approach need human

to extract the keywords from images.
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Introduction 2

To overcome the difficulties of keyword-based image retrieval ap-

proach, Content-Based Image Retrieval (CBIR) has been proposed in

early 1990’s. In contrast to the keyword-based approach, CBIR uses

the visual feature of images, such as color, texture, and shape fea-

ture, for indexing and retrieval. This greatly reduces the difficulties of

the keyword-based approach, since the feature extraction process can

be made automatic and the image’s own content is always consistent.

The CBIR process can be summarized as follows:

• Feature Extraction: Image processing and computer vision

techniques are used to extract low-level visual features from im-

ages, color, texture, and shape for example. These features are

usually represented by high-dimensional vectors in the real do-

main.

• Retrieval: For a given feature, a notation of similarity measure

is determined. The similarity measure is used to rank the images

in the collection.

Despite the extensive research effort, the retrieval techniques used

in CBIR systems have a very limited recall even when the best feature

extraction and similarity measure algorithms are used. That is only

a very limited relevant items are retrieved to the user in response to

the initial query. This problem is recognized as a major difficulty in

information retrieval [27, 40]. There are two major reasons that lead

to this problem [61]; they are,

• The gap between high-level concepts and low-level fea-

tures: In a traditional CBIR system, it assumes that the map-

ping from low-level features to high-level concepts is easy for the

user to do. However, this assumption may not be true. One ex-
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ample is to map a picture of a smiling old man to low-level feature

representation.

• Subjectivity of human perception: For a particular image,

different users or the same user under different circumstances may

perceive differently. Thus, it is almost impossible to find a feature

extraction or similarity measure algorithm to satisfy all situations.

In light of this, researchers figure out that refinement of the query

and similarity measurement during the retrieval process are required

to further improve the retrieval performance.

Relevance feedback is suggested as a solution for the problem of

user subjectivity. The goal of relevance feedback is to learn user’s

preference from their interaction, and it is a powerful technique to

improve the retrieval result in CBIR. Under this framework, a set of

images is presented to the user according to the query. The user marks

those images as either relevant or non-relevant and then feeds back

this information into the system. Based on this feedback information,

the system presents another set of images to the user. The system

learns user’s preference through this iterative process and improves the

retrieval performance. From the experimental results of various CBIR

systems, it shows that relevant feedback is a promising direction for

CBIR.

1.1 Problem Statement

Most of the current relevance feedback systems are based on the intra-

query learning approach [9, 20, 26, 61, 75]. In this approach, the

system refines the query and improves the retrieval result by using

the feedback information provided by the user. The learning process
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starts from ground up for each query, and the prior experiences from

past queries are ignored. In the intra-query approach, the system

presents a set of images, Xt, to the user in each iteration, and the

user gives feedback, At, to the system based on these images. Thus,

the system learns the user’s preference from these feedback informa-

tion, and the information provided to the system up to the t-th itera-

tion can be represented as H = {X1, A1, X2, A2, · · · , Xt, At}. Among

the intra-query learning techniques, recent research shows that SVM-

based techniques are more promising and effective techniques than

other intra-query approaches [9, 82]. The regular SVM [5, 78] and

one-class SVM [51, 64, 65, 72, 73] are introduced into the relevance

feedback problem. The regular SVM-based technique [20, 26, 75, 76]

treats the relevance feedback problem as a strict binary classification

problem. However, this technique does not consider the imbalanced

dataset problem, in which the number of non-relevant images is sig-

nificantly larger than the relevant images. This imbalanced dataset

problem will lead the positive data (relevant images) be overwhelmed

by the negative data (non-relevant images) [9]. The one-class SVM-

based technique [9] uses only the relevant images in the learning pro-

cess, and treats the problem as a density estimation problem. The

one-class SVM-based technique seems to avoid the imbalanced dataset

problem. However, it cannot work well without the help of negative

information [82].

Recently, researchers propose the use of inter-query information to

further improve the retrieval result in relevance feedback process [24,

28, 42, 83]. In the inter-query learning approach, feedback information

from past queries are accumulated to train the system to determine

what images are of the same semantic meaning. Let us assume that
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the system has processed k queries before. For the (k + 1)-th query,

the information provided to the system is {H1, H2, · · · , Hk+1} instead

of Hk+1 alone. Thus, the inter-query approach has more information

to learn the user’s preferences. In [28, 42, 83], the system analyzes

the correlation between images labelled in the past queries. The inter-

query information is used to improve similarity measure in the retrieval

process. In [24], the inter-query information is used to capture users’

query concepts. The image concepts are then used to select the set of

images presented to the user, and improve the retrieval result. These

approaches examined the possibility of incorporating the inter-query

information to the relevance feedback process. They show that the

retrieval performance can be benefited from the inter-query learning.

The problem we are facing are:

• To develop a relevance feedback system that has the advantages of

the existing SVM-based relevance feedback techniques, and able

to address the imbalanced dataset problem.

• To incorporate the inter-query information in the system, so as

to improve the retrieval result and reduce the number of iteration

required.

1.2 Major Contributions

The main contributions of our work are as follows:

• We propose a Biased Support Vector Machine (BSVM) [6, 31]

technique to capture the user’s individual preferences in the rel-

evance feedback process. Moreover, BSVM addresses the imbal-

anced dataset problem in relevance feedback process. Our strat-

egy is to construct a SVM that
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– classifies the positive data (relevant images) and negative

data (non-relevant images) correctly, and

– contains a parameter to control the importance of positive

data and negative data.

Thus, the positive data will not be overwhelmed by the negative

data.

• We propose a Self-Organizing Map (SOM)-based technique [6, 7]

to incorporate the inter-query information in the system. We use

a SOM to represent the images in the database, and use the inter-

query information to modify the feature vector space, in which the

SOM of images is stored. This allows for transforming the images

distributions and improving their organization in the modified

vector space. Thus, the images are organized in a fashion that

ease the retrieval process.

Our experimental results show that:

• BSVM produces better retrieval performance than regular SVM,

one-class SVM and other techniques in the literature in the rele-

vance feedback problem.

• the retrieval performance of BSVM can be further improved by

applying the SOM-based inter-query learning.

1.3 Publication List

• Chi-Hang Chan, Ka-Cheung Sia, and Irwin King. Utilizing

inter- and intra-query relevance feedback for content-based image

retrieval. In Special Session of the International Conference on
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Neural Information Processing (ICONIP2003), Istanbul, Turkey,

May 2003.

• Chu-Hong Hoi, Chi-Hang Chan, Kaizhu Huang, Michael Lyu,

and Irwin King. Biased support vector machine for relevance feed-

back in image retrieval. In The Proceedings to the 2004 Interna-

tional Joint Conference on Neural Networks, Budapest, Hungary,

July 25-29, Accepted. IEEE Computer Society.

• Chi-Hang Chan and Irwin King. Using Biased Support Vec-

tor Machine to Improve Retrieval Result in Image Retrieval with

Self-Organizing Map. In Proceedings to the International Confer-

ence on Neural Information Processing (ICONIP2004), Calcutta,

India, November, 2004, Accepted.

1.4 Thesis Organization

In this thesis, we review current techniques in the literature in docu-

ment retrieval as well as content-based image retrieval in Chapter 2.

In particular, we discuss the major characteristic and properties of rel-

evance feedback problem. We also analyze a variety of relevance feed-

back algorithms to point out the current direction of relevance feedback

research. In Chapter 3, we propose the BSVM for relevance feedback in

CBIR. The formulation and properties of BSVM are discussed in this

chapter. In Chapter 4, we present our SOM-based inter-query learn-

ing algorithm. Experiments using synthetic and real data are shown

in both Chapter 3 and Chapter 4 to illustrate the characteristics and

performance of our algorithm. Lastly, we give concluding remarks in

Chapter 5.
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2 End of chapter.



Chapter 2

Background Survey

2.1 Relevance Feedback Framework

The relevance feedback process is an automatic and iterative process

to improve retrieval result using the feedback information given by the

users. In the relevance feedback framework, the system automatically

selects and presents a set of objects, documents or images for example,

to the user. The user then provides feedback to the system based on

the degree of relevance between each presented object and his desired

target. With the feedback information, the system captures the user’s

preferences and improves the retrieval performance. A typical relevance

feedback framework consists of two major steps,

1. the system selects a set of objects from the database and presents

to the user, and

2. the system captures the user’s preferences and refines the query

based on the feedback information given by the user.

This two steps repeat iteratively until the process is terminated. We

use Fig. 2.1 to illustrate this framework. Various approaches have been

proposed to optimize these two steps in recent years, we will further

9
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discuss about the query learning in relevance feedback in section 2.3,

and the presentation set selection in section 2.4.

Figure 2.1: Relevance Feedback Framework

The relevance feedback problem can be considered as either a clas-

sification problem or a density estimation problem. Distinguishing the

relevant and non-relevant objects in a collection is a common objective

in a relevance feedback system, and this objective can be treated as

a classification problem. Since it can be considered as classifying the

data into two classes (relevant and non-relevant) based on a limited

set of labelled data (objects identified by the user). Another common

objective in relevance feedback is to rank the objects in the collection

based on their degree of relevance to the query target, and it can be

treated as a density estimation problem. Since the ranking function can

be considered as the distribution of relevant objects and non-relevant

objects, and the task of estimating these two distributions from the

labelled data is a density estimation problem.
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In the rest of this section, the major aspects and properties for

relevance feedback are discussed.

2.1.1 Relevance Feedback Types

Different relevance feedback algorithms assume the user gives different

types of feedback for the presented objects. There are mainly three

different assumptions on the feedback types for the current relevance

feedback algorithms; they are “relevant only”, “relevant score”, and

“binary feedback”.

Relevant only ({OR}) - It has been applied in the early relevance

feedback systems [32, 53, 54, 85], in which only objects labelled as

relevant are used in the learning process. The major drawback is the

information contained in the non-relevant objects is ignored, since the

users are looking for a small portion of objects in the collection, and a

large portion of objects are expected to be non-relevant. Thus, there

is a high chance for a presented object to be non-relevant, and a large

amount of information is ignored if the non-relevant objects are not

used in the learning process.

Relevant score ({{OR, ON}, S}) - It has been applied in various

relevance feedback algorithms [34, 61], in order to obtain more infor-

mation from the user. The relevant score can be discrete or continuous,

and it indicates the degree of relevance of the presented objects to the

user’s target. However, it is a difficult task for the user to quantize the

degree of relevance, and different users may have different interpreta-

tions for that. Thus, the “binary feedback” is proposed to overcome

this problem.

Binary feedback ({OR, ON}) - It is a common scheme adopted by

the recent relevance feedback systems [9, 20, 25, 28, 29, 75], it assumes
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that the user labels the presented objects as either relevant or non-

relevant. The advantage of this assumption is that it can make use

of both relevant and non-relevant objects in the learning process, and

the workload for the user is low when compare with the relevant score

scheme.

2.1.2 Data Distribution

The data distribution can be separated into the feature distribution

and the target distribution. The feature distribution refers to the dis-

tribution among all the objects in the collection in a particular feature

vector space. The target distribution refers to the distribution of the

desired target in a query in the feature vector space, and it is a major

concern in most of the relevance feedback algorithms. The assumption

on data distribution is an important issue in relevance feedback, since

it is a crucial prior knowledge for estimating the target distribution.

Feature Distribution

The feature distributions of images and documents databases are usu-

ally sparse and highly clustered. This is due to the fact that feature

representations have high dimensionality, and similar objects are lo-

cated near to each others in the feature vector space. For the document

databases, the concept of distribution is seldom applied. It is because

the similarity measure used in the document retrieval is not a distance

measure between feature vectors, but the cosine between the feature

vectors. In general, similar documents are assumed to be clustered

together on the surface of a unit sphere when the feature vectors are

normalized. For the image databases, it is a common assumption that

similar images follow a Gaussian distribution, and a Gaussian Mixture
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Model (GMM) is used to model the feature distribution of the image

database.

Target Distribution

In document retrieval systems, a general assumption for the target

distribution is that those relevant objects are clustered together. Doc-

ument retrieval approaches in the vector space model [32, 54, 58] define

the similarity measure as the cosine between the term vectors of doc-

uments, and the document with the highest similarity measure to the

query is considered as the query’s target. Thus, the relevant documents

are assumed to be clustered among the query vector in the vector space

model. For the approaches in the probabilistic model [17, 36, 53, 85],

they assume that if two documents with more presence or absence of

search terms in common (similar term vector pattern), then they are

considered more similar to each others. In the retrieval process for

relevance feedback in the probabilistic model, documents with search

term pattern similar to that of the labelled relevant documents are

more likely to be the query’s target. Thus, the probabilistic model also

assumes that relevant documents are clustered together.

In CBIR systems, the Gaussian distribution is a common and con-

venient assumption for the target distribution. The single isotopic

Gaussian assumption is adopted by the earliest relevance feedback sys-

tems [11, 61] for CBIR, and the components of the feature vectors are

considered to be independent in these approaches. MindReader [34]

proposes the use of the general Gaussian distribution as the target dis-

tribution, in order to consider the correlations among the components

of feature vectors in the similarity measure. In [44], it does not restrict

the target distribution to follow any particular class of statistical dis-
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tribution, and uses a Parzen window estimation to model the target

distribution. Recently, the support vector machine [20, 26, 75, 76] is

applied in relevance feedback, where the problem of relevance feedback

is modelled as a two-class classification problem, and the non-linearity

of the target distribution is addressed in it.

2.1.3 Training Set Size

The size of the training set in the relevance feedback problem is usu-

ally small compared to the dimension of data, since each training sam-

ple requires user’s annotation, and the number of user’s annotation

is considered as the user’s workload. The size of the training set can

be divided into two parts; they are the number of iteration and the

number of sample in each iteration. If the total number of samples is

constrained, then more iteration can provide better retrieval results in

most cases. The intuition behind is that more iteration can give more

opportunities for the system to refine the query. When the number of

iteration is reduced to one, the system becomes a traditional one-shot

retrieval system.

The limited size of the training set is the major concern in a rele-

vance feedback system, since most of the classical learning techniques

for the classification and the density estimation problem are based on

the law of large number, and the target estimator tends to optimal

when the number of training set is sufficiently large. Various relevance

feedback systems apply these classical techniques on the problem. How-

ever, the size of training set is usually small, and it may not be sufficient

for these systems to provide stable or meaningful results.
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2.1.4 Inter-Query Learning and Intra-Query Learning

The learning process can be classified as inter-query learning or intra-

query learning. Most of the current relevance feedback systems are

based on the intra-query learning approach [9, 20, 26, 61, 75]. In this

approach, the system refines the query and improves the retrieval result

by using the feedback information that the user provided. The learning

process starts from ground up for each query, and the prior experience

from past queries are ignored. In the intra-query approach, the system

presents a set of objects, Xt, to the user in each iteration, and the user

gives feedback, At, to the system based on these objects. Thus, the

system learns the user’s preference from these feedback information,

and the information provided to the system up to the t-th iteration

can be represented as H = {X1, A1, X2, A2, · · · , Xt, At}.
Recently, researchers propose the use of the inter-query information

to further improve the retrieval result [7, 24, 28, 42, 83]. In the inter-

query learning approach, feedback information from past queries is

accumulated to train the system in order to determine which images

are of the same semantic meaning. Let us assume that the system has

processed k queries before. For the (k + 1)-th query, the information

provided to the system is {H1, H2, · · · , Hk+1} instead of Hk+1 alone.

Thus, the inter-query approach has more information to learn the user’s

preferences. In [28, 29], the system applies latent semantic indexing

(LSI) [19] in relevance feedback. LSI is a classical document retrieval

algorithm. It analyzes the correlation of documents and terms in the

database. In [42, 83], the system analyzes the correlation between

objects labelled in past queries. The inter-query information is used

to improve the similarity measure in the retrieval process. In [28, 29],

previous feedback information are stored in the system to build the
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latent semantic index. Then, they treat the query result as a document

and the object in the collection as a term. In [24], the inter-query

information is used to capture users’ query concepts. These concepts

are then used to select the set of objects presented to the user, and

improve the retrieval result. These approaches examined the possibility

of incorporating the inter-query information to the relevance feedback

process, and they show that the retrieval performance can be benefited

from the inter-query learning.

2.2 History of Relevance Feedback Techniques

The concept of relevance feedback is first introduced by Rocchio and

Salton [56] to the document retrieval in the early 1960’s. Rocchio et

al. [54] argue that the initial query in the document retrieval may not

be able to represent the user’s need, so that they define the optimal

query as the one that maximizing the similarity measure of the relevant

documents and minimizing the similarity measure of the non-relevant

documents to the query in the vector space model. The relevance

feedback technique is then applied to estimate the optimal query, and

these techniques are referred as the vector space model (Secion 2.3.1).

Salton et al. [85] analyze this problem with a probabilistic model (Sec-

tion 2.3.4). The statistical information of the query is gathered during

the relevance feedback process, and the information is used to estimate

the probability function of a document belonging to the relevant and

the non-relevant set. These probability functions are then used to de-

termine which documents are more similar to the query in the retrieval

process.

Relevance feedback is introduced to image retrieval during mid

1990’s [39, 45, 49, 61]. In a typical CBIR system, images are repre-
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sented as data points by extracting the image features by some feature

extraction methods, color moment and co-occurrence matrix for ex-

ample. Then the nearest neighbor to the query in the vector space is

considered as its target. Some earlier works in relevance feedback for

CBIR is aimed at using the feedback information to modify the distance

function of the image representations in the vector space. MARS [61]

is one of the earliest systems that applied this idea. They construct

the distance function as the weighed combination of the feature com-

ponents, and the feedback information is used to update the weights

of the distance function. One common weight updating method is

to assign the weight of the feature component inverse proportional to

the standard deviation of the relevant data. Since feature components

with smaller standard deviations should be more important than those

with larger standard deviations. These methods are referred as the

ad-hoc re-weighting approach (Secion 2.3.2) or the standard deviation

approach.

PicHunter [14] is also among the earliest work in the field of rele-

vance feedback for CBIR. It assumes that the user is looking for a single

image instead of a category of images. PicHunter is analogous to the

probability model in the sense that they both use the feedback informa-

tion to gather the statistical information for the query. In PicHunter,

Bayes’ rule is applied to construct the probability function of the image

being the query’s target, then this function is used to retrieve images

for the query based on the feedback information. These techniques are

referred as the Bayesian approach (Section 2.3.5).

MindReader [34] argues that the ad-hoc re-weighting approach lacks

an optimal claim, and it addresses this problem by providing an op-

timization function. It replaces the weighted distance function in the
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ad-hoc re-weighting approach by a quadratic distance, and the query

is optimized when the distance of relevant images to the query is min-

imized. The feedback information is used to obtain the mean vector

and covariance matrix in the quadratic distance function. Thus, the

MindReader has an optimality claim by modelling the problem as a

minimization problem. These techniques are referred as the distance

optimization approach (Section 2.3.3).

The density estimation approach (Section 2.3.6) is a combination of

the probabilistic model and the distance optimization approach. In the

density estimation approach, the relevance feedback system uses either

parametric or non-parametric approach to estimate the distribution

of the target. And the feedback information is used to obtain the

parameters in the distribution function, since the probability function

in the probabilistic model can be considered as a distribution, and the

quadratic distance in the distance optimization can be replaced by a

Gaussian distribution. Thus, the density estimation approach can be

viewed as a generalization of these two approaches. In [44], they apply

the non-parametric density estimation method, and model the target

distribution with the Parzen window estimation. For the parametric

approach [48, 71], Gaussian distribution is a common assumption for

the distribution.

Recently, researchers apply the support vector machine (Section 2.3.7)

in the statistical learning theory to the relevance feedback problem.

SVM is a classification and regression technique with strong theoret-

ical foundation and good generalization ability, and it provides good

experimental results in many different domains. The regular SVM is

used to solve the two-class classification problem. In [20, 25, 26, 75],

they apply the regular SVM in relevance feedback problem by treating
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the relevant and non-relevant data as two separate classes. In [9], it ap-

plies the one-class SVM in relevance feedback, and treats the relevance

feedback problem as a density estimation problem.

2.3 Relevance Feedback Approaches

In this section, various major approaches are discussed, including the

relevance feedback systems in document retrieval and CBIR. The road

map of relevance feedback development is shown in Fig. 2.2. The ab-

breviations and symbols used in this thesis is shown in Table 2.1 and

Table 2.2.

Table 2.1: List of Abbreviations
CBIR Content-based Image Retrieval

GMM Gaussian Mixture Model

LSI Latent Semantic Indexing

MARS Multimedia Analysis and Retrieval System

QBC Query By Committee

SOM Self-Organizing Map

SVM Support Vector Machine

idf inverse document frequency

tf term frequency

2.3.1 Vector Space Model

Vector space model is the earliest relevance feedback approach intro-

duced. It is designed to be used in document retrieval. In this model,

each document is commonly represented by the search terms it con-

tains. A particular expression for the document can be written as,

x = (x1, x2, . . . , xj, . . . , xJ), xj ∈ R and xj ≥ 0 (2.1)
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Figure 2.2: Road Map of Relevance Feedback

where xj represents the importance of the j-th search term in the object

x. A commonly used importance measure in document retrieval is the

product of term frequency (tf) and the inverse document frequency

(idf). The term frequency measures the occurrence of a search term
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Table 2.2: List of Symbols
q query vector

x object vector

t index for iteration

i index for object

j index for feature component

J maximum number of components

xij j-th component of the i-th object

qtj j-th component of the query in the t-th iteration

si the relevance score of the i-th object labelled by the user

S the set of the relevance set, i.e. {s1, s2, . . . , sn}
O objects in the whole collection

ORt relevant objects identified in the t-th iteration

ONt non-relevant objects identified in the t-th iteration

OR relevant objects identified up to the current iteration

ON non-relevant objects identified up to the current iteration

σORj standard deviation of the j-th component among all relevant objects

σON j standard deviation of the j-th component among all non-relevant objects

µORj mean of the j-th component among all relevant objects

µON j mean of the j-th component among all non-relevant objects

n Number of objects in the collection

in the document and the document frequency measures the occurrence

of a search term in the whole collection. A typical expression can be

written as,

xj = tfxj
× log

n

dfj

, (2.2)

where tfxj
is the number of occurrence of the term j in document x,

dfj is the number of documents contain the term j, and n is the total

number of documents.

In the vector space model, a typical query-document similarity mea-
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sure can be computed as follows,

S(q,x) =
qTx

|q||x| , S(q,x) ∈ [0, 1]. (2.3)

In this equation, S(q,x) is the cosine of the angle between the two

vectors, q and x, such that only the direction of the vector is considered

in the similarity measure. The similarity measure of the vector space

model in 2-dimensional case is illustrated in Fig. 2.3. The search terms

used in this example are “relevance” and “feedback”. The magnitude

of object vector x1 is larger than that of x2, but the similarity values

of object vectors x1 and x2 to the query q are the same, since their

angle to the query are equal. Thus, the magnitude of the query and

object vectors would not affect the similarity measure.

Figure 2.3: Similarity Measure in Vector Space Model
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Document Retrieval

Among the approaches in the vector space model [32, 33, 54, 55] for

document retrieval, Rocchio’s technique [54, 55] is the earliest one.

Rocchio’s technique is based on the query modification in the vector

space, and aims to obtain an approximation of the optimal query. Roc-

chio assumes that all the objects in the collection can be divided into

two sets, relevant set and non-relevant set. Rocchio also defines an op-

timal query qopt which maximizes the similarity to the relevant set and

minimizes the similarity to the non-relevant set. The optimal query

qopt is mathematically defined by,

qopt = arg max
q

[
1

|O′
R|

∑

xi∈O′R

S(q,xi)− 1

|O′
N |

∑

xi∈O′N

S(q,xi)

]
, (2.4)

where O′
R and O′

N are the sets of relevant and non-relevant objects in

the whole collection. By deriving Eq. (2.4), we obtain

1

|O′
R|

∑

xi∈O′R

S(q,xi)− 1

|O′
N |

∑

xi∈O′N

S(q,xi) (2.5)

=
1

|O′
R|

∑

xi∈O′R

(
qT

|q|
xi

|xi|
)
− 1

|O′
N |

∑

xi∈O′N

(
qT

|q|
xi

|xi|
)

(2.6)

=
qT

|q|
[

1

|O′
R|

∑

xi∈O′R

xi

|xi| −
1

|O′
N |

∑

xi∈O′N

xi

|xi|
]

(2.7)

=
qT

|q|A. (2.8)

The similarity measure is maximized when the query is equal to cA for

any arbitrary scalar c. Thus, the optimal query is defined by,

qopt =
1

|O′
R|

∑

xi∈O′R

xi

|xi| −
1

|O′
N |

∑

xi∈O′N

xi

|xi| . (2.9)
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However, the optimal query in Eq. (2.9) cannot be used in prac-

tice as an initial query formulation, because the sets O′
R and O′

N are

not known in advance. Thus, Rocchio defines an iterative relevance

feedback technique to approximate the optimal query. In this tech-

nique, the relevant and non-relevant objects labelled by the user are

used to replace O′
R and O′

N in Eq. (2.9). This technique is formulated

as follows,

qt+1 = qt + β(
1

|ORt|
∑

xi∈ORt

xi)− γ(
1

|ONt |
∑

xi∈ONt

xi), (2.10)

where β and γ are suitable constants (β, γ ∈ [0, 1] such that β + γ =

1.0).

CBIR

MARS [43, 58, 59, 60, 61] is among the first CBIR system which em-

ploys relevance feedback as an interactive tool to refine the image query.

One of the methods proposed by MARS is the query point movement,

which directly applied Rocchio’s formula in relevance feedback for im-

age retrieval. They propose a technique to construct a pseudo term

vector from the feature vector. They use the component importance

(ci) and inverse collection importance (ici) to replace the factors tf and

idf in document retrieval. The factor ci measures the importance of a

component in an object while the factor ici measures the importance

of a component across different objects in the whole collection. The

objects in the collection are represented by pseudo term vector vi, and

it is constructed from the factors ci and ici. The factor ci of the i-th
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object is written as,

cii = [
xi1

µ1

,
xi2

µ2

, . . . ,
xik

µk

], (2.11)

where xi is the feature vector of the i-th object, and µj is the mean of

the j-th component among the feature vector in the whole collection.

The factor ici of the i-th object is written as,

icii = [log2(σi1 + 2), log2(σi2 + 2), . . . , log2(σik + 2)], (2.12)

where σj is the standard deviation of the j-th component among the

feature vector in the whole collection. The pseudo term vector vi of

the i-th object is the product of ci and ici,

vi = cii × icii. (2.13)

The similarity measure between two objects is computed by the cosine

of their weight vectors. The query is also represented by a pseudo term

vector and updated with the Rochhio’s formula.

Table 2.3: Characteristics of Vector Space Model approaches
Rochioo MARS

Reference [54, 55] [58, 59]

Domain document image

Objective estimate the optimal query

Representation term vector pseudo term vector

Vector Space x ∈ Rdand∀xj ≥ 0

Similarity measure cosine of angle

Data involved relevant objects
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Table 2.4: Equations in Vector Space Model approaches
Rochhio qt+1 = qt + β( 1

|ORt |
∑

xi∈ORt
xi)− γ( 1

|ONt |
∑

xi∈ONt
xi)

MARS qt+1 = qt + β( 1
|ORt |

∑
xi∈ORt

xi)− γ( 1
|ONt |

∑
xi∈ONt

xi)

Discussion

In [62], several relevance feedback systems for document retrieval have

been investigated. It includes three techniques in the vector space

model and three techniques in the probabilistic model (Section 2.3.4).

Their result shows that the vector space model in [33] provides the best

retrieval performance among these techniques.

2.3.2 Ad-hoc Re-weighting

The ad-hoc re-weighting approach [10, 11, 12, 43, 58, 59, 60, 61, 63] is

among the earliest work of relevance feedback proposed in the field of

CBIR. The common theme in different ad-hoc re-weighting techniques

is that the similarity measure is modelled as the weighted combination

of component similarity in the feature vector. The similarity measure

is defined by,

S(q,x) =
∑

j

wjSj(qj,xj), (2.14)

where wj is the weight corresponding to the j-th feature component

and Sj is usually a Euclidean measurement.

The idea behind this technique is very intuitive, it associates the

user interested components with higher weights and associates lower

weights for the other components. The standard deviation method is

a common approach for this objective. In this approach, each compo-

nent in the feature vector is first normalized into a particular range in

the preprocess status, so that the scale of each component is almost
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equal. In the relevance feedback learning process, the system computes

the standard deviation of each component among the relevant objects

labelled by the user, and these values are used to measure the user’s

preferences on different components. If the standard deviation of the

relevant examples is high along the j-th feature component, then we

can deduce that the user is not interested in the j-th feature component

and a lower weight should be assigned to this component. Therefore,

the weight of the feature component is assigned inverse proportional to

the standard deviation,

wj ∝ 1

σORj

. (2.15)

MARS

The MARS system [43, 58, 59, 60, 61] is among the first one to propose

a re-weighting scheme for relevance feedback in CBIR. In the MARS

system, two independent query refinement techniques are introduced;

they are named the re-weighting and the query point movement. Each

component of the feature is normalized to a particular range in the

preprocessing. For the re-weighting process in the relevance feedback

process, the component weights are updated with the standard devia-

tion method,

wj =
1

σORj

. (2.16)

For the query point movement in the relevance feedback process, the

MARS system uses a modified Rocchio’s formula [54, 55] and updates

the query point with the following equation,

qt+1j
= αqtj

+ β(
1

|ORt|
∑

xi∈ORt

xij)− γ(
1

|ONt |
∑

xi∈ONt

xij), (2.17)

where α, β and γ are suitable constants.
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Table 2.5: Characteristics of Ad-hoc Re-weighting approaches
MARS

Reference [43, 60, 61]

Domain image

Objective estimate components’ importance

Representation feature vector

Vector Space x ∈ Rd

Similarity measure distance metric

Data involved relevant objects

Table 2.6: Equations in Ad-hoc Re-weighting approaches
MARS Query point movement qt+1j

= αqtj + β( 1
|ORt |

∑
xi∈ORt

xij )− γ( 1
|ONt |

∑
xi∈ONt

xij )

Component re-weighting wj = 1
σORj

Discussion

Lack of optimality claim is the major problem in ad-hoc re-weighting

approach, as there is no justification on the choice of the weight up-

dating function and many of them can be good candidate. For exam-

ple both 1/σ and 1/
√

σ can also be the components’ weight updating

function, but we cannot tell which one is better. Since the Ad-hoc

Re-weighting approach can only tell us that the weight of a component

should be increased if its standard deviation is decreased, but it does

not tell which updating function is more suitable.

Dependence between components is not assumed in ad-hoc re-weighting

approach. Since the weighting of each component is computed inde-

pendently in ad-hoc re-weighting approach, the correlation among the

components is ignored. However, the components of the feature vectors

are not necessary to be independent.
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2.3.3 Distance Optimization Approach

The distance optimization approach [2, 34, 57, 74] addresses the two

problems; lack of optimality claim and dependence between compo-

nents. In this approach, the relevance feedback problem is modelled

as obtaining the optimal distance measure of the data. The distance

measure in this approach is in the quadratic form,

D(q,x) = (x− q)TM(x− q), (2.18)

where M is a symmetric matrix and its components define the correla-

tions between the components in the feature vector. Since this distance

function is in ellipse shape in the feature space, the dependence of com-

ponents can be measured. Moreover, by using this formula, we can

claim that optimal distance measure is the one that minimize the total

distance between the relevant objects and the query. Thus, the objec-

tive of the distance optimization approach is to find out the matrix M

and query point q which minimize the total distance.

The similarity measure of distance optimization approach is a gen-

eralization of that in the ad-hoc re-weighting method. The similarity

measure is in a sphere shape in the vector space if the Euclidean dis-

tance is directly used. The ad-hoc re-weighting approach generalizes

it, and gives different weighting for the components in the feature vec-

tors. This can be considered as an ellipse with its axis aligned with

the coordinate axis. For the distance optimization approach, it further

relaxes the constraint by not forcing the axis of the ellipse to align with

the coordinate axis. We illustrate these three cases in Fig. 2.4. The

distance optimization approach can be considered as a generalization

of the ad-hoc re-weighting method.
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Figure 2.4: Illustration of distance measures in Euclidean distance, ad-hoc
re-weighting and distance optimization approach

MindReader

MindReader [34] is the first distance optimization approach proposed.

It formulates the objective function as follows,

min
q,M

|OR|∑
xi∈OR

si(xi − q)TM(xi − q), (2.19)

where si is the relevance score of the i-th sample. If no constraint

is introduced, the zero matrix would give the minimum. Thus, the

following constraint is introduced,

|M| = 1. (2.20)

This optimization problem can be solved with Lagrange multipliers.

The optimal query point is the weighted average of feature vectors

among relevant objects. It is mathematically written as,

qt+1j
=

∑
xi∈OR

sixij∑
xi∈OR

si

. (2.21)



Background Survey 31

The optimal matrix M is defined by,

Mt+1 = |Ct+1| 1J C−1
t+1, (2.22)

ct+1j1j2 =
∑

xi∈OR

si(xij1 − qt+1j1)(xij2 − qt+1j2), (2.23)

where Ct+1 is the weighted covariance matrix of the feature vectors

among relevant objects in the t-th iteration, and ct+1j1j2 is the scalar

of matrix Ct+1 at the j1 row and j2 column.

In order to obtain the matrix M, we need to calculate the inverse of

the covariance matrix C. However, when the number of relevant objects

is small, the covariance matrix C is not invertible. This situation occurs

when the number of relevant objects is less than the number of feature

components, and the covariance matrix C become singular. Thus,

MindReader proposes to use Moore-Penrose inverse matrix [23] to deal

with this situation.

Table 2.7: Characteristics of Distance Optimization approaches
MindReader

Reference [34]

Domain image

Objective estimate a optimal distance measure

Representation feature vector

Vector Space x ∈ Rd

Similarity measure distance metric

Data involved relevant objects

Table 2.8: Equations in Distance Optimization approaches

MindReader qt+1j
=

∑
xi∈OR

sixij∑
xi∈OR

si

Mt+1 = |Ct+1| 1J C−1
t+1

cct+1j1j2 =
∑

xi∈OR
si(xij1 − qt+1j1)(xij2 − qt+1j2)
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Discussion

The distance measure in distance optimization approach is analogous

to a Gaussian distribution. The Gaussian distribution is modelled as,

G(x) =
1√

(2π)n|C| exp [−(x− x)TC−1(x− x)], (2.24)

where x is the mean of the data, and C is the covariance matrix of the

data. This equation is analogous to the similarity measure Eq. (2.18)

in the sense that,

G(x1) > G(x2) iff D(q,x1) < D(q,x2), (2.25)

G(x1) = G(x2) iff D(q,x1) = D(q,x2). (2.26)

The proof for these two statements is as follows,

G(x1) > G(x2) (2.27)

exp [−(x1 − x)TC−1(x1 − x)]√
(2π)n|C| >

exp [−(x2 − x)TC−1(x2 − x)]√
(2π)n|C|

(2.28)

(x1 − x)TC−1(x1 − x) < (x2 − x)TC−1(x2 − x). (2.29)

By substituting Eq. (2.21) and Eq. (2.22) into it, we obtain

G(x1) > G(x2) (2.30)

(x1 − q)TM(x1 − q) < (x2 − q)TM(x2 − q) (2.31)

D(q,x1) < D(q,x1). (2.32)

Eq.(2.26) can be proven with a similar method. Thus, the distance

optimization approach and the Gaussian distribution measure always

produce the same similarity measure. Moreover, it leads to the devel-
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opment of the density estimation approach in relevance feedback.

2.3.4 Probabilistic Model

The probabilistic model is a relevance feedback methodology designed

for document retrieval. In this model, the object representation is

similar to that of the vector space model. Each object in the collection

is represented by a term vector, but each component in the term vector

is restricted to be a binary value,

x = (x1, x2, . . . , xj) and xj = {0, 1}. (2.33)

The value of the j-th component depends on whether the object con-

tains the j-th search term or not. The term vectors in the probabilistic

model can also be considered as the vertices in a hypercube.

The main objective in the probabilistic model is to formulate a

decision rule to classify the object into either relevant or non-relevant

set. The obvious way to classify an object as relevant is to compare

two probability functions; they are the probability of the document

being relevant and the probability of the object being non-relevant. It

is mathematically written as,

P (x ∈ OR|x) > P (x ∈ ON |x). (2.34)

By applying Bayes’ theorem, the decision rule can be transformed into

a similarity measure,

S(q,x) = log P (x|x ∈ OR)− log P (x|x ∈ ON). (2.35)

The objects are ranked by this equation instead of a strict decision

on whether it is relevant or not. The probability P (x|x ∈ OR) and
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P (x|x ∈ ON) are difficult to compute if no assumption is made. Thus,

the probabilistic model always assumes that the search terms occur

independently, and the probability P (x|x ∈ OR) and P (x|x ∈ ON) are

expressed as,

P (x|x ∈ OR) =
J∏

j=1

P (xj|x ∈ OR) (2.36)

=
J∏

j=1

p
xj

j (1− pj)
1−xj , (2.37)

P (x|x ∈ ON) =
∏

j

P (xj|x ∈ ON) (2.38)

=
J∏

j=1

u
xj

j (1− uj)
1−xj , (2.39)

pj = P (xj = 1|x ∈ OR), (2.40)

uj = P (xj = 1|x ∈ ON). (2.41)

By substituting these equations into Eq.(2.35), the similarity measure

becomes

S(q,x) =
J∑

j=1

xj log
pj(1− uj)

uj(1− pj)
+

J∑
j=1

log
1− uj

1− pj

. (2.42)

Since the second term will not be affected by the object x, this term

can be removed from the equation, and the similarity measure can be

written as,

S(q,x) =
J∑

j=1

xj log
pj(1− uj)

uj(1− pj)
. (2.43)

This equation is then treated as a weighted summation of the object’s
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vector components, and it is expressed as,

S(q,x) =
J∑

j=1

wjxj, (2.44)

wj =
pj(1− uj)

uj(1− pj)
. (2.45)

where wj is considered as a term weight and xj indicates the presence or

absence of the j-th search term in the object x. Since these probability

values pj and uj cannot be known in advance, various methods have

been proposed to estimate these quantities with the distributions of

relevant and non-relevant sets.

Salton et al. [62, 80, 84, 85] use the statistical information gathered

in the relevance feedback process to estimate the quantities pj and uj.

Referring to the notation of term occurrence data in Table 2.9, the

quantities pj and uj are estimated with the following equations,

pj =
rj

R
, (2.46)

uj =
nj − rj

N −R
, (2.47)

where R is the number of relevant objects, N is the total number of

objects in the collection, rj is the number of relevant objects containing

the j-th search term, and nj is the number of objects in the whole

collection containing the j-th search term. This equation assumes that

the search term distribution in the retrieved relevant objects is the same

as the distribution for the relevant objects in the whole collection, and

the non-retrieved objects are treated as non-relevant. By substituting
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Eq.(2.46), the similarity measure is expressed as,

S(q,x) =
∑

j

xj log

rj

R−rj

nj−rj

N−R−nj+rj

. (2.48)

Since all unlabelled objects in the collection are treated as non-relevant

data, only relevant objects labelled by the user can improve the retrieval

result, and the non-relevant objects provide no addition information to

the relevance feedback system. Thus, the system should present the

most probable objects to the user in the presentation set selection.

Relevant objects Non-relevant objects All objects

xj = 1 rj nj − rj nj

xj = 0 R− rj N −R− nj − rj N − nj

All objects R N −R N

Table 2.9: Occurrence of search term j in a collection of N objects

Robertson and Jones [36, 53] investigate several similar schemes

and provide a theoretical explanation to explain which scheme is most

suitable. In [53], four different term weight formulae are derived from

Table 2.9. They are,

w1
j = log

rj

R
nj

N

, (2.49)

w2
j = log

rj

R
nk−rj

N−R

, (2.50)

w3
j = log

rj

R−rj

nj

N−nj

, (2.51)

w4
j = log

rj

R−rj

nj−rj

N−nj−R+rj

, (2.52)

and the weight formula w4
j is the same as the formula proposed by

Salton [62]. Robertson and Jones [52] analyze the properties and as-
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sumptions behind these weight formulae, and explain which weight

formula is most suitable in document retrieval.

The weight formulae are constructed under different assumptions,

and by analyzing these assumptions, the most suitable weight formula

can be obtained. The weight formulae w1
j and w3

j compare the term

distribution in the relevant set to the whole collection, so there are two

assumptions behind it; they are,

1. the distributions of terms in relevant objects are independent, and

2. their distributions in all objects are independent.

Roberston [52] points out that these two assumptions are not strictly

compatible. Since the search terms contained in the query occur more

frequently in the relevant set than the non-relevant set, the first as-

sumption implies that the cooccurrence of search terms in the relevant

set is higher in the whole collection, and it is not compatible with the

second assumption. Moreover, the weight formulae w1
j and w2

j consider

the proportion of search terms that is present in the collection, while

the ratio between the presence and absence of a search term in the col-

lection is considered in w3
j and w4

j . Since the objects should be ranked

according to which search terms are present and absent in it, the weight

formulae w3
j and w4

j should be more suitable. It shows that the weight

formula w4
j is more suitable among these four weight formulae.

When the statistical value of some quantities is too small, problems

may arise in computing the similarity measure, rj = 0 for example,

because of the logarithmic expression in the weight formula. For this

reason, a small value 0.5 is added into each of the four elements in

Table 2.9 to allow for some uncertainty, and the weight formula w4
j is
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modified as,

w4
j = log

rj+0.5

R−rj+0.5

nj−rj+0.5

N−nj−R+rj+0.5

. (2.53)

By substituting this equation, the similarity measure is written as,

S(q,x) =
∑

j

xj log

rj+0.5

R−rj+0.5

nj−rj+0.5

N−R−nj+rj+0.5

. (2.54)

So that the similarity measure can always yields a real number.

Table 2.10: Characteristics of Probabilistic Model approaches
Salton Robertson and Jones

Reference [62, 80, 85, 84] [53, 36]

Domain document

Objective estimate the probability of an object being relevant

Representation term vector

Vector Space x ∈ Nd and ∀xj = {0, 1}
Similarity measure probability measure

Data involved relevant objects

Table 2.11: Equations of Probabilistic Model approaches

Salton S(q,x) =
∑

j xj log
rj

R−rj
nj−rj

N−R−nj+rj

Robertson and Jones S(q,x) =
∑

j xj log
rj+0.5

R−rj+0.5

nj−rj+0.5

N−R−nj+rj+0.5

Discussion

In the probabilities model, it models the feature representation as a

binary vector, and it ignores some useful information in the objects.

Since the occurrence of a search term in the document can tell us its

importance in the document, when we compare it with the vector space

model in section 2.3.1, more information is provided in the vector space
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model, and it should be able to perform better. Croft and Harper [17,

18] address this problem by modelling the feature representation in the

same way as the vector space model, and use a probabilistic model to

update its components in relevance feedback process.

2.3.5 Bayesian Approach

The Bayesian approach considers the relevance feedback problem as

estimating the probability distribution of the query among the objects

in the collection. Since the probability distribution is known, the prob-

ability associated with each object in the collection can be calculated,

and can be used to rank the objects in the collection according to the

query. Different modelings for Bayesian approach in relevance feedback

are proposed, and the major models are target-based [13, 14, 15, 16, 79]

and category-based [44, 47, 48, 50, 70, 69, 71]. In the target-based

model, the relevance feedback process is modelled as a target search

in the collection. It assumes that the user is searching for a particu-

lar target in the collection, and the similarity measure is modelled as

the probability value of an object being the query’s target. For the

category-based model, it assumes that the user is searching for one or

more objects from a category. The details of the category-based model

will be described in section 2.3.6, the rest of this section describes the

construction of the target-based model.

PicHunter

PicHunter [13, 14, 15, 16] estimates the probability of an object x being

the query’s target, qopt, with the relevant feedback history, Ht, given,



Background Survey 40

and this probability function is written as,

P (x = qopt|Ht). (2.55)

The relevant feedback history consists of the set of objects, Dt, pre-

sented to the user, and the action, At, taken by the user in the t iter-

ation. The relevant feedback history, Ht−1, is accumulated up to the

t− 1 iteration, so that the feedback history can be defined iteratively,

Ht = {Dt, At, Ht−1}. (2.56)

The PicHunter system estimates the probability P (x = qt|Ht) incre-

mentally from P (x = qt|Ht−1) by applying Bayes’ rule,

P (x = qopt|Ht) (2.57)

= P (x = qopt|Dt, At, Ht−1) (2.58)

=
P (Dt, At|x = qopt, Ht−1)P (Dt,x = qopt|Ht−1)∑

xi∈O P (Dt, At|xi = qopt, Ht−1)P (Dt,xi = qopt|Ht−1)
(2.59)

=
P (At|x = qopt, Dt, Ht−1)P (x = qopt|Ht−1)∑

xi∈O P (At|xi = qopt, Dt, Ht−1)P (xi = qopt|Ht−1)
(2.60)

where P (Dt, At|x = qopt, Ht−1) is written as P (At|x = qopt, Dt, Ht−1)

because Dt is determinate by Ht−1. When t = 1, where no past rele-

vance feedback history is available, the probability P (x = qopt|H1) is

assumed to be evenly distributed, and equals to 1
|O| .

The key part of the PicHunter system is to estimate the probability,

P (At|x = qopt, Dt, Ht−1). (2.61)

This probability can be considered as an estimation of user’s behavior,

because it predicts the user’s response from the feedback information
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given. Since PicHunter assumes the user searches for a particular tar-

get, the system restricts the user to pick only one of the |Dt| presented

objects as relevant, the Eq.(2.61) is modelled as,

P (At|x = qopt, Dt, Ht−1) =
exp (−d(xAt ,x)/σd)∑

xAt∈Dt
exp (−d(xAt ,x)/σd)

, (2.62)

where the function d(.) is a distance function, and σd is the standard

deviation of the distances of function d(.) among the objects in the

collection.

Table 2.12: Characteristics of Bayesian approaches
PicHunter

Reference [13, 14, 15, 16]

Domain image

Objective estimate the probability of an object is relevant

Representation feature vector

Vector Space x ∈ Rd

Similarity measure probability measure

Data involved relevant and non-relevant objects

Table 2.13: Equations in Bayesian approaches
PicHunter P (x = qopt|Ht) = P (At|x=qopt,Dt,Ht−1)P (x=qopt|Ht−1)∑

xi∈O P (At|xi=qopt,Dt,Ht−1)P (xi=qopt|Ht−1)

P (At|x = qopt, Dt,Ht−1) = exp (−d(xAt ,x)/σd)∑
xAt

∈Dt
exp (−d(xAt ,x)/σd)

Discussion

In PicHunter, the system is too sensitive to the user’s response in the

latest iteration. In Eq.(2.60), the system estimates the probability of

an object being the target of the query, and the latest user’s response is

a major factor in the equation. The retrieval result is highly dependent

on the user’s response in the latest iteration. Thus, PicHunter cannot
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provide a stable retrieval result in the relevance feedback process.

2.3.6 Density Estimation Approach

The density estimation approach is developed from the Bayesian ap-

proach and can be considered as a generalization of the distance opti-

mization approach. The objective of the density estimation approach is

to estimate the distribution of the relevant objects in the collection, and

it uses the distribution function to rank the relevance of the objects to

the query. This objective is analogous to that of the Bayesian approach,

but the density estimation approach assumes the user is searching for a

set of relevant objects instead of a single target. Moreover, the distance

optimization approach can be considered as a special case in the den-

sity estimation approach, since their formulations are the same when

a target distribution is assumed to be a Gaussian distribution.

The density estimation approach can be further divided into para-

metric approach [47, 48, 50, 69, 70, 71, 81] and non-parametric ap-

proach [44]. In the parametric approach, the relevance feedback system

assumes that the target distribution is governed by a certain statistical

law, Gaussian distribution and GMM for example, and the objective of

the system is to estimate the parameters of the statistical distribution

for the queries. In the non-parametric approach, no apriori information

about the statistical law underlying the query’s target is required.

Non-Parametric Approach

Meihac and Nastar [44] propose a non-parametric density estimation

approach for the relevance feedback problem. The similarity measure
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in this approach is defined by,

S(q,x) = log P (x|x ∈ OR)− log P (x|x ∈ ON), (2.63)

where P (x|x ∈ OR) and P (x|x ∈ ON) are the distributions of relevant

and non-relevant sets respectively. The feedback information given by

the user is used to estimate these two distributions.

Since the probability distributions, P (x|x ∈ OR) and P (x|x ∈ ON),

of the relevant and non-relevant sets cannot be known in advance, the

system applies the Parzen window estimation in maximum likelihood

estimation to estimate these two distributions. The Parzen window

estimation is a non-parametric density estimation method. It does not

assume the form of the distribution for data, and it uses the empirical

data to model the distribution. The distribution of relevant set is

modelled as follow,

P (x|x ∈ OR) =
∏

j

f(xj|OR), (2.64)

=
∏

j

∑
yi∈OR

fGσ(xij − yi), (2.65)

fGσ(x) =
1√
2πσ

e−
x2

2σ2 , (2.66)

where fGσ is a Gaussian smoothing function, and the feature compo-

nents are assumed to be independent. The formulation of P (x|x ∈ ON)

is similar to that of P (x|x ∈ OR).

Parametric Approach - Gaussian Model

In [69, 70, 71], a Gaussian distribution is used to model the distribu-

tion of the relevant set. The similarity measure here is similar to that

in the non-parametric approach. In this approach, only the probabil-



Background Survey 44

ity distribution of the relevant set is considered, and the probability

distribution of the non-relevant set is ignored.

In this approach, the parametric density estimation is used to esti-

mate the distribution of relevant set in contrast to the non-parametric

technique in the non-parametric approach. The isotopic Gaussian dis-

tribution is used to characterize the distribution of the relevant set. It

is mathematically written as,

P (x|x ∈ OR) =
1

(2π)j/2|C| 12
e−

1
2
(x−µ)T C−1(x−µ), (2.67)

where j is the dimension of the feature vectors, µ is the mean vector of

the relevant objects, C is a diagonal matrix, and each component cjj

is the variance of the relevant objects in the j-th dimension. Since the

class probability P (x ∈ OR) is invariant among the object x, this term

can be ignored in the similarity measure. Thus, the distance measure

is then written as,

S(q,x) = (x− µ)TC−1(x− µ). (2.68)

The relevant examples provided by the user are used to compute the

mean vector µ and the diagonal matrix C. Since the distance measure

in the distance optimization approach can be considered as a Gaus-

sian distribution, this updating scheme is analogous to the distance

optimization appraoch.

Since the non-relevant objects does not follow any particular distri-

bution in general, we cannot assume the distribution of the non-relevant

set follows a Gaussian distribution. In order to utilize the information

provided by the non-relevant objects, these objects are used to penalize

the objects which are located nearby. The intuition behind it is that
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objects located near to the non-relevant objects are considered not as

relevant as other objects. A penalizing function f(·) is constructed as

follow,

f(x) =
∑

xi∈ON

g(d(x,xi)), (2.69)

where g(·) is a Gaussian function, and d(·) is a distance function. The

distance measure is then defined by,

S(q,x) = (x− µ)TC−1(x− µ) + f(x). (2.70)

Thus, the distance of objects that located near to the non-relevant

objects are increased.

Parametric Approach - Gaussian Mixture Model

In [50], they use the Gaussian Mixture Model (GMM) to model the

distribution of the relevant set. Modelling the target distribution as

a single Gaussian distribution can only retrieve the relevant objects

around the query in a local area, and it fails to model the distribu-

tion when some relevant objects are far away from the query. Thus,

the target distribution is assumed to follow GMM in [50], in order to

retrieve more relevant objects, and improve the retrieval performance.

The similarity measure in this approach is mathematically written as,

S(q,x) = P (x ∈ OR|x), (2.71)

=
K∑

k=1

αkG(x|µk,Ck), (2.72)

=
K∑

k=1

αk
1

(2π)j/2|Ck| 12
e−

1
2
(x−µk)T C−1

k (x−µk), (2.73)
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where K is the number of Gaussian components, j is the subscript for

the dimension of the feature vectors, αk, µk and Ck are the weight, mean

vector and the covariance matrix of the k-th Gaussian respectively.

In order to construct the similarity measure for a query, the pa-

rameters in the Eq.(2.73) have to be estimated. Firstly, we have to

estimate the number of Gaussian components K. In this approach, it

proposes to find a set of coverings SCover, in which each covering con-

tains as much relevant objects as possible, but none of the non-relevant

objects. Let OR and ON be the sets of relevant and non-relevant ob-

jects. If OR is not empty, the object xm with the largest likelihood of

being relevant is picked and a new covering is created in the set SCover,

xm = arg max
x

S(q,x). (2.74)

Then, we calculate the maximal distance between xm and OR, and the

minimal distance between xm and ON ,

dmax = max D(xm,x),∀x ∈ OR, (2.75)

dmin = min D(xm,x), ∀x ∈ ON . (2.76)

The radius of the covering is defined by,

r =





dmax + dmin/2 if dmin ≥ dmax

ρdmin otherwise
, (2.77)

where ρ is a suitable constant and 0 < ρ < 1. All the relevant objects

in the set OR fall in this covering are removed. This procedure repeats

until the set OR becomes empty.

With a set of coverings SCover, it considers each covering as a Gaus-

sian component in the target distribution, and estimates their parame-
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ters. The weight of the k-th Gaussian component is set to the portion

of relevant objects fall in the corresponding covering. Since the number

of relevant objects in each covering may not be sufficient to estimate

the covariance matrix of the corresponding Gaussian components. The

system simplifies the covariance matrix, Ck, as a diagonal matrix, and

combines the unlabelled objects fall in this coverings with the relevant

examples to estimate the mean µk and covariance matrix Ck.

Table 2.14: Characteristics of Density Estimation Approach
Non-Parametric Approach Gaussian GMM

Reference [44] [69, 70, 71] [50]

Domain image

Objective estimate the distribution of the relevant set

Representation feature vector

Vector Space x ∈ Rd

Similarity measure probability measure

Data involved relevant and non-relevant objects

Table 2.15: Equations in Density Estimation Approach
Non-Parametric Approach S(q,x) = log P (x|x ∈ OR)− log P (x|x ∈ ON )

P (x|x ∈ OR) =
∏

j

∑
yi∈OR

fGσ(xij − yi)

fGσ(x) = 1√
2πσ

e−
x2

2σ2

The formulation of P (x|x ∈ ON ) is similar to that of P (x|x ∈ OR)

Gaussian S(q,x) = (x− µ)TC−1(x− µ) + f(x)
f(x) =

∑
xi∈ON

g(d(x, xi))

GMM S(q,x) =
∑K

k=1 αk
1

(2π)j/2|Ck|
1
2
e−

1
2
(x−µk)T C−1(x−µk)

Discussion

Large amount of feedback data are required in the non-parametric ap-

proach, since it uses a non-parametric estimation to estimate the dis-

tributions of relevant and non-relevant objects, and this estimation
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method requires a large amount of data to estimate the underlying dis-

tribution. However, the size of the training set in relevance feedback is

usually small, and it is not sufficient to provide enough information to

estimate the target distribution.

The major problem of modelling the target distribution as a single

Gaussian distribution is that it is only able to retrieve the relevant

objects in a local area, and it fails to retrieve the relevant objects that

are far away from the query. For the real world data, the relevant

objects are usually organized in several separated clusters, and this

approach is only able to retrieve the relevant objects in a local area.

The major problem of modelling the target distribution as GMM is

that a large amount of feedback information is required. Since there

are K Gaussian distributions in this approach, and the number of rel-

evant examples required to estimate these K Gaussian distributions is

proportion to K. The number of relevant examples provided in rele-

vance feedback process may not be able to estimate the parameters of

the GMM efficiently.

2.3.7 Support Vector Machine

Support vector machine (SVM) [5, 78] is a core technique for regression

and pattern classification problem in machine learning theory. It has

strong theoretical foundation and excellent empirical successes, and it

has been applied in many different problem domains, handwritten digit

recognition, object recognition and text classification, for example. Re-

cently, the SVM is applied in relevance feedback problem. The regular

SVM is applied in relevance feedback by considering it as a classifica-

tion problem, and the one-class SVM is applied in relevance feedback

by considering it as a density estimation problem.
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Regular Support Vector Machine

The regular SVM is used to solve the two-class classification prob-

lem. The two-class classification problem can be formalized as es-

timating a classifier f : Rd → {−1, 1} from a set of training data

{(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi is a feature vector, and yi is

its label. For the case when the solution is linear separable, the objec-

tive of the SVM is to find the hyperplane that separates the training

data by the maximal margin. All vectors lying on one side of the hy-

perplane are labelled as +1, and all vectors lying on the other side of

the hyperplane are labelled as -1. When the algorithm is applied to

non-separable data, no feasible solution can be found, so that a further

cost is introduced for the misclassification of the training data. In the

case of non-linear separation, the training data are transformed into a

high dimensional feature space through a Mercer kernel, and the tech-

nique in linear separation is applied in the new feature space. This

objective can be modelled as the following equation,

min
w∈F

1

2
||w||2 − νρ +

1

n

n∑
i=1

ξi, (2.78)

s.t. yi(w · Φ(xi)) ≥ ρ− ξi, (2.79)

ξi ≥ 0, ρ ≥ 0, (2.80)

where ξi represents the margin errors for the non-separable training

data, and ν ∈ [0, 1] is a parameter to control the tradeoff in the number

of support vectors and margin errors.

The regular SVM has been directly applied in relevance feedback as

a two-class classification problem. In [20, 25, 26, 75], the relevant set

and non-relevant set are considered as two different classes, and SVM

is applied to classify these two datasets. For the relevance feedback



Background Survey 50

problem, we need an evaluation function to output the relevance of

the objects in the collection. A common approach for the evaluation

function is to model it as the distance between the object and the

classifier.

One-class SVM

One-class SVM [51, 64, 72, 73] is developed from the regular SVM, and

it is used to solve the density estimation problem. The objective of the

one-clss SVM is to construct a decision hypersphere that includes most

of the positive data and minimizes the size of the hypersphere. This

objective can be formulated as follows,

min
R∈R,c∈F

R2 +
1

nν

n∑
i=1

ξi, (2.81)

s.t. ||Φ(xi)− c||2 ≤ R2 + ξi, (2.82)

ξi ≥ 0, (2.83)

where ξi are the slack variables for margin error, c and R are the center

and radius of the hypersphere, and ν ∈ [0, 1] is a parameter to control

the tradeoff between the radius of the hypersphere and the number of

positive examples.

In [9], it treats the relevance feedback problem as a density estima-

tion problem. It applies the one-class SVM to estimate the distribution

of the relevant set. It uses only the relevant objects labelled by the user

in the relevance feedback process. These relevant objects are presented

to the one-class SVM, and used to estimate the distribution of the

relevant set.
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Table 2.16: Characteristics of Support Vector Machine Approach
Regular SVM One-class SVM

Reference [20, 25, 26, 75] [9]

Domain image

Objective Find a classifier that separate the Maximizes the number of relevant objects
relevant and non-relevant set with lying inside the classifier and minimize

maximum margin the volume of the classifier

Representation feature vector

Vector Space x ∈ Rd

Similarity measure distance to the classifier

Data involved relevant and non-relevant objects relevant objects

Table 2.17: Equations in Support Vector Machine Approach
Regular SVM min

w∈F
1
2 ||w||2 − νρ + 1

n

∑n
i=1 ξi

one-class SVM min
R∈R,c∈F

R2 + 1
nν

∑n
i=1 ξi

Discussion

The imbalance between relevant and non-relevant sets makes the reg-

ular SVM not suitable for the classification task in relevance feed-

back problem. Since the regular SVM treats the relevant set and

non-relevant set equally, and it does not consider that the number

of non-relevant images is significantly larger than the relevant images.

This imbalanced dataset problem will lead to the positive data (rel-

evant images) being overwhelmed by the negative data (non-relevant

images) [9].

In the one-class SVM, a large amount of useful information is ig-

nored. Since the non-relevant examples are ignored in the relevance

feedback process. It only uses the relevant examples to estimate the

decision boundary for the query, and large portion of objects in the

database is non-relevant to the query. Since only a small portion of the

training data belongs to the relevant set, the information provided to
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the one-class SVM is limited.

2.4 Presentation Set Selection

The strategy for selecting objects to present to the user plays an im-

portant role in a relevance feedback system. Since the set of presented

objects is the training data in the relevance feedback learning process.

This training set is usually small, and it is valuable information for the

system. There are two main directions for the presentation set selection

strategy; they are the most-probable and the most-informative.

2.4.1 Most-probable strategy

In the most-probable strategy, the system presents the most relevant

objects to the user in each iteration of the training process. Thus, the

user retrieves the current best objects in each iteration, and the system

uses this set of objects in the learning process in the next iteration. This

presentation set selection strategy is adopted by most of the relevance

feedback algorithms. However, the major drawback of this strategy is

that most probable object are usually very similar to those labelled as

relevant objects, and provides little information for the system in the

further learning process.

2.4.2 Most-informative strategy

In the most-informative strategy, the system presents the most am-

biguous objects to the user, that is the object that the system is most

uncertain about. Thus, the system obtains more information from the

user’s feedback and clarifies user’s intention in the query. However,

identifying which objects are most informative in respect to the query
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is not an easy task. The disadvantage of this strategy is that it is more

difficult for the user to judge when to stop the relevance feedback pro-

cess. Since the user does not know the retrieval result can satisfy his

need or not.

Background of the most-informative strategy

The problem of selecting the most informative object in the database

is first studied in the theory of learning. Most of the research in the

learning theory is based on a paradigm which the learner is trained and

tested by examples drawn from the same random distribution. In this

paradigm the learner is passive and has no control over the information

it receives. Queries in learning is then studied in [1, 77], in which the

learner has the power to ask the queries he wants.

In [3, 4], Baum and Lang propose a queries learning algorithm in

neural network, and use it to train and classify handwritten characters.

However, constructing a query by generating examples may provide an

unexpected problem. They found that many of the generated examples

by the algorithm are not recognizable by the user. It shows that an

example generated by machine may contain no natural meaning. Thus,

researchers suggest picking the examples in the collection, instead of

generating new examples.

In [22, 66], Freund and Seung propose the query by committee

(QBC) algorithm. In QBC, several different classifiers are learned with

the same training set, and all the data in the collection are tested with

these classifiers. Then, the data with the greatest entropy among these

classification results are selected as query. Since revealing these exam-

ples can provide the greatest information to the system. This algorithm

has been applied in a number of domains, and recently applied in text
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retrieval [41] and relevance feedback [75].

The presentation set selection algorithm proposed in the relevance

feedback can be divided into three different categories; they are itera-

tion minimization, vector space minimization, and maximum entropy

approach.

Iteration Minimization

PicHunter [14] proposes an iteration minimization technique to obtain

the presentation set. PicHunter is a relevance feedback system which is

designed to look for a single target image. The goal of the presentation

set selection scheme in PicHunter is to minimize the total amount of

iterations required. This scheme tries to retrieve as much information

from the user as possible, so that the search process can end quickly.

The estimated number of iteration in PicHunter is defined by,

E(Dt) = P (target not found)
∑

C(P (x|At))P (At|Dt) (2.84)

where

P (target not found) = 1−P (x1 = qopt)−P (x2 = qopt)−· · ·−P (x|Dt| = qopt),

(2.85)

C(P (x|At)) is an estimate to the number of iterations left based on

the probability of the object x being the target of the search when the

user’s response At in iteration t is given, P (At|Dt) is the probability

of At being the response of the user, and Dt is the presentation set

selected.

In order to estimate the number of iterations left, PicHunter uses

the entropy in information theory to estimate C[P (x|At)]. Since en-

tropy is a measure of amount of information hidden in a probability
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distribution, and can be used to estimate the effort required to re-

solve the ambiguity specified by P (x|At). The function C(P (x|At)) is

defined by,

C(P (x|At)) ≈ −α
∑
xi∈O

P (xi|At) log P (xi|At), (2.86)

where α is a positive constant and it is irrelevant for the goal of mini-

mizing the number of iterations.

Finding the presentation set Dt that minimize the E(Dt) is not a

trivial task. The problem of obtaining the optimal solution is very

costly. Thus, PicHunter uses a Monte Carlo approach to select the

presentation set. It samples several random presentation sets, and

selects the one that minimizes the function E(Dt).

Vector Space Minimization

In [75, 76], it proposes an active learning algorithm to select the pre-

sentation set in the SVM-based relevance feedback approaches. Their

objective is to find the presentation set that reduces the version space

of the classifiers maximally. The version space is the area that spanned

the classifiers which is able to separate the training data according to

their label. Thus, the confident of the classifier increases as the vol-

ume of the version space decreases. The best strategy to reduce the

version space is to halve the version space in each iteration. It shows

that selecting the data on the boundary of the SVM classifier as the

presentation set can halve the version space approximately.
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Maximum Entropy Approach

In [37], it proposes a presentation set selection algorithm based on

the principle of maximum entropy. This algorithm can be applied on

various relevance feedback techniques. The objective of the algorithm

is to find a presentation set with maximum entropy. It is achieved by

dividing the vector space into k sector, and the integral probability of

each sector is 1
k
, where k is the size of the presentation set. The entropy

is maximized when the probability of each outcome is the same, so that

this presentation set has the maximum entropy.

Discussion

It is hard to tell which presentation set selection algorithm is the best.

Since they should be applied in different situations.

• The iteration minimization approach should be applied in the case

that the system assumes the user is looking for a single target

image.

• The vector space minimization approach should be applied in the

case that the system treats the relevance feedback problem as a

classification problem.

• The maximum entropy approach should be applied in the case

that the system treats the relevance problem as a density estima-

tion problem.

2 End of chapter.



Chapter 3

Biased Support Vector

Machine for Content-Based

Image Retrieval

3.1 Motivation

In the past years, relevance feedback techniques in CBIR have evolved

from early ad-hoc re-weighting techniques to recent machine learning

techniques. Inspired by the term-weighing and relevant techniques in

document retrieval [56], ad-hoc re-weighting technique [12, 61] has been

proposed in CBIR, and it shows that relevance feedback is a powerful

technique to improve the retrieval result. Later on researchers began

to look at this problem from a more systematic point of view by for-

mulating it into an optimization, classification or density estimation

problem. Many relevance feedback techniques are suggested, such as

distance optimization approach [34], Bayesian approach [14], Gaussian

and GMM in parametric density estimation [50, 70], and Parzen win-

dow estimation in non-parametric density estimation [44]. Recently

57
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there are attempts to incorporate SVM into relevance feedback prob-

lem, and it shows that SVM-based techniques are more promising and

effective techniques than other techniques [9, 75].

Typical relevance feedback approaches by SVMs are based on strict

binary classification [75] or one-class classification [9]. However, the

strict binary classification does not consider the imbalance problem in

relevance feedback, that is the number of non-relevant images are sig-

nificantly larger than the relevant images. This imbalanced dataset

problem will lead to the positive data be overwhelmed by the negative

data. The one-class technique seems to avoid the imbalance problem.

However, it cannot work well without the help of negative informa-

tion. We illustrate these problems in Fig. 3.1. The circles and crosses

represent the positive and negative data respectively. The boundaries

of the shadow regions represent the decision boundaries. The optimal

decision boundary is shown in Fig. 3.1a. Fig. 3.1b shows the decision

boundary of the regular SVM. We can see that the positive data is

being overwhelmed by the negative data, and the system treats the

positive data as outliers. Fig. 3.1c shows the decision boundary of the

one-class SVM. We can see that without the help of the negative data,

the system classifies the negative data as positive. In order to overcome

the imbalanced dataset problem and fuse the negative information, we

propose the Biased Support Vector Machine derived from the one-class

SVM to construct the relevance feedback technique in CBIR.

3.2 Background

In the following, we introduce the basic ideas and formulations of regu-

lar SVMs, one-class SVMs and our BSVM. SVMs implement the princi-

ple of structural risk minimization by minimizing Vapnik-Chervonenkis
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Figure 3.1: Drawbacks of Regular SVM and One-class SVM

dimensions. On pattern classification problems, SVMs provide very

good generalization performance in empirical applications.

3.2.1 Regular Support Vector Machine

Let us consider the regular SVMs in binary classification problem. As-

sume we are given training data {x1,x2, . . . ,xn} in some space X ∈ Rd

and their corresponding class labels {y1, y2, . . . , yn} where yi ∈ {−1, 1}.
The goal of learning in regular SVMs is to find the hyperplane that can

classify the data correctly, and the margin between two sets of data is

maximized. We illustrate the linear separating hyperplane of regu-

lar SVMs for separable data in Fig. 3.2. The circles and crosses are

the positive data and negative data, respectively. The circles and the

crosses on the two solid lines are called support vectors. The dashed

line between the two solid lines is the decision hyperplane. It separates

the positive and negative data with maximum margin.

By applying the Mercer kernel theory, the data in the original space

X can be projected to a higher dimensional space F which is spanned

by a mapping function Φ. The mapping function corresponds to Mercer

kernel k(x,y) = (Φ(x) ·Φ(y)) which implicitly computes the dot prod-

uct in F . The use of kernels allows the SVMs to deal with non-linearity
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of the distribution of training images in an efficient way. Hence, the

goal of SVMs is to find the optimal separating hyperplane depicted by

a vector F in the feature space,

f(x) = w · Φ(x), (3.1)

where w is the normal to the hyperplane, and Φ(x) is the mapping

function. The task to find the optimal hyperplane turns to solving the

primal optimization problem in the form of soft margin SVMs,

min
w∈F

1

2
||w||2 − νρ +

1

n

n∑
i=1

ξi, (3.2)

s.t. yi(w · Φ(xi)) ≥ ρ− ξi (3.3)

ξi ≥ 0, ρ ≥ 0, (3.4)

where ξi represents the margin errors for the non-separable training

data, and ν ∈ [0, 1] is a parameter to control the tradeoff in the number

of support vectors and margin errors. To understand the role of ρ, note

that when the margin errors ξi = 0, one can show that the two classes

are separated by a margin with 2ρ/||w|| from Eq.( 3.3). By introducing

the Lagrange multipliers, the optimization problem can be transformed

to its dual form, and solved with quadratic programming techniques.

The regular SVMs have been applied in relevance feedback by treat-

ing it as a two-class classification problem. The relevant images labeled

by the user are treated as positive data, and the non-relevant images

labeled by the user are treated as negative data. The SVMs training is

applied in every iteration in the relevance feedback process. However,

this technique does not consider the imbalanced dataset problem, in

which the number of non-relevant images are significantly larger than

the relevant images. This imbalanced dataset problem will lead to the
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Figure 3.2: Illustration of Regular SVM

positive data (relevant images) being overwhelmed by the negative data

(non-relevant images) [9].

3.2.2 One-class Support Vector Machine

One-class SVMs are derived from regular SVMs for solving density es-

timation problem. In typical formulation of 1-SVMs, only positive data

are considered for estimating the density of the data. There are sev-

eral kinds of different formulations of 1-SVMs in the literature. Here,

we choose to illustrate the sphere-based approach with an explicit and

good geometric property. In this approach, the goal is to construct a

decision hypersphere that includes most of the positive data and min-

imizes the size of the hypersphere. Fig. 3.3 illustrates an example of

1-SVMs. It illustrates the sphere hyperplane in 1-SVM for constructing

the smallest soft sphere that contains most of the positive data. The
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circles outside of the hyperplane are called outliers.

Figure 3.3: Illustration of One-class SVM

The optimal decision function of the sphere-based approach of 1-

SVMs can be found by solving the optimization problem as follows,

min
R∈R,c∈F

R2 +
1

nν

n∑
i=1

ξi, (3.5)

s.t. ||Φ(xi)− c||2 ≤ R2 + ξi, (3.6)

ξi ≥ 0, (3.7)

where ξi are the slack variables for margin error, c and R are the center

and radius of the hypersphere, and ν ∈ [0, 1] is a parameter to control

the tradeoff between the radius of the hypersphere and the number of

positive training samples.

The one-class SVM is applied in relevance feedback to avoid the

imbalanced dataset problem. The one-class SVM techniques treat the
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relevance feedback problem as estimating the density of the relevant

images. It only considers the relevant images labeled by the user, and

ignores the non-relevant images. However, when large portion of images

are non-relevant to the query’s target, the one-class SVM cannot work

well without the help of non-relevant images [82].

3.3 Biased Support Vector Machine

In order to incorporate the negative information, we propose the Bi-

ased Support Vector Machine derived from 1-SVMs for overcoming the

imbalance dataset problem of relevance feedback tasks. Our strategy is

to describe the data by employing a pair of sphere hyperplanes in which

the inner one captures most of the positive samples while the outer one

pushes out the negative samples. Therefore, the goal of our problem

is to find an optimal sphere hyperplane which not only can contain

most of positive data but also can push most of negative data out of

the sphere. The problem can be visually illustrated in Fig. 3.4. The

dashed sphere in the figure is the desired spherehyperplane. The task

can be formulated as an optimization problem and the mathematical

formulation of our technique is given as follows.

Let us consider the training data:

(x1, y1), . . . , (xn, yn) ∈ Rd × Y, Y ∈ {1,−1} (3.8)

where n is the number of training samples and d is the dimension of

the input space.

The objective function for finding the optimal sphere hyperplane
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Figure 3.4: Illustration of Biased Support Vector Machine

can be formulated as,

min
R∈R,ξ∈R,ρ∈R

bR2 − ρ +
1

nν

n∑
i=1

ξi, (3.9)

s.t. yi(||Φ(xi)− c||2 −R2) ≤ −ρ + ξi, (3.10)

ξi ≥ 0, (3.11)

ρ ≥ 0, (3.12)

0 ≤ ν ≤ 1, (3.13)

where ξi are the slack variables for margin error, Φ(xi) is the mapping

function, c and R are the center and radius of the optimal hypersphere,

ρ is the width of the margin, b is a parameter to control the bias, and

ν ∈ [0, 1] is a parameter to control the tradeoff between the number of

support vectors and margin errors. In the objective function Eq.(3.9),

the term bR2 is used to minimize the volume of the hypersphere, the
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term ρ is used to maximize the width of the margin, and the term

1
nν

∑n
i=1 ξi is used to minimize the error.

The optimization task can be solved by introducing the Lagrange

multipliers,

L(R, ξ, c, α, β, λ) = bR2 − ρ +
1

nν

n∑
i=1

ξi −
n∑

i=1

βiξi − λρ

+
n∑

i=1

αi[yi(||Φ(xi)− c||2 −R2) + ρ− ξi], (3.14)

where αi, βi, and λ are the Lagrange multipliers.

The objective function L reaches its minimum when its partial

derivatives equal to 0. Let us take the partial derivative of L with

respect to R, ξi, c, and ρ. The partial derivative of L with respect to

R is,

∂L

∂R
= 0 (3.15)

2bR−
n∑

i=1

2yiαiR = 0 (3.16)

n∑
i=1

yiαi = b (3.17)

The partial derivative of L with respect to ξi is,

∂L

∂ξi

= 0 (3.18)

1

nν
− βi − αi = 0 (3.19)

Since βi ≥ 0, we obtain,

0 ≤ αi ≤ 1

nν
(3.20)
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The partial derivative of L with respect to c is,

∂L

∂c
= 0 (3.21)

n∑
i=1

2αiyi(Φ(xi)− c) = 0 (3.22)

c
n∑

i=1

αiyi =
n∑

i=1

αiyiΦ(xi) (3.23)

c =
1

b

n∑
i=1

αiyiΦ(xi) (3.24)

The partial derivative of L with respect to ρ is,

∂L

∂ρ
= 0 (3.25)

−1− λ +
n∑

i=1

αi = 0 (3.26)

Since λ ≥ 0, we obtain,
n∑

i=1

αi ≥ 1 (3.27)

By summarizing the above equations, we obtain,

n∑
i=1

yiαi = b, (3.28)

0 ≤ αi ≤ 1

nν
, (3.29)

c =
1

b

n∑
i=1

αiyiΦ(xi), (3.30)

n∑
i=1

αi ≥ 1. (3.31)

By substituting the above derived results to the objective function

in Eq. (3.14), the dual of the primal optimization can be shown to take
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the form

max
α

∑
i

αiyik(xi,xi)− 1

b

∑
i,j

αiαjyiyjk(xi,xj) (3.32)

s.t.
∑

i

αiyi = b, (3.33)

0 ≤ αi ≤ 1

nν
, (3.34)

∑
i

αi ≥ 1 (3.35)

where k is the mapping function corresponds to Mercer kernel x. This

dual problem can be solved with quadratic programming techniques.

The decision function is defined by,

f(x) = sgn(||Φ(xi)− c||2 −R2). (3.36)

where c can be obtained from Eq.(3.30), and R can be solved by the

support vectors. Based on this decision function, the data point that lie

inside the classifier will be predicted as positive, and negative otherwise.

3.4 Interpretation of parameters in BSVM

In order to provide more natural interpretation for the parameters in

BSVM, the formulation of BSVM follows the ν-SVM instead of the

classical ε-SVM. To formulate it, let us first define the term margin

error. The data points with ξi ≥ 0, that are either errors or lie within

margin, are considered as margin error. Formally, the fraction of mar-

gin errors is defined by,

1

n
|{i|yi × f(xi) < ρ}|. (3.37)
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Proposition 1 Suppose BSVM is applied on some data, the following

statements hold,

1. ν is an upper bound on the fraction of margin errors.

2. ν is a lower bound on the fraction of support vectors.

3. BSVM turns to regular SVM when b tends to zero.

4. BSVM turns to one-class SVM when b tends to its maximum.

Proof 1 1. By KKT conditions, ρ > 0 implies λ = 0. Hence the

inequality Eq.(3.31) becomes an equality. Thus, at most nν ex-

amples can have αi = 1
nν

. All examples with ξi > 0 do satisfy

αi = 1
nν

, because αi could grow to reduce ξi if not. Since examples

are margin errors have ξi > 0, the fraction of margin error is

upper bounded by ν.

2. Support vectors can contribute at most 1
nν

from Eq.(3.29). Hence

there must be at least nν of them from Eq.(3.31). Thus, ν is an

lower bound on the fraction of support vectors.

3. By replacing yi with +1 for the positive class and -1 for the neg-

ative one, the constraint in Eq. (3.35) can be written as

∑

i∈S+

αi −
∑

i∈S−
αi = b, (3.38)

where S+ denotes the positive class and S− denotes the negative

one. When b tends to zero, we have,

∑

i∈S+

αi =
∑

i∈S−
αi. (3.39)

The constraint is the same as the one in ν-SVM, and it makes
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the positive and negative classes have the same importance. Thus,

BSVM turns to a regular SVM when b tends to zero.

4. When b tends to its maximum maxb with respects to ν, we have

∑

i∈S+

αi −
∑

i∈S−
αi = maxb, (3.40)

Since all αi of negative examples must take their minimums, in

order to satisfy b = maxb. The αi of negative examples reach their

minimum when αi = 0, so that the negative examples are ignored

in constructing the BSVM classifier. Thus, the BSVM turns to a

one-class SVM when b tends to its maximum.

We illustrate the effect of parameter b in BSVM on the construction

of decision boundaries in Fig 3.5. The circles and crosses represent the

positive and negative data respectively. The boundaries of the shadow

regions represent the decision boundaries. We can see that when b

tends to zero, the behavior of BSVM is similar to regular SVM. When

we increase the value of b, the behavior of BSVM is similar to 1-SVM.

3.5 Soft Label Biased Support Vector Machine

In the relevance feedback problem, the user’s feedback is restricted

to be either relevant or non-relevant. In various relevance feedback

systems, the user give rating as feedback to the system. In order to

support this type of feedback, we propose the soft label BSVM, which

allows the class label to be a real number ranged from -1 to 1.

Let us consider the training data:

(x1, s1), . . . , (xn, sn) ∈ Rd × S, S ∈ [1,−1] (3.41)
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Figure 3.5: Illustration of parameter b in BSVM
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where n is the number of training samples, d is the dimension of the

input space, and si is the score given to the data point x1. The mag-

nitude of si indicates the importance of the corresponding data point.

Examples with si > 0 are expected to lie inside the classifier, and

examples with si < 0 are expected to lie outside the classifier.

The objective function for finding the optimal sphere hyperplane

can be formulated as,

min
R∈R,ξ∈R,ρ∈R

bR2 − ρ +
1

nν

n∑
i=1

yisiξi, (3.42)

s.t. yi(||Φ(xi)− c||2 −R2) ≤ −yisiρ + ξi, (3.43)

b ≥ 0, (3.44)

ξi ≥ 0, (3.45)

ρ ≥ 0, (3.46)

0 ≤ ν ≤ 1, (3.47)

yi = 1 if si ≥ 0, and (3.48)

yi = −1 otherwise, (3.49)

where ξi are the slack variables for margin error, Φ(xi) is the mapping

function, c and R are the center and radius of the optimal hypersphere,

ρ is the width of the margin, b is a parameter to control the bias, and

ν ∈ [0, 1] is a parameter to control the tradeoff between the number of

support vectors and margin errors.

The optimization task can be solved by introducing the Lagrange
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multipliers,

L(R, ξ, c, α, β, λ) = bR2 − ρ +
1

nν

n∑
i=1

yisiξi −
n∑

i=1

βiξi − λρ

+
n∑

i=1

αi[yi(||Φ(xi)− c||2 −R2) + yisiρ− ξi], (3.50)

where αi, βi, and λ are the Lagrange multipliers.

Let us take the partial derivative of L with respect to R, ξ, c and

ρ respectively. By setting their partial derivatives to 0, we obtain the

following equations,

2R(b−
n∑

i=1

yiαi) = 0 ⇒
n∑

i=1

yiαi = b, (3.51)

yisi

nν
− αi − βi = 0 ⇒ 0 ≤ αi ≤ yisi

nν
, (3.52)

n∑
i=1

2αiyi(Φ(xi)− c) = 0 ⇒ c =
1

b

n∑
i=1

αiyiΦ(xi), (3.53)

−1 +
n∑

i=1

yisiαi − λ = 0 ⇒
n∑

i=1

yisiαi ≥ 1. (3.54)

By substituting the above derived results to the objective function

in Eq. (3.50), the dual of the primal optimization can be shown to take

the form

max
α

∑
i

αiyik(xi,xi)− 1

b

∑
i,j

αiαjyiyjk(xi,xj) (3.55)

s.t.
∑

i

αiyi = b, (3.56)

0 ≤ αi ≤ yisi

nν
, (3.57)

∑
i

yisiαi ≥ 1 (3.58)

This dual problem can be solved with quadratic programming tech-
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niques.

The main difference between the original BSVM and soft label

BSVM is in the constraints Eq(3.57) and Eq(3.58). With these two con-

strains, the examples with smaller score in magnitude have smaller αi.

It means that these examples have smaller influence on the construct-

ing of decision boundary. In this way, we can control the importance

of different examples with the score si.

3.6 Interpretation of parameters in Soft Label BSVM

As in the BSVM, the parameters in soft label provide natural interpre-

tation for the parameters in it.

Proposition 2 Suppose soft label BSVM is applied on some data, the

following statements hold,

1. ν
mins

is an upper bound on the fraction of margin errors, where

mins is the minimum value of the magnitude of si.

2. ν is a lower bound on the fraction of support vectors.

3. All examples with si = 0 are ignored by the machine.

Proof 2 1. By KKT conditions, ρ > 0 implies λ = 0. Hence the

inequality Eq.(3.54) becomes an equality. At most nν
mins

examples

can have αi = mins

nν
. All examples with ξi > 0 do satisfy αi = si

nν
,

it is because αi could grow to reduce ξi if not. Since examples

are margin errors have ξi > 0, all margin errors have αi ≥ mins

nν
.

Thus, the fraction of margin error is upper bounded by ν
mins

.

2. Support vectors can contribute at most 1
nν

from Eq.(3.52). Hence

there must be at least nν of them from Eq.(3.54). Thus, ν is an

lower bound on the fraction of support vectors.
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3. For any examples with si = 0, the constraint in Eq.(3.43) becomes,

yi(||Φ(xi)− c||2 −R2) ≤ ξi. (3.59)

The error of the example is controlled by slack variable ξi solely.

However, the machine is minimizing yisiξi in the objective func-

tion Eq.(3.42), and this term become 0 when si = 0. Thus, all

examples with si = 0 are ignored by the machine.

3.7 Relevance Feedback Using Biased Support Vec-

tor Machine

3.7.1 Advantages of BSVM in Relevance Feedback

From the above formulation, one may see that the optimization equa-

tion is similar to the one in the ν-SVM. Now, we explain the mathe-

matical differences compared with regular SVMs and the advantages

of our BSVM from the geometric perspective for solving the relevance

feedback problems.

From the results of mathematic deduction in the optimization func-

tion, we see that BSVM is with the following constraint from Eq. (3.35),

∑
i

αiyi = b, (3.60)

When replacing yi with +1 for the positive class and -1 for the negative

one, the constraint can be written as

∑

i∈S+

αi −
∑

i∈S−
αi = b, (3.61)

where S+ denotes the positive class and S− denotes the negative one.
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However, in the regular SVMs (ν-SVM), the constraint is with the form

∑

i∈S+

αi −
∑

i∈S−
αi = 0. (3.62)

The difference indicates that the weight allocated to the positive

support vectors in BSVM will be larger than the negative ones when

setting a positive bias factor b. This can be useful for solving the

imbalance dataset problem. However, regular SVMs (ν-SVM) treat

the two classes without any bias which is not effective enough to model

the relevance feedback problem.

Moreover, we can also see the difference from the geometric per-

spective. Fig. 3.6, Fig. 3.7 and Fig. 3.8 provide the comparison of

the decision boundaries of regular SVM, 1-SVM and BSVM on the

synthetic data with the same kernels (Radial Basis Function) and pa-

rameters (ρ=0.1). The circles and crosses represent the positive and

negative data respectively. The boundaries of the shadow regions rep-

resent the decision boundaries. We can see that the geometric property

of BSVM is better than the regular SVM and 1-SVM. BSVM can de-

scribe the data in a cluster behavior by the sphere based boundary and

can flexibly control the weight of the positive class for the imbalanced

dataset by adjusting the bias factor. Therefore, compared with regular

SVM and 1-SVM, BSVM is more reasonable and effective to model the

relevance feedback tasks.

3.7.2 Relevance Feedback Algorithm By BSVM

From the above comparisons, we have shown the benefits of BSVM for

solving relevance feedback issues. Here, we describe how to formulate

the relevance feedback algorithm by employing the BSVM technique.

Applying SVMs based techniques in relevance feedback is similar to the
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Figure 3.6: Decision Boundary of Regular SVM

Figure 3.7: Decision Boundary of One-class SVM

classification task. However, the relevance feedback need to construct

the evaluation function to output the relevance value of the retrieval
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Figure 3.8: Decision Boundary of BSVM

instances. From the decision function, we build the evaluation function

with the similar form by substituting the equation in

f(xi) = R2 − ||Φ(xi)− c||2 (3.63)

where the center c can be solved by a set of support vectors. However,

for the relevance evaluation purpose, constant values can be eliminated.

Hence, the evaluation function can be shown to take the concise form

f(xi) =
2

b

∑
i

αiyik(xi,x)− k(x,x). (3.64)

Once the parameters αi are solved, the evaluation function can be

constructed. Consequently, we can rank the images based on the scores

of the evaluation function f(xi). The images with higher scores will be

more likely be chosen as the targets.



BSVM for CBIR 78

3.8 Experiments

Here, we present the experimental results of our BSVM both on the

synthetic data and the real-world images. The relevance feedback sys-

tems involved in the experiment are listed on Table 3.1. The ν-SVM

in the experiment is equivalent to the regular SVM. For the purpose

of objective measure of performance, we assume that the query judge-

ment is defined on the image categories. And the metric of evaluation

is the Average Precision which is defined as the average ratio of the

number of relevant images of the returned images over the number of

total returned images.

Table 3.1: List of Relevance Feedback Systems in Experiment
Support Vector Machine BSVM

Support Vector Machine ν-SVM

Support Vector Machine One-class SVM

Ad-hoc Re-weighting MARS

Distance Optimization Approach MindReader

Bayesian Approach PicHunter

Density Estimation Non Parametric

Density Estimation Single Gaussian

Density Estimation GMM

In the experiment, we evaluate the retrieval performance of various

relevance feedback methods on CBIR. A category is first picked from

the database randomly, and this category is assumed to be the user’s

query target. The system then improves retrieval results by relevance

feedback. In each iteration of the relevance feedback process, five im-

ages are picked from the database and labelled as either relevant or

non-relevant based on the ground truth of the database. For the first

iteration, two relevant images and three non-relevant images are ran-

domly picked, and all methods are run based on the same set of initial
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data points. For the iterations afterward, each method selects five im-

ages based on their own display set selection algorithm. The precision

of each method is then recorded, and the whole process is repeated for

200 times to produce the average precision in each iteration for each

method.

For the SVM-based techniques in the experiment, we implement the

algorithms by modifying the codes in the libsvm library [8]. We notice

that the experimental settings are important to impact on the evalu-

ation results. To enable an objective measure of performance without

bias, we choose the same kernel and parameters for all SVM-based

methods. In order to select the best kernel function for the current

dataset, we performed an experiment to evaluate the performance of

different kernels. The kernel functions involved in the experiment are

listed on Table 3.2. The image dataset used in this experiment are

chosen from the COREL image collection. The datasets is with 20

categories (20-Cat). Each category includes 100 images belonging to a

same semantic class. We evaluate the performance of different kernel

functions by measuring their average precision on the top 10 retrieval

result.

Table 3.2: List of Kernel Functions in Experiment
Radial Basis Function

Sigmoid Function

Polynomial Function

Linear Function

Fig. 3.9 show the evaluation result on different kernel functions.

The Radial Basis Function (RBF) outperforms other kernels in the

experiments, and it is a common practice to use RBF as the kernel

function on the image-based experiment. Thus, we choose the RBF as
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Figure 3.9: Retrieval performance of different kernel functions

the kernel function in the other experiments.

3.8.1 Synthetic Dataset

We generate a synthetic dataset to simulate the real-world image dataset.

The dataset consists 40 categories each of them contains 100 data points

randomly generated by seven Gaussians in a 40-dimensional space. The

means and covariance matrices of the Gaussians for each category are

randomly generated from the range of [0,10].

Fig. 3.10 and Fig. 3.11 show the evaluation result on the synthetic

dataset.
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Figure 3.10: Top 10 average precision on synthetic dataset

3.8.2 Real-World Dataset

The real-world images are chosen from the COREL image collection.

We organize two datasets containing various images with different se-

mantic meanings, such as antique,aviation, balloon, botany, butterfly,

car and cat, etc. One of the datasets is with 20 categories (20-Cat)

and another is with 50 categories (50 -Cat). Each category includes

100 images belonging to a same semantic class.

The dataset used in the experiment is the real-world images chosen

from the COREL image collection. We organize two datasets con-

taining various images with different semantic meanings, such as an-

tique,aviation, balloon, botany, butterfly, car and cat, etc. One of the

datasets is with 20 categories (20-Cat) and another is with 50 cate-
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Figure 3.11: Top 30 average precision on synthetic dataset

gories (50 -Cat). Each category includes 100 images belonging to a

same semantic class.

For the real-world image retrieval, the image representation is an

important step for evaluating the relevance feedback algorithms. We

extract three different features to represent the images: color, shape

and texture. The color feature engaged is the color moment since it

is closer to human perception naturally. We extract three moments:

color mean, color variance and color skewness in each color channel

(H, S, and V), respectively [68]. Thus, 9-dimensional color moment is

employed as the color feature in our experiments.

We employ the edge direction histogram as the shape feature in our

experiments [35]. Canny edge detector is applied to obtain the edge

images. From the edge images, the edge direction histogram can then
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be computed. The edge direction histogram is quantized into 18 bins

of 20 degrees each, hence an 18-dimensional edge direction histogram

is used to represent the edge feature.

We use the wavelet-based texture feature for its effectiveness. We

perform the Discrete Wavelet Transformation (DWT) on the gray im-

ages employing a Daubechies-4 wavelet filter. In total, we perform 3-

level decompositions and obtain ten subimages in different scales and

orientations [67]. Then, we choose nine subimages with most of the tex-

ture information and compute the entropy of each subimage. Hence,

a 9-dimensional wavelet-based texture feature is obtained to describe

the texture information for each image.

Fig. 3.12 and Fig. 3.13 show the evaluation result on the 20-cat

dataset. Fig. 3.14 and Fig. 3.15 show the evaluation result on the

50-cat dataset.

3.8.3 Experimental Results

With some minor exception, the result in these figures are homoge-

neous. It means that the best retrieval results are produced by the

same relevance feedback system for the two datasets, and the same

hold for the poorest one. From the experiment, it draws the following

observations,

• The retrieval results of the included relevance feedback techniques

have been improved after the first iteration. The retrieval result

in the first iteration can be considered as the retrieval result of the

traditional one-shot approach. Thus, it shows that the retrieval

performance of CBIR can be improved with relevance feedback

techniques.

• The relevance feedback techniques that assume the target dis-
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Figure 3.12: Top 10 average precision on 20-cat image dataset

tribution follows a single Gaussian distribution fail to improve

the retrieval performance after the first few iterations. These

techniques include MARS, Mindreader and single Gaussian ap-

proach. The reason behind it is that these techniques are able to

retrieve the relevant images around the query, and fail to retrieve

the relevant images that far away from it. Thus, these techniques

are only able to retrieve the relevant images in a local area, and

fail to retrieve other relevant images and improve the retrieval

performance afterward.

• Some relevance feedback techniques, PicHunter, GMM and non-

parametric approach, have relaxed the assumption on the target

distribution. However, they cannot outperform the techniques
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Figure 3.13: Top 30 average precision on 20-cat image dataset

with single Gaussian assumption. The reason behind it is that

these techniques require a large amount of feedback data to pro-

vide sufficient statistical information to estimate the target distri-

bution. However, the number of training samples in the relevance

feedback process is usually small, and these techniques fail to es-

timate the target distribution in the relevance process.

• The SVM-based techniques, BSVM, ν-SVM and 1-SVM, perform

better than other techniques in the experiment. SVM has a strong

theoretical foundations and excellent empirical successes in pat-

tern classification problem. The SVM maps the data points form

the original vector space to a high dimensional vector space with

the Mercer kernel. By using this technique, the SVM is able to
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Figure 3.14: Top 10 average precision on 50-cat image dataset

address the non-linearity in the target distribution.

• BSVM outperforms the other approaches in the experiment. How-

ever, we notice that the performances of 1-SVM in the beginning

feedback steps are better than those of other approaches. The

reason is that 1-SVM can reach the enclosed positive region soon,

but it cannot be further improved without the help of the negative

information in further steps.

3.9 Conclusion

We have investigated SVM-based relevance feedback techniques for

solving the relevance feedback problems in CBIR. We addressed the

imbalanced dataset problem in relevance feedback and proposed a novel
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Figure 3.15: Top 30 average precision on 50-cat image dataset

relevance feedback technique with Biased Support Vector Machine.

The advantages of our proposed techniques are explained and demon-

strated compared with traditional approaches. We performed the ex-

periments both on synthetic data and real-world image datasets. The

experimental results demonstrate that our BSVM based relevance feed-

back algorithm is effective and promising for improving the retrieval

performance in CBIR.

2 End of chapter.



Chapter 4

Self-Organizing Map-based

Inter-Query Learning

4.1 Motivation

In most of the relevance feedback systems, only the intra-query feed-

back information is used to learn the user’s preference. However, a

small training data set is difficult to provide enough statistical infor-

mation for achieving this goal and providing good retrieval result. In

order to address this problem, we use the inter-query information to

modify the feature vector space and cluster the neurons with similar

images together, so that the neurons are organized in a way that ease

the process of intra-query learning. In the proposed approach, we up-

date the similarity measure between images dynamically according to

the feedback information given by each past query. It is achieved by

further training the neurons on the SOM. Neurons representing rele-

vant images are moved closer to the estimated user target and those

represent non-relevant images are moved away from the estimated user

target.

88
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Figure 4.1 shows a 2-dimensional feature vector space of a collection

of images with 4 different classes. A SOM is trained based on the

underlying distribution. In analyzing the image data, images from the

same class often form clusters which are sparse and irregular in shape.

This makes the retrieval process more difficult to find target images.

With the help of inter-query feedback information described above, we

organize the feature vector space in a fashion that ease the retrieval

process.

Figure 4.1: Illustration of SOM-based Inter-query learning

4.2 Algorithm

4.2.1 Initialization and Replication of SOM

In the preprocessing procedure, the system performs feature extrac-

tion on the images in the database, and uses a SOM to represent the

distribution of the data. We perform a low-level feature extraction on

the set of images in the database, and each image is then represented

by a feature vector xi ∈ Rd in a high dimensional vector space. We

construct and train a SOM M with feature vectors extracted from the

images. After the SOM training, the model vectors in the neurons of

M are arranged to match the distribution of the feature space. The
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model vectors mi ∈ M of neurons in the SOM are used to partition

the feature vector space based on the minimum distance classifier, each

image is classified into different groups represented by mi. By doing so,

we reduce the size of data from |O| to |M |, where |O| and |M | are the

number of images and neurons in the SOM respectively. The similar-

ity measure between images is then defined as the Euclidean distance

between the model vectors which represent them.

The relationship between the neurons and the images in the database

depends on the coordinates of the model vectors, any changes on the

model vectors of neurons may alter this relationship. Our proposed

approach is to modifying the model vectors in the SOM to update the

similarity measure. Thus, we duplicate another SOM from the origi-

nal one. The new SOM contain a set of neurons with model vectors

m′
i ∈ M ′ and has a one-to-one mapping, f : M → M ′, between the set

M and M ′. To obtain the set of images represented by model vector

m′
i, we can get the original model vector mi by f−1, and then by min-

imum distance classifier in M . Initially, the layout of the two SOMs

are the same. We update the similarity measure by modify the model

vectors in M ′ instead of M , so that the relationship between images in

the database and the model vectors in M can be preserved during the

whole learning process.

4.2.2 SOM Training for Inter-Query Learning

In order to update the similarity measure based on the inter-query

feedback information, we modify the model vectors m′
i in the new

SOM, such that neurons contain similar images as indicated in the

feedback are moved closer to each others. The idea of this process is

similar to the clustering algorithm in rival penalized competitive learn-
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ing [38]. Consider that there are K past queries stored in the system,

and inter-query information provided to the system is represented by

{q1, . . . , qK}. Each past query qk is used to reorganize the vector space

of the SOM, and improve the structure of data. Assume in the k-th

query, the user marked a set of relevant images Dk
R and a set of non-

relevant images Dk
N during the whole retrieval process, M ′k

R and M ′k
N

are the corresponding sets of model vectors respectively. Let c′k be the

model vector with highest relevance score in Eq. (4.7), and it is most

likely to be the user’s target for that query. We then modify the model

vectors with the following equations,

∀m ∈ M ′k
R

m = m + αk
R(c′k −m), (4.1)

∀m ∈ M ′k
N

m = m + αk
N(m− c′k), (4.2)

where αk
R and αk

N are the learning rates and they are monotonic de-

creasing functions of k. Thus, neurons represent relevant images are

moved closer to the estimated user’s target and those represent non-

relevant images are moved away from the estimated user’s target. For a

long run, the vector space will be modified, in which neurons represent

the same image concept are clustered together.

In a SOM, the nearby neurons in the topology are representing

similar units, so that the learning process can be improved by moving

also the neurons near to the neurons in the sets M ′k
R and M ′k

N . The idea

of this process is similar to the SOM training process. The equations
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for modifying the model vectors are defined by,

∀m ∈ N(M ′k
R)

m = m + hk
Ri(c

′j −m), (4.3)

∀m ∈ N(M ′k
N)

m = m + hk
Ni(m− c

′j), (4.4)

where N(M) is the set of nearby neurons for M in the SOM topol-

ogy, hk
Rci and hk

Nci are the neighborhood functions. The neighborhood

functions are defined by

hk
Ri = αk

R · exp

(
−dis(m,M ′k

R)

2(σk
R)2

)
, and (4.5)

hk
Ni = αk

N · exp

(
−dis(m,M ′k

N)

2(σk
N)2)

)
, (4.6)

where σk
R and σk

N are some monotonic decreasing functions of k, dis(m,

M ′k
R) and dis(m, M ′k

N) denote the distance between the model vector

m and the corresponding nearby neuron in the set M ′k
R and M ′k

N in

the SOM topology respectively. Thus, the value of the neighborhood

function for neuron m decreases as the distance dis(m, M ′k
N) increases.

4.2.3 Incorporate with Intra-Query Learning

In the intra-query learning process, the system presents a set of im-

ages Dt to the user in each iteration t, and the user gives response

At by marking them as either relevant or non-relevant. The infor-

mation provided in the k-th query at iteration t is represented by

qk
t = {D1, A1, . . . , Dt, At}, and the system uses it to refine the query.

We define DR and DN as the set of relevant images and the set of non-

relevant images marked by the user from first iteration to the current
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iteration respectively. The sets DR and DN are then represented by

the corresponding model vector set M ′
R and M ′

N . The BSVM in Sec-

tion 3.3 is used to train a decision boundary to classify this two sets of

model vectors.

In order to retrieve images from the database, we need to construct

an evaluation function to output the relevance value of the neurons,

and it is defined by,

g(m′
i) = R2 − ||Φ(m′

i)− c||2 (4.7)

where c is the center of the sphere hyperplane of the BSVM. The center

c can be solved by the set of support vectors, and the constant values

can be eliminated. We can rank the neurons based on the scores of

the evaluation function g(m′
i). The neurons with higher scores will be

more likely to be chosen as the targets. The relevance score between

an image and its corresponding neuron is measured by their Euclidean

distance. Thus, we can rank the images in the database by combining

it with the function g(m′
i).

4.3 Experiments

Here, we present the experimental results of our SOM-based inter-

query learning both on the synthetic data and the real-world images.

For the purpose of objective measure of performance, we assume that

the query judgement is defined on the image categories. And the metric

of evaluation is the Average Precision which is defined as the average

ratio of the number of relevant images of the returned images over the

number of total returned images.

In the experiment, we evaluate the retrieval performance of our
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SOM-based inter-query learning technique by applying it to various

intra-query learning techniques. The intra-query learning techniques

involved in the experiment are listed on 4.1.

Table 4.1: List of Relevance Feedback Systems in Experiment
Support Vector Machine BSVM

Support Vector Machine ν-SVM

Support Vector Machine One-class SVM

Ad-hoc Re-weighting MARS

In the experiment, a category is first picked from the database ran-

domly, and this category is assumed to be the user’s query target. The

system then improves retrieval results by relevance feedbacks. In each

iteration of the relevance feedback process, five images are picked from

the database and labelled as either relevant or non-relevant based on

the ground truth of the database. For the first iteration, two relevant

images and three non-relevant images are randomly picked, and all

methods are run based on the same set of initial data points. For the

iterations afterward, each method selects five images based on their

own display set selection algorithm. The precision of each intra-query

learning method is then recorded, and the whole process is repeated for

200 times to produce the average precision in each iteration for each

method. After that, a SOM of size 30× 30 is trained by using the the

feature vectors of images in the database. Our SOM-based inter-query

is then applied to reorganize the SOM with the 200 past queries. Fi-

nally, we generated another 200 queries and recorded the precision of

each intra-query learning techniques after our SOM-based inter-query

learning is applied. In the experiment, we implement the algorithm by

modifying the codes in SOM Toolbox [30].
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4.3.1 Synthetic Dataset

We generate a synthetic dataset to simulate the real-world image dataset.

The dataset consists 40 categories each of them contains 100 data points

randomly generated by seven Gaussians in a 40-dimensional space. The

means and covariance matrices of the Gaussians for each category are

randomly generated from the range of [0,10].

Fig. 4.2 and Fig. 4.3 show the evaluation result on the synthetic

dataset.
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Figure 4.2: Top 10 average precision on synthetic dataset

4.3.2 Real-World Dataset

The real-world images are chosen from the COREL image collection.

We organize two datasets containing various images with different se-
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Figure 4.3: Top 30 average precision on synthetic dataset

mantic meanings, such as antique,aviation, balloon, botany, butterfly,

car and cat, etc. One of the datasets is with 20 categories (20-Cat)

and another is with 50 categories (50 -Cat). Each category includes

100 images belonging to a same semantic class.

The dataset used in the experiment is the real-world images chosen

from the COREL image collection. We organize two datasets con-

taining various images with different semantic meanings, such as an-

tique,aviation, balloon, botany, butterfly, car and cat, etc. One of the

datasets is with 20 categories (20-Cat) and another is with 50 cate-

gories (50 -Cat). Each category includes 100 images belonging to a

same semantic class.

For the real-world image retrieval, the image representation is an

important step for evaluating the relevance feedback algorithms. We
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extract three different features to represent the images: color, shape

and texture. The color feature engaged is the color moment since it

is closer to human perception naturally. We extract three moments:

color mean, color variance and color skewness in each color channel

(H, S, and V), respectively [68]. Thus, 9-dimensional color moment is

employed as the color feature in our experiments.

We employ the edge direction histogram as the shape feature in our

experiments [35]. Canny edge detector is applied to obtain the edge

images. From the edge images, the edge direction histogram can then

computed. The edge direction histogram is quantized into 18 bins of

20 degrees each, hence an 18-dimensional edge direction histogram is

used to represent the edge feature.

We use the wavelet-based texture feature for its effectiveness. We

perform the Discrete Wavelet Transformation (DWT) on the gray im-

ages employing a Daubechies-4 wavelet filter. In total, we perform

3-level decompositions and obtain 10 subimages in different scales and

orientations [67]. Then, we choose 9 subimages with most of the tex-

ture information and compute the entropy of each subimage. Hence,

a 9-dimensional wavelet-based texture feature is obtained to describe

the texture information for each image.

Fig. 4.4 and Fig. 4.5 show the evaluation result on the 20-cat dataset.

Fig. 4.6 and Fig. 4.7 show the evaluation result on the 50-cat dataset.

4.3.3 Experimental Results

With some minor exception, the result in these figures are homo-

geneous. From the experiment, all four intra-query techniques per-

form better when our SOM-based inter-query learning technique is ap-

plied, and it performs the best when incorporating with our BSVM.
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Figure 4.4: Top 10 average precision on 20-cat image dataset

It shows that the SOM-based inter-query learning can help the intra-

query learning process and improve the retrieval result.

4.4 Conclusion

We have proposed a SOM-based inter-query learning technique to re-

organize the feature vector space of image data, such that the infor-

mation provided in past queries is utilized and the retrieval result is

improved. Moreover, our SOM-based inter-query learning reduced the

size of data from the number of images in the collection to the number

of neurons in the SOM. Thus, the time complexity of the intra-query

learning can be reduced. We performed experiments on real-world im-

age datasets. The experimental results demonstrate that combining
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Figure 4.5: Top 30 average precision on 20-cat image dataset

our BSVM-based relevance feedback algorithm and SOM-based inter-

query learning technique is effective and promising for improving the

retrieval performance in CBIR.

2 End of chapter.
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Figure 4.6: Top 10 average precision on 50-cat image dataset
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Figure 4.7: Top 30 average precision on 50-cat image dataset



Chapter 5

Conclusion

In this thesis, we have proposed to apply our BSVM in relevance feed-

back process to capture user’s preference in CBIR. Moreover, we also

proposed a SOM-based inter-query learning technique to incorporate

the past queries in the process to further improve the retrieval perfor-

mance.

The relevance feedback approach is a powerful technique in CBIR

tasks. The goal of relevance feedback is to learn user’s preference from

their interaction, and it is a powerful technique to improve the retrieval

result in CBIR. Under this framework, a set of images is presented

to the user according to the query. The user marks those images as

either relevant or non-relevant and then feeds back this into the system.

Based on these feedback information, the system presents another set

of images to the user. The system learns user’s preference through this

iterative process, and improves the retrieval performance.

Most of the current relevance feedback systems are based on the

intra-query learning approach. In this approach, the system refines the

query and improves the retrieval result by using feedback information

that the user provided. The learning process starts from ground up
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for each query, and the prior experience from past queries are ignored.

Among these techniques, Support Vector Machines (SVM) have shown

promising results in the area. In this thesis, we propose to apply our

BSVM technique to capture the user’s individual preferences in the

relevance feedback process, and address the imbalanced dataset prob-

lem in relevance feedback process. Our BSVM is able to classify the

positive and negative data with maximum margin, and minimize the

volume of the positive area. Moreover, our BSVM contains a parameter

to control the importance of positive and negative data. The experi-

mental results demonstrate that our BSVM-based relevance feedback

algorithm is effective and promising for improving the retrieval perfor-

mance in CBIR.

Recently, researchers propose the use of inter-query information to

further improve retrieval result. In the inter-query approach, feedback

information from past queries are accumulated to train the system to

determine what images are of the same semantic meaning. In this

thesis, we propose a relevance feedback technique to incorporate both

inter-query and intra-query information for modifying the feature vec-

tor space and estimating the users’ target. SOM is used to cluster and

index the images in the database. We apply our SOM-based inter-

query technique to modify the feature vector space, in which the SOM

of images is stored. This allows for transforming the images distribu-

tions and improving their organization in the modified vector space.

Thus, the images are organized in a fashion that ease the retrieval pro-

cess. We demonstrate improvement in retrieval precision using both

synthetic and real world image data.

In the thesis, we have exploited very minimal potential of the BSVM.

The main objective of our BSVM is to overcome the imbalanced dataset
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problem, i.e., the number of negative examples outnumbered the posi-

tive examples, and this problem occurred in many different real world

applications. For example, for the task of classifying an image contains

a human face or not, the number of negative examples is much more

than the positive examples usually. Hence, our future work invlolves

generalizing the formulation of the BSVM, and making it available in

different problem domains.

2 End of chapter.
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