Semi-supervised Methods

Irwin King Joint work with Zenglin Xu

Department of Computer Science & Engineering The Chinese University of Hong Kong

Academia Sinica 2009

Irwin King (CUHK)

Outline

- Efficient Convex Relaxation for TSVM
 - Model
 - Experiments
- Semi-supervised Kernel learning via level method
 - Semi-supervised Kernels
 - Semi-supervised kernel learning as MKL
 - Optimization method
 - Experiments and Discussion
 - Semi-supervised Feature Selection
 - Feature Selection
 - Semi-supervised Feature Selection
 - Experiments and Discussion

Conclusion

Outline

Introduction

- Efficient Convex Relaxation for TSVM
 - Model
 - Experiments
- 3 Semi-supervised Kernel learning via level method
 - Semi-supervised Kernels
 - Semi-supervised kernel learning as MKL
 - Optimization method
 - Experiments and Discussion
 - Semi-supervised Feature Selection
 - Feature Selection
 - Semi-supervised Feature Selection
 - Experiments and Discussion

5 Conclusion

Semi-supervised learning

Semi-supervised learning

semi-supervised learning is a class of machine learning techniques that make use of both labeled and unlabeled data for training - typically a small amount of labeled data with a large amount of unlabeled data.

Advantages

- save manual labor in labeling data
- improve accuracy in labeling data

Example

labeled

unlabeled

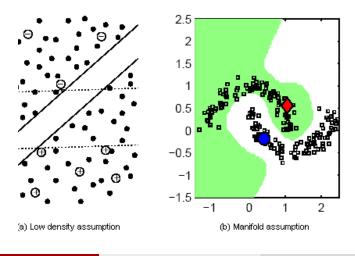
semi-supervised learning

- drawn from the same distribution
- share the same label
- manifold assumption
- low density assumption
- surveys: [Zhu, 2005], [Chapelle et al., 2006]

Introduction

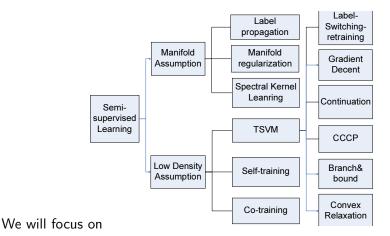
Assumptions in semi-supervised learning

- low density assumption
- manifold assumption



dere-

Methods in semi-supervised learning



• Transductive Support Vector Machine (TSVM)

TSVM

Optimization in TSVM

- combinatorial optimization
- exponential complexity

Approximation methods for TSVM

- e.g., gradient descent optimization, label-switching-retraining, continuation method, Convex Concave Procedure, brunch and bound
- either local optima, or
- high complexity

Some challenges in semi-supervised learning

Challenges

perspectives for improving accuracy and efficiency:

- optimization technique for TSVM
- kernel for semi-supervised learning
- sparse models

Topics of this talk

Topics

- How to learn an efficient Convex relaxation for TSVM?
- How to efficiently learn a kernel for semi-supervised learning?
- How to select features for semi-supervised learning?

Outline

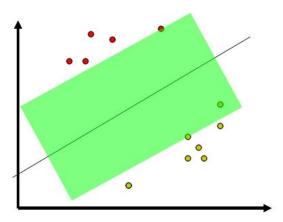
Introduction

Efficient Convex Relaxation for TSVM

- Model
- Experiments
- 3 Semi-supervised Kernel learning via level method
 - Semi-supervised Kernels
 - Semi-supervised kernel learning as MKL
 - Optimization method
 - Experiments and Discussion
 - Semi-supervised Feature Selection
 - Feature Selection
 - Semi-supervised Feature Selection
 - Experiments and Discussion

5 Conclusion

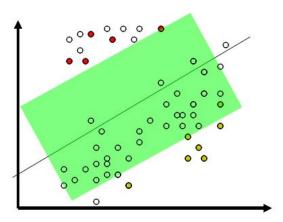
Transductive SVM



• SVM

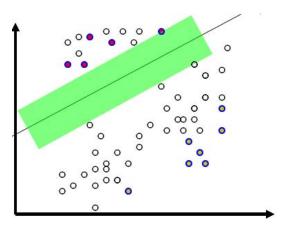
Transductive SVM

- SVM
- SVM with unlabeled data



Transductive SVM

- SVM
- SVM with unlabeled data
- Transductive SVM



Notations

- training data: $\{\mathbf{x}_i\}_{i=1}^n$
- kernel matrix: K
- number of labeled examples: /
- labels of training data: \mathbf{y}^{ℓ}
- decision function: $f = \mathbf{w}^{\top} \mathbf{x} b$

Transductive SVM

TSVM: label \mathbf{y} as a free variable

TSVM

$$\min_{\mathbf{w}, b, \mathbf{y} \in \{-1, +1\}^{n}, \xi} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} \tag{1}$$
s. t. $y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} - b) \ge 1 - \xi_{i},$
 $\xi_{i} \ge 0, \ i = 1, 2, \dots, n$
 $y_{i} = y_{i}^{\ell}, \ i = 1, 2, \dots, l,$

- margin error: ξ
- tradeoff parameter: C

Transductive SVM

- o: element-wise product;
- e: vector of all ones

Dual form

$$\max_{\substack{\alpha, \mathbf{y} \in \{-1, +1\}^n \\ \mathbf{s}. \mathbf{t}. \\ }} \alpha^\top \mathbf{e} - \frac{1}{2} (\alpha \circ \mathbf{y})^\top \mathbf{K} (\alpha \circ \mathbf{y})$$
(2)
s. t. $0 \le \alpha \le C,$
 $y_i = y_i^{\ell}, i = 1, 2, \dots, l,$

problems:

- non-convex problem
- difficult to solve

Transductive SVM

Calculate the Lagrangian of (2)

$$L(\alpha,\nu,\delta,\lambda) = \alpha^{\top} \mathbf{e} - \frac{1}{2} (\alpha \circ \mathbf{y})^{\top} \mathbf{K} (\alpha \circ \mathbf{y}) + \nu^{\top} \alpha + \lambda \mathbf{y}^{\top} \alpha + \delta (C\mathbf{e} - \alpha)$$

•
$$\nu \in \mathbb{R}^{n}$$
: $\alpha \ge 0$
• $\delta \in \mathbb{R}^{n}$: $\alpha \le C$
• λ : $\alpha^{\top} \mathbf{y} = 0$
Set $\frac{\partial L}{\partial \alpha} = 0$,

Dual form

$$\min_{\substack{\nu, \mathbf{y}, \lambda, \delta \\ \mathbf{s}, \mathbf{t}, \mathbf{t}, \mathbf{t} }} \frac{1}{2} (\mathbf{e} + \nu - \delta + \lambda \mathbf{y})^\top \mathrm{D}(\mathbf{y}) \mathbf{K}^{-1} \mathrm{D}(\mathbf{y}) (\mathbf{e} + \nu - \delta + \lambda \mathbf{y})$$
(3)
s. t. $\nu \ge 0,$
 $y_i = y_i^{\ell}, i = 1, 2, \dots, l,$
 $y_i^2 = 1, i = l + 1, l + 2, \dots, n.$

Irwin King (CUHK)

Semi-supervised Methods

Primal form of TSVM

introduce $\frac{1}{2}(\mathbf{e} + \nu - \delta + \lambda \mathbf{y})^{\top} D(\mathbf{y}) \mathbf{K}^{-1} D(\mathbf{y}) (\mathbf{e} + \nu - \delta + \lambda \mathbf{y}) \leq t$ According to Schur complement, (3) is equivalent to

Semi-definite programming for TSVM [Lanckriet et al., 2004]

$$\min_{\mathbf{y} \in \{-1,+1\}^n, t, \nu, \delta, \lambda} \quad t$$
s. t.
$$\begin{pmatrix} \mathbf{y} \mathbf{y}^\top \circ \mathbf{K} & \mathbf{e} + \nu - \delta + \lambda \mathbf{y} \\ (\mathbf{e} + \nu - \delta + \lambda \mathbf{y})^\top & t - 2C\delta^\top \mathbf{e} \end{pmatrix} \succeq 0$$

$$\nu \ge 0, \ \delta \ge 0, \ y_i = y_i^\ell, \ i = 1, 2, \dots, l,$$

$$(4)$$

problem:

still non-convex for y

Convex Relaxation of TSVM

replace $\mathbf{y}\mathbf{y}^{\top}$ with matrix **M** [Xu & Schuurmans, 2004]:

Convex Relaxation of TSVM

$$\begin{array}{l} \min_{\mathbf{M},t,\nu,\delta,\lambda} \quad t \quad (5) \\ \text{s. t.} \quad \begin{pmatrix} \mathbf{M} \circ \mathbf{K} & \mathbf{e} + \nu - \delta \\ (\mathbf{e} + \nu - \delta)^\top & t - 2C\delta^\top \mathbf{e} \end{pmatrix} \succeq 0 \\ \nu \ge 0, \ \delta \ge 0, \\ \mathbf{M} \succeq 0, \ M_{i,i} = 1, \ i = 1, 2, \dots, n, \\ M_{ij} = y_i^{\ell} y_j^{\ell}, \ 1 \le i, j \le l \end{array}$$

polynomial solution

Problems of the relaxation

• $\mathcal{O}(n^2)$ parameters in the SDP cone

- high worst-case computational complexity: $\mathcal{O}(n^{6.5})$
- high storage complexity
- **2** drop the rank constraint of the matrix $\mathbf{y}\mathbf{y}^{\top}$
 - not tight approximation

Our solution

Start from the hard margin case ($\delta = 0$) of optimization problem (3),

$$\begin{array}{ll} \min_{\nu,\mathbf{y},\lambda} & \frac{1}{2} (\mathbf{e} + \nu + \lambda \mathbf{y})^\top \mathrm{D}(\mathbf{y}) \mathbf{K}^{-1} \mathrm{D}(\mathbf{y}) (\mathbf{e} + \nu + \lambda \mathbf{y}) \\ \mathrm{s. t.} & \nu \geq 0, \\ & y_i = y_i^{\ell}, \ i = 1, 2, \dots, l, \\ & y_i^2 = 1, \ i = l+1, l+2, \dots, n. \end{array}$$

Our solution

- introduce $\mathbf{z} = D(\mathbf{y})(\mathbf{e} + \nu) = \mathbf{y} \circ (\mathbf{e} + \nu)$
- z can be used as the prediction function

Hard margin TSVM

$$\min_{\mathbf{z},\lambda} \quad \frac{1}{2} (\mathbf{z} + \lambda \mathbf{e})^\top \mathbf{K}^{-1} (\mathbf{z} + \lambda \mathbf{e})$$
(6)
s. t. $y_i^{\ell} z_i \ge 1, \ i = 1, 2, \dots, l,$
 $z_i^2 \ge 1, \ i = l+1, l+2, \dots, n.$

Our solution

reformulation:

•
$$\mathbf{w} = (\mathbf{z}, \lambda) \in \mathbb{R}^{n+1}$$

• $\mathbf{P} = (\mathbf{I}_n, \mathbf{e}) \in \mathbb{R}^{n \times (n+1)}$

balance constraint (to avoid putting unlabeled examples to one side):

•
$$-\epsilon \leq \frac{1}{l} \sum_{i=1}^{l} w_i - \frac{1}{n-l} \sum_{i=l+1}^{n} w_i \leq \epsilon$$

$$\min_{\mathbf{w}} \quad \mathbf{w}^{\top} \mathbf{P}^{\top} \mathbf{K}^{-1} \mathbf{P} \mathbf{w} \tag{7}$$
s. t. $y_i^{\ell} w_i \ge 1, \ i = 1, 2, \dots, l,$
 $w_i^2 \ge 1, \ i = l+1, l+2, \dots, n,$
 $-\epsilon \le \frac{1}{l} \sum_{i=1}^{l} w_i - \frac{1}{n-l} \sum_{i=l+1}^{n} w_i \le \epsilon.$

Our solution

Lagragian of (7):

L

$$= \mathbf{w}^{\top} \mathbf{P}^{\top} \mathbf{K}^{-1} \mathbf{P} \mathbf{w} + \sum_{i=1}^{l} \gamma_i (1 - y_i^{\ell} w_i) + \sum_{i=l+1}^{n} \gamma_i (1 - w_i^2) + \alpha (\mathbf{c}^{\top} \mathbf{w} - \epsilon) + \beta (-\mathbf{c}^{\top} \mathbf{w} - \epsilon)$$
(8)

Solution

$$\mathbf{w} = \frac{1}{2} \left[\mathbf{A} - D(\gamma \circ \mathbf{b}) \right]^{-1} (\gamma \circ \mathbf{a} - (\alpha - \beta)\mathbf{c}),$$

•
$$\mathbf{a} = (\mathbf{y}^{l}, \mathbf{0}^{n-l}, \mathbf{0}) \in \mathbb{R}^{n+1}$$

• $\mathbf{b} = (\mathbf{0}^{l}, \mathbf{1}^{n-l}, \mathbf{0}) \in \mathbb{R}^{n+1}$
• $\mathbf{c} = (\frac{1}{l}\mathbf{1}^{l}, -\frac{1}{u}\mathbf{1}^{n-l}, \mathbf{0}) \in \mathbb{R}^{n+1}$
• $\mathbf{\Delta} = \mathbf{P}^{\top}\mathbf{K}^{-1}\mathbf{P}$

Irwin King (CUHK)

Our solution

TSVM in dual

$$\max_{\gamma,t} \quad -\frac{1}{4}t + \sum_{i=1}^{n} \gamma_{i} - \epsilon(\alpha + \beta) \tag{9}$$
s. t.
$$\begin{pmatrix} \mathbf{A} - \mathbf{D}(\gamma \circ \mathbf{b}) & \gamma \circ \mathbf{a} - (\alpha - \beta)\mathbf{c}, \\ (\gamma \circ \mathbf{a} - (\alpha - \beta)\mathbf{c})^{\top} & t \end{pmatrix} \ge 0$$

$$\alpha \ge 0, \ \beta \ge 0, \ \gamma_{i} \ge 0, \ i = 1, 2, \dots, n.$$

Properties of the proposed convex relaxation model

- Lower worst-case computational complexity of $\mathcal{O}(n^{4.5})$: $\mathcal{O}(n)$ parameters and $\mathcal{O}(n)$ linear equality constraints
- Our prediction function f^* provides a tighter approximation [Hiriart et al., 1993].
- Related to the solution of [Zhu et al., 2003] :

$$\mathbf{z} = \left(\mathbf{I}_n - \sum_{i=l+1}^n \gamma_i \mathbf{K} \mathbf{I}_n^i\right)^{-1} \left(\sum_{i=1}^l \gamma_i y_i^\ell \mathbf{K}(\mathbf{x}_i, \cdot)\right)$$
(10)

Table: Data sets used in the experiments, where d represents the data dimensionality, l means the number of labeled data points, and n denotes the total number of examples.

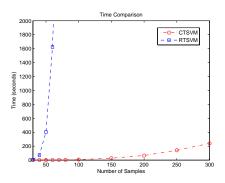
Data set	d	Ι	п	Data set	d	1	n
lono	34	20	351	WinMac-m	7511	20	300
Sonar	60	20	208	IBM-m	11960	20	300
Banana	4	20	400	Course-m	1800	20	300
Breast	9	20	300	WinMac-I	7511	50	1000
IBM-s	11960	10	60	IBM-I	11960	50	1000
Course-s	1800	10	60	Course-I	1800	50	1000

Comparison algorithms

- SVM: baseline
- label-switching-retraining in SVM-light [Joachims,1999]
- Convex concave procedure [Collobert et al., 2006]
- Gradient decent (∇ TSVM), [Chapelle et al., 2005]

Computation time comparison

- CTSVM: convex relaxation TSVM proposed [Xu et al., 2007]
- RTSVM: previous semi-definite relaxation TSVM [Xu & Schuurmans, 2004]



• Course, labeled 20

Irwin King (CUHK)

Experiments

Accuracy comparison

Table: The classification performance of Transductive SVMs on benchmark data sets. (Note: $\nabla TSVM = Gradient Decent TSVM$, CCCP = Concave Convex Procedure)

Data Set	SVM	SVM-light	$\nabla TSVM$	CCCP	CTSVM
IBM-s	52.75 ± 15.01	67.60±9.29	$65.80{\pm}6.56$	$65.62{\pm}14.83$	75.25 ±7.49
Course-s	63.52±5.82	$76.82{\pm}4.78$	$75.80{\pm}12.87$	$74.20{\pm}11.50$	79.75 ±8.45
lono	78.55±4.83	$78.25 {\pm} 0.36$	$81.72 {\pm} 4.50$	82.11 ±3.83	80.09±2.63
Sonar	51.76 ± 5.05	$55.26 {\pm} 5.88$	69.36 ±4.69	$56.01{\pm}6.70$	67.39±6.26
Banana	58.45±7.15	-	$71.54{\pm}7.28$	79.33±4.22	79.51±3.02
Breast	96.46±1.18	$95.68{\pm}1.82$	$97.17 {\pm} 0.35$	$96.89 {\pm} 0.67$	97.79 ±0.23
WinMac-m	57.64 ± 9.58	79.42 ± 4.60	81.03±8.23	84.28±8.84	84.82±2.12
IBM-m	53.00±6.83	$67.55 {\pm} 6.74$	$64.65{\pm}13.38$	$69.62{\pm}11.03$	73.17±0.89
Course-m	80.18±1.27	93.89 ±1.49	90.35±3.59	88.78±2.87	92.92±2.28
WinMac-I	$60.86{\pm}10.10$	$89.81{\pm}2.10$	$90.19{\pm}2.65$	$91.00{\pm}2.42$	91.25 ±2.67
IBM-I	61.82±7.26	75.40 ±2.26	$73.11{\pm}1.99$	$74.80{\pm}1.87$	73.42±3.23
Course-I	83.56±3.10	92.35±3.02	$93.58{\pm}2.68$	$91.32{\pm}4.08$	94.62 ±0.97

Discussion

- More efficient than that in [Xu & Schuurmans, 2004]
- Effective prediction accuracy compared with other semi-supervised SVM algorithms
- All algorithms sensitive to data sets
- Consistent to the results in [Chapelle et al., 2008]

Outline

Introduction

2 Efficient Convex Relaxation for TSVM

- Model
- Experiments

Semi-supervised Kernel learning via level method

- Semi-supervised Kernels
- Semi-supervised kernel learning as MKL
- Optimization method
- Experiments and Discussion
- Semi-supervised Feature Selection
 - Feature Selection
 - Semi-supervised Feature Selection
 - Experiments and Discussion

5 Conclusion

Semi-supervised kernels

spectral kernel learning

- the eigenvalues are readjusted according to some principle
- Gaussian field kernel [Zhu et. al, 2002]
- cluster kernel [Chapelle et. al, 2003]
- spectral kernel [Zhang & Ando, 2005]
- multiple kernel learning
 - a linear combination of a batch of base kernels [Lancriet et. al, 2004]
- graph embedding
 - embed a graph structure into the supervised kernel [Sindhwani et. al, 2005]

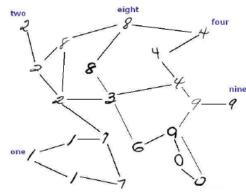
Graph embedding

Graph construction

•
$$\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$$
, where $\mathcal{V} = \{\mathbf{x}_i\}_{i=1}^N$

- build adjacency graph
 - ϵ -NN. $\epsilon \in \mathbb{R}^+$. Nodes \mathbf{x}_i and \mathbf{x}_j are connected if $\operatorname{dist}(\mathbf{x}_i, \mathbf{x}_j) \geq \epsilon$
 - k-NN. $k \in \mathbb{N}^+$. Nodes \mathbf{x}_i and \mathbf{x}_j are connected if \mathbf{x}_i is among the k nearest neighbors of \mathbf{x}_j .
- graph weighting
 - Heat kernel. If \mathbf{x}_i and \mathbf{x}_j are connected, the weight $W_{ij} = \exp^{-\frac{dist(\mathbf{x}_i, \mathbf{x}_j)}{t}}$, where $t \in \mathbb{R}^+$.
 - Simple-minded. $W_{ij} = 1$ if \mathbf{x}_i and \mathbf{x}_j are connected.

Graph embedding



- $\mathcal{G} = <\mathcal{V}, \mathcal{E}>$
- W_{ij} : weights on edge $(\mathbf{x}_i, \mathbf{x}_j)$

•
$$D_{ii} = \sum_{j=1}^{n} W_{ij}$$

- \bullet graph Laplacian: $\mathcal{L} = \boldsymbol{D} \boldsymbol{W}$
- weighted graph Laplacian: $\mathcal{L} = \mathbf{D}^{-\frac{1}{2}} (\mathbf{D} \mathbf{W}) \mathbf{D}^{-\frac{1}{2}}$

Graph embedding

Question?

Can we define a kernel that is adapted to the geometry of the data distribution?

₩

Solution

Define a new RKHS to incorporate the data geometry, such that

$$\langle f, g \rangle_{\tilde{\mathcal{H}}} = \langle f, g \rangle_{\mathcal{H}} + \langle Sf, Sg \rangle_{\mathcal{V}}$$
 (11)

- κ(x, ·): functional in the Reproducing Kernel Hilbert Space (RKHS) *H*
- $\tilde{\kappa}(\mathbf{x}, \cdot)$: functional in the new RKHS $\tilde{\mathcal{H}}$
- $f(\mathbf{x}) = \langle f, \kappa(\mathbf{x}, \cdot) \rangle$, $\kappa(\mathbf{x}, \mathbf{z}) = \langle \kappa(\mathbf{x}, \cdot), \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}}$
- $S : \mathcal{H} \to \mathcal{V}$: bounded linear operator

Semi-supervised Kernels

Graph embedding

Define

• $S(f) = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)).$ • $\|Sf\|_{\mathcal{V}}^2 = \mathbf{f}^\top \mathcal{L} \mathbf{f}$

Graph embedding

According to [Sindhwani et. al, 2005], Given a kernel function $\kappa(\cdot, \cdot)$, the new kernel $\tilde{\kappa}(\cdot, \cdot)$ embedded with the graph structure is defined as

$$\tilde{\kappa}(\mathbf{x}, \mathbf{z}) = \kappa(\mathbf{x}, \mathbf{z}) - \mathbf{k}_{\mathbf{x}} (\mathbf{I} + \mathcal{L} \mathbf{K})^{-1} \mathcal{L} \mathbf{k}_{\mathbf{z}}.$$
(12)

•
$$\mathbf{k}_{\mathbf{x}} = (\kappa(\mathbf{x}_1, \mathbf{x}), \dots, \kappa(\mathbf{x}_n, \mathbf{x}))^\top$$

Illustration

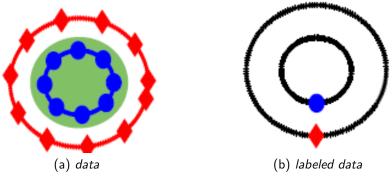
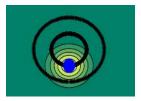


Figure: scatter plot of data

Illustration

RBF kernel



(a) Gaussian kernel centered on labeled point 1

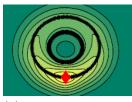
(b) Gaussian kernel centered on labeled point 2

Figure: Gaussian kernel

(c) classifier learnt in the *RKHS*

Illustration

kernel embedded with the graph structure



(c) classifier learnt in the (a) embedded kernel (b) embedded kernel labeled deformed RKHS centered on labeled centered on point 1 point 2

Figure: Kernel embedded with the graph structure

Challenges of graph embedding

Challenges

- ullet the kernel function $\kappa(\cdot,\cdot)$ for embedding, and
- the graph structure that is used to calculate the graph Laplacian \mathcal{L} .

Solutions

• employ multiple kernel learning to select the kernel function $\kappa(\cdot, \cdot)$ and the graph structure

Multiple kernel learning (MKL)

Multiple kernel learning

Given a list of base kernel functions/matrices K_i , i = 1, ..., m, MKL searches for a linear combination of the base kernel functions that maximizes a generalized performance measure.

Linear combination of kernels

$$\mathbf{K} = \sum_{i=1}^{m} p_i \mathbf{K}_i, \ i = 1, \dots, m$$

where $\mathbf{p} = (p_1, \dots, p_m)$ are combination weights in domain \mathcal{P}

$$\mathcal{P} = \{ \mathbf{p} \in \mathbb{R}^m : \mathbf{p}^\top \mathbf{e} = 1, \ \mathbf{0} \le \mathbf{p} \le 1 \}$$

Candidate graphs for semi-supervised learning

Parameter sets when constructing the graph

- distance function: $\mathcal{D} = \{d_1, \dots, d_r\}$
 - e.g. Euclidean distance, tangent distance
- neighborhood number: $\mathcal{K} = \{k_1, \dots, k_s\}$
 - e.g. 2, 10, 100, ...
- heat kernel width: $T = \{t_1, \dots, t_q\}$
 - e.g. $1e^{-2}$, $1e^{-1}$, 1, 10, ...

Candidate graphs

• $u = r \times s \times q$ graphs

•
$$\mathcal{L}_i = \mathbf{D}_i - \mathbf{W}_i$$
 for $i = 1, \dots, u$

Candidate embedded kernels for semi-supervised learning

For

- *i*-th (i = 1, ..., u) candidate graph
- *j*-th $(j = 1, \ldots, v)$ base kernel

embedded kernels

$$\tilde{\kappa}_{ij}(\mathbf{x}, \mathbf{z}) = \kappa_i(\mathbf{x}, \mathbf{z}) - \mathbf{k}_{\mathbf{x}}(\mathbf{I} + \mathcal{L}_j \mathbf{K}_i)^{-1} \mathcal{L}_j \mathbf{k}_{\mathbf{z}}.$$
(13)

Multiple kernel learning

• number of base kernels $m = u \times v$

Multiple kernel learning in semi-supervised setting

$$\min_{\mathbf{p}\in\mathcal{P}}\max_{\alpha\in\mathcal{Q}}f(\mathbf{p},\alpha)=\alpha^{\top}\mathbf{e}-\frac{1}{2}(\alpha\circ\mathbf{y})^{\top}\left(\sum_{i=1}^{m}p_{i}\tilde{\mathbf{K}}_{i}\right)(\alpha\circ\mathbf{y}),$$

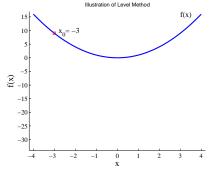
Properties

- convex-concave problem (convex in **p** and concave in α)
- $\bullet\,$ saddle point (\mathbf{p}^*, α^*) exists and corresponds to the optimal solution

$$f(\mathbf{p}, \alpha^*) \leq f(\mathbf{p}^*, \alpha^*) \leq f(\mathbf{p}^*, \alpha), \forall \mathbf{p} \in \mathcal{P}, \alpha \in \mathcal{Q}$$

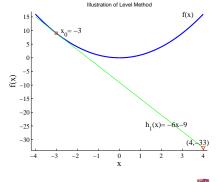
$$\min_{x} \{ f(x) = [x]^2 : x \in \mathcal{X}, \mathcal{X} = [-4, 4] \}$$

• Initialization: $x_0 = -3$, $\lambda = 0.9$



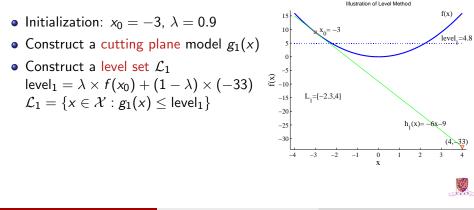
$$\min_{x} \{ f(x) = [x]^2 : x \in \mathcal{X}, \mathcal{X} = [-4, 4] \}$$

- Initialization: $x_0 = -3$, $\lambda = 0.9$
- Construct a cutting plane model $g_1(x)$

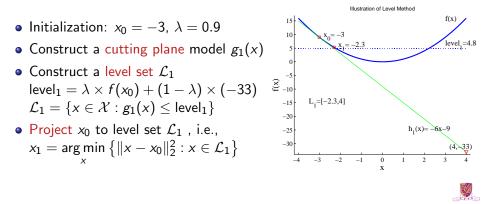


diale-

$$\min_{x} \{ f(x) = [x]^2 : x \in \mathcal{X}, \mathcal{X} = [-4, 4] \}$$



$$\min_{x} \{ f(x) = [x]^2 : x \in \mathcal{X}, \mathcal{X} = [-4, 4] \}$$

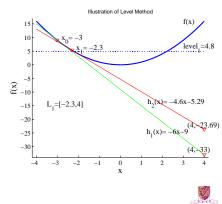


Optimization method

Level method

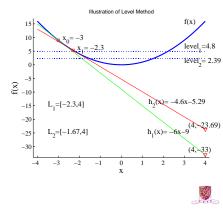
$$\min_{x} \{ f(x) = [x]^2 : x \in [-4, 4] \}$$

• Construct a new cutting plane model $g_2(x) = \min_x h_i(x)$



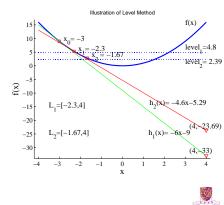
$$\min_{x} \{ f(x) = [x]^2 : x \in [-4, 4] \}$$

- Construct a new cutting plane model $g_2(x) = \min_{x} h_i(x)$
- Construct a new level set \mathcal{L}_2



$$\min_{x} \{ f(x) = [x]^2 : x \in [-4, 4] \}$$

- Construct a new cutting plane model $g_2(x) = \min_{x} h_i(x)$
- Construct a new level set \mathcal{L}_2
- Project x_1 to \mathcal{L}_2



Cutting plane models

Cutting plane models

$$g^{i}(\mathbf{p}) = \max_{1 \leq j \leq i} f(\mathbf{p}^{j}, \alpha^{j}) + (\mathbf{p} - \mathbf{p}^{j})^{\top} \nabla_{\mathbf{p}} f(\mathbf{p}^{j}, \alpha^{j})$$

Properties

For any $\mathbf{p} \in \mathcal{P}$, we have • $g^{i+1}(\mathbf{p}) \ge g^i(\mathbf{p})$, and • $g^i(\mathbf{p}) \le \max_{\alpha \in \mathcal{Q}} f(\mathbf{p}, \alpha)$

Lower and upper bounds

Lower and upper bounds

$$\underline{f}^{i} = \min_{\mathbf{p} \in \mathcal{P}} g^{i}(\mathbf{p}), \quad \overline{f}^{i} = \min_{1 \le j \le i} f(\mathbf{p}^{j}, \alpha^{j})$$

Properties

$$\frac{\underline{f}^{i} \leq f(\mathbf{p}^{*}, \alpha^{*}) \leq \overline{f}^{i}}{\overline{f}^{1} \geq \overline{f}^{2} \geq \ldots \geq \overline{f}^{i}}, \\ \underline{f}^{1} \leq \underline{f}^{2} \leq \ldots \leq \underline{f}^{i}.$$

where \mathbf{p}^* and α^* are the optimal solution.

Optimization method

Projection to level set

Level set

$$\mathcal{L}^i = \{ \mathbf{p} \in \mathcal{P} : g^i(\mathbf{p}) \leq \ell^i = \lambda \overline{f}^i + (1-\lambda) \underline{f}^i \},$$

where $\lambda \in (0, 1)$ is a predefined constant.

- larger $\lambda \rightarrow$ more regularization
- $\lambda = 0$: the level method becomes the cutting plane method

Projection to level set

$$\mathbf{p}^{i+1} = rgmin_{\mathbf{p}\in\mathcal{P}} \left\{ \|\mathbf{p} - \mathbf{p}^i\|_2^2 : \mathbf{p}\in\mathcal{L}^i
ight\}$$

Stopping Criterion

Define the gap Δ^i as

$$\Delta^i = \overline{f}^i - \underline{f}^i.$$

Corollary

$$\Delta^{j} \ge 0, j = 1, \dots, i \Delta^{1} \ge \Delta^{2} \ge \dots \ge \Delta^{i} |f(\mathbf{p}^{j}, \alpha^{j}) - f(\mathbf{p}^{*}, \alpha^{*})| \le \Delta^{i}$$

 Δⁱ measures how close the current solution is from the optimal one, serving as the stopping criterion.

Given: λ (level set) and ε (desired accuracy)

• Initialize: $\mathbf{p}^0 = \mathbf{e}/m$, and i = 0

Given: λ (level set) and ε (desired accuracy)

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

2 REPEAT

Given: λ (level set) and ε (desired accuracy)

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

2 REPEAT

③ Solve dual SVM with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

- 2 REPEAT
- **③** Solve dual SVM with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i
- Construct the cutting plane model $g^i(\mathbf{p})$

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

- 2 REPEAT
- **③** Solve dual SVM with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i
- Construct the cutting plane model $g^i(\mathbf{p})$
- Sompute the lower & upper bounds \underline{f}^i and \overline{f}^i , and gap Δ^i

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

- 2 REPEAT
- **Solve dual SVM** with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i
- Construct the cutting plane model $g^i(\mathbf{p})$
- **(a)** Compute the lower & upper bounds \underline{f}^i and \overline{f}' , and gap Δ^i
- $\mathbf{p}^{i+1} \leftarrow \text{projection of } \mathbf{p}^i \text{ to the level set } \mathcal{L}^i$

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

- 2 REPEAT
- **③** Solve dual SVM with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i
- Construct the cutting plane model $g^i(\mathbf{p})$
- **(a)** Compute the lower & upper bounds \underline{f}^i and \overline{f}' , and gap Δ^i
- $\mathbf{p}^{i+1} \leftarrow \text{projection of } \mathbf{p}^i \text{ to the level set } \mathcal{L}^i$
- Update i = i + 1

• Initialize:
$$\mathbf{p}^0 = \mathbf{e}/m$$
, and $i = 0$

- 2 REPEAT
- **③** Solve dual SVM with $\tilde{\mathbf{K}} = \sum_{j=1}^{m} p_j^i \tilde{\mathbf{K}}_j$ for α^i
- Construct the cutting plane model $g^i(\mathbf{p})$
- **(a)** Compute the lower & upper bounds \underline{f}^i and \overline{f}' , and gap Δ^i
- $\mathbf{p}^{i+1} \leftarrow \text{projection of } \mathbf{p}^i \text{ to the level set } \mathcal{L}^i$
- Update i = i + 1
- $INTIL\Delta^i \leq \varepsilon$

Experimental setup: semi-supervised setting

- Base kernel matrices for embedding
 - Gaussian kernels with 10 different widths $\left(\{2^{-3},2^{-2},\ldots,2^6\}\right)$ on all features,
 - Polynomial kernels of degree 1 to 3 on all features,
- Graphs: 10 NN, cosine similarity
- heat kernel width: $\{0.5, 1, 2, 4, 8\}$
- Other settings similar to the supervised setting

Experimental setup: semi-supervised setting

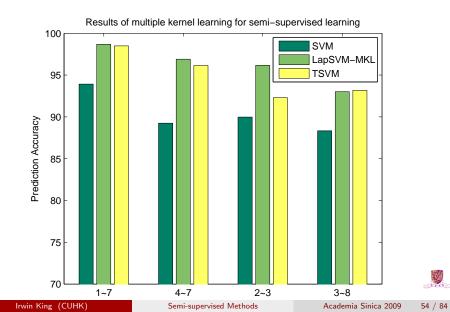
Competitive algorithms:

- baseline: SVM
- TSVM: Convex Concave Procedure (CCCP)
- LapSVM-MKL: proposed

Dataset:

• USPS (US Postal Service's handwritten digits of 400 images and 20 labelled images)

Performance comparison



Summary

Semi-supervised kernel selection

- learning graph structure and base kernels at the same time
- convex optimization
- good performance
- efficient optimization via level method

Outline

1 Introduction

- 2 Efficient Convex Relaxation for TSVM
 - Model
 - Experiments
- 3 Semi-supervised Kernel learning via level method
 - Semi-supervised Kernels
 - Semi-supervised kernel learning as MKL
 - Optimization method
 - Experiments and Discussion

4 Semi-supervised Feature Selection

- Feature Selection
- Semi-supervised Feature Selection
- Experiments and Discussion

5 Conclusion

Feature selection

Feature selection

Given the number of required features, denoted by m, the goal of feature selection is to choose a subset of m features, denoted by S, that maximizes a generalized performance criterion Q. Combinatorial optimization:

$$S^* = \arg \max Q(S)$$
 s. t. $|S| = m.$ (14)

How many features do we need?

The number of required features is

- dependant on learning tasks, e.g., data visualization
- dependant on computational resources, e.g., sensor networks, embedded system
- a model selection problem

We assume that an **external oracle** decides the number of selected features.

Feature selection

Feature selection criterion

- mutual information (Koller & Sahami, 1996)
- maximum margin (Weston et al., 2000; Guyon et al., 2002)
- kernel alignment (Cristianini et al., 2001; Neumann et al., 2005)
- Hilbert Schmidt independence criterion (Song et al., 2007)

Feature selection methods

SVM-based methods

Calculate weight/score ${\bf w}$ for each feature, and then select features with the largest weights

- L2-SVM (Vapnik, 1998; Guyon et al.,2002)
- L1-SVM (Fung & Mangasarian, 2000; Ng, 2004)
- Lasso/LARS (Tibshirani,1996; Efron et al., 2004)
- L0-SVM (Bradley & Mangasarian, 1998; Weston et al., 2003; Neumann et al., 2005; Chan et al., 2007)

Feature selection

- supervised
 - not work well when the number of labeled samples is small
- unsupervised
 - unable to identify the discriminative features
- semi-supervised
 - · avoid the high cost in manually labeling data
 - exploit abundant unlabeled data

Semi-supervised feature selection

Semi-supervised feature selection based on manifold regularization

- maximum margin
 - discriminative
 - incorporating the interaction of features
- manifold regularization
 - better exploits the underlying structural information of the unlabeled data
- convex-concave optimization
 - optimality
 - efficient solver (e.g., level method)

SFS

Notations

- labeled data: $\boldsymbol{X}_\ell = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l)$
- labels: $y = (y_1, y_2, ..., y_l)$
- unlabeled examples: X_u
- training data: $\mathbf{X} = (\mathbf{X}_{\ell}, \mathbf{X}_{u})$
- feature indicator: $\mathbf{p} = (p_1, \dots, p_d)^{ op}$ and $p_i \in \{0, 1\}, \ i = 1, \dots, d$
- kernel matrix: K
- kernel defined on each feature: $\mathbf{K}_i = \mathbf{x}_i \mathbf{x}_i^{\top}$

Semi-supervised learning

Manifold regularization

$$\|\mathbf{f}\|_{I}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} (f(\mathbf{x}_{i}) - f(\mathbf{x}_{j}))^{2} W_{ij} = \mathbf{f}^{\top} \mathcal{L} \mathbf{f}, \qquad (15)$$

- W_{ij} : weights on edge $(\mathbf{x}_i, \mathbf{x}_j)$
- $D_{ii} = \sum_{j=1}^{n} W_{ij}$
- $\mathcal{L} = \mathbf{D} \mathbf{W}$

Semi-supervised Feature Selection

Semi-supervised SVM based on manifold regularization

Semi-supervised SVM

$$\min_{\mathbf{w},b,\xi} \quad \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{I} \xi_{i} + \frac{\rho}{2} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathcal{L} \mathbf{X} \mathbf{w}$$
(16)
s. t. $y_{i}(\mathbf{w}^{\top} \mathbf{x}_{i} - b) \geq 1 - \xi_{i}, i = 1, \dots, I,$
 $\xi_{i} \geq 0, i = 1, \dots, I,$

• ξ : margin error

• ρ : trade-off parameter

Dual form

Semi-supervised SVM

$$\max_{\alpha \in \mathcal{Q}} \quad \alpha^{\top} \mathbf{e} - \frac{1}{2} (\alpha \circ \mathbf{y})^{\top} \mathbf{X}_{\ell} (\mathbf{I} + \rho \mathbf{X}^{\top} \mathcal{L} \mathbf{X})^{-1} \mathbf{X}_{\ell}^{\top} (\alpha \circ \mathbf{y})$$

•
$$\mathcal{Q} = \{ \alpha \in [0, C]^{I} | \alpha^{\top} \mathbf{y} = 0 \}$$

- $I \in \mathbb{R}^{n \times n}$: identity matrix
- \bullet o: element-wise product.

Semi-supervised feature selection

Semi-supervised feature selection

$$\min_{\mathbf{w},b,\xi,\mathbf{p}\in\mathcal{P}} \quad \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{l} \xi_{i} + \frac{\rho}{2} \mathbf{w}^{\top} \mathbf{D}(\mathbf{p}) \mathbf{X}^{\top} \mathcal{L} \mathbf{X} \mathbf{D}(\mathbf{p}) \mathbf{w}$$
(17)
s. t. $y_{i}(\mathbf{w}^{\top} \mathbf{D}(\mathbf{p}) \mathbf{x}_{i} - b) \geq 1 - \xi_{i}, i = 1, \dots, l,$
 $\xi_{i} \geq 0, i = 1, \dots, l,$

•
$$\mathcal{P} = \{\mathbf{p} \in [0, 1]^d | \mathbf{p}^\top \mathbf{e} = m\}.$$

• D(): diagonal matrix

Dual problem of semi-supervised feature selection

Semi-supervised feature selection

The dual of (17) is equivalent to the following min-max optimization problem

$$\min_{\mathbf{p}\in\mathcal{P}} \max_{\alpha\in\mathcal{Q}} \alpha^{\top} \mathbf{e} - \frac{1}{2} (\alpha \circ \mathbf{y})^{\top} \mathbf{X}_{\ell} \Gamma \mathbf{X}_{\ell}^{\top} (\alpha \circ \mathbf{y})$$
(18)

$$\boldsymbol{\Gamma} = \mathrm{D}(\mathbf{p}) \left(\mathbf{I} + \rho \mathbf{Z} \right)^{-1} \mathrm{D}(\mathbf{p})$$

$$\mathbf{Z} = \mathbf{X}^{\top} \mathcal{L} \mathbf{X}$$
(19)
(19)

Equivalent form

Equivalent form

$$\min_{\mathbf{p}\in\mathcal{P}}\max_{\alpha\in\mathcal{Q},\tau\in[0,1]}\alpha^{\top}\mathbf{e} - \frac{1}{2}(\alpha\circ\mathbf{y})^{\top}\mathbf{X}_{\ell}\mathbf{A}\mathbf{X}_{\ell}^{\top}(\alpha\circ\mathbf{y})$$
(21)

 $\bullet\,$ reduce the quadratic optimization of p to linear optimization

$$\mathbf{A} = (1 - \tau)^{2} \mathbf{D}(\mathbf{p}) + \frac{\tau^{2}}{\rho} \mathbf{Z}^{-1}$$
(22)

• $\mathbf{A} \succeq \Gamma$ for any $\tau \in [0, 1]$.

Connection to multiple kernel learning

Linear kernel

$$\mathbf{K} = \mathbf{X}_{\ell} \mathbf{X}_{\ell}^{\top} = \sum_{i=1}^{d} \mathbf{v}_i \mathbf{v}_i^{\top} = \sum_{i=1}^{d} \mathbf{K}_i,$$

Semi-supervised feature selection as MKL

$$\min_{\mathbf{p}\in\mathcal{P}} \max_{\alpha\in\mathcal{Q}} \alpha^{\top} \mathbf{e} - \frac{1}{2} (\alpha \circ \mathbf{y})^{\top} \mathbf{M} (\alpha \circ \mathbf{y})$$
(23)

•
$$\mathbf{M} = (1-\tau)^2 \sum_{i=1}^d p_i \mathbf{K}_i + \frac{\tau^2}{\rho} \mathbf{H}.$$

- v_i: i-th feature of X
- $\mathbf{H} = \mathbf{X}_{\ell}^{\top} (\mathbf{X}^{\top} \mathcal{L} \mathbf{X})^{-1} \mathbf{X}_{\ell}$

Level method for semi-supervised feature selection

• cutting plane model

$$g^{i}(\mathbf{p}) = \max_{1 \le j \le i} \varphi(\mathbf{p}^{j}, \alpha^{j}) + (\mathbf{p} - \mathbf{p}^{j})^{\top} \nabla_{\mathbf{p}}(\mathbf{p}^{j}, \alpha^{j})$$
(24)

lower bound and upper bound

$$\underline{\varphi}^{i} = \min_{\mathbf{p}\in\mathcal{P}} g^{i}(\mathbf{p}), \quad \overline{\varphi}^{i} = \min_{1\leq j\leq i} \varphi(\mathbf{p}^{j}, \alpha^{j}).$$
(25)

projection

$$\min_{\mathbf{p}\in\mathcal{L}^i}\|\mathbf{p}-\mathbf{p}^i\|_2^2 \tag{26}$$

gap

$$\Delta^i = \overline{\varphi}^i - \underline{\varphi}^i.$$

Level method for semi-supervised feature selection

- Initialize $\mathbf{p}^0 = \frac{m}{d}\mathbf{e}$ and i = 0
- 2 REPEAT
- **3** Obtain α^i by solving SVM with $\mathbf{M} = (1 \tau)^2 \mathbf{X}_{\ell} D(\mathbf{p}^i) \mathbf{X}_{\ell}^{\top} + \frac{\tau^2}{\rho} \mathbf{H}$
- Construct the cutting plane model $g^i(\mathbf{p})$ in (24)
- Calculate the lower bound <u>φ</u>ⁱ and the upper bound <u>φ</u>ⁱ in (25), and the gap Δⁱ in (27)
- Obtain \mathbf{p}^{i+1} via the projection step (26)
- $O UNTIL\Delta^i \leq \varepsilon$

Experimental setup

Comparison algorithms

- Fisher that calculates a Fisher/Correlation score for each feature (Bishop, 1995).
- L_0 -appr that approximates the L_0 -norm by minimizing a logarithm function (Weston et al., 2003).
- L₁-SVM that replaces L₂-norm of **w** with L₁-norm in SVM (Fung & Mangasarian, 2000).

Experimental setup

Comparison algorithms

- 10% of data are employed for training
- normalize each feature to be a Gaussian distribution with zero mean and unit standard deviation, based on the training data
- C in all SVM-based feature selection methods is chosen by a 5-fold cross validation

Results on text data

Table: The classification accuracy (%) on text data sets. The best result, and those not significantly worse than it (t-test with 95% confidence level), are highlighted.

Data	#F	FS-Manifold	L_1 -SVM	L_0 -SVM	Fisher
DS1	50	82.9 ±2.4	82.2±2.9	82.3±2.9	82.3±3.5
	100	83.5 ±2.2	82.9±2.6	83.2 ±2.6	83.4 ±2.6
DS2	50	89.7 ±3.9	88.7±8.6	89.1±4.9	89.8 ±6.9
	100	91.1 ±3.4	90.9 ±5.8	90.3±3.7	90.3±5.6
DS3	50	84.2 ±4.3	82.0±4.4	82.9±4.3	81.3±4.7
	100	85.8 ±3.9	84.1±4.2	85.2±4.4	84.3±4.1

Results on USPS data

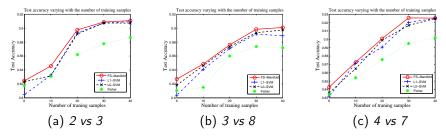


Figure: The comparison among different feature selection algorithms when the number of selected features is equal to 10.

Results on USPS data

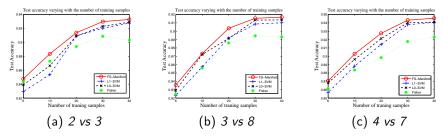


Figure: The comparison among different feature selection algorithms when the number of selected features is equal to 20.

Outline

- 1 Introduction
- 2 Efficient Convex Relaxation for TSVM
 - Model
 - Experiments
- 3 Semi-supervised Kernel learning via level method
 - Semi-supervised Kernels
 - Semi-supervised kernel learning as MKL
 - Optimization method
 - Experiments and Discussion
 - Semi-supervised Feature Selection
 - Feature Selection
 - Semi-supervised Feature Selection
 - Experiments and Discussion

Conclusion

Conclusion

Presented

- a brief introduction to semi-supervised learning
- three semi-supervised methods
 - an efficient convex relaxation model for Transductive SVM
 - an effective method for semi-supervised kernel learning
 - an effective method for semi-supervised feature selection

Future topics

- when semi-supervised learning will be helpful?
- what is the connection between the low-density assumption and manifold assumption in semi-supervised learning?
- how to obtain or better approximate the optimal solution of semi-supervised models?

Conclusion

Recent publications of our lab in machine learning

• Conference papers

- Z. Xu, R. Jin, J. Ye, I. King, and M. R. Lyu. Non-monotonic feature selection, *ICML 2009*.
- Z. Xu, R. Jin, M. R. Lyu, and I. King. Semi-supervised Feature Selection via Manifold Regularization. *IJCAI 2009*.
- Z. Xu, R. Jin, I. King, and M. R. Lyu, An Extended Level Method for Multiple Kernel Learning, NIPS 2008.
- Z. Xu, R. Jin, K. Huang, I. King, and M. R. Lyu. Semi-supervised text categorization by active search, CIKM 2008.
- K. Huang, Z. Xu, I. King, and Michael R. Lyu, Semi-supervised Learning from General Unlabeled Data, *ICDM 2008*.
- H. Yang, I. King, and M. Lyu, Learning with Consistency between Inductive Functions and Kernels, *NIPS*, 2008
- Z. Xu, R. Jin, J. Zhu, I. King, and M. R. Lyu. Efficient convex relaxation for transductive support vector machine, NIPS 2007.

Publications of our lab in machine learning

Journal papers

- Z. Xu, K. Huang, J. Zhu, I. King, and M. R. Lyu. A Novel Kernel-based Maximum A Posteriori Classification Method. *Neural Networks*, 2009.
- K. Huang, Z. Xu, I. King, M. R. Lyu, and Z. Zhou, A Novel Discriminative Naive Bayesian Network for Classification, in Bayesian Network Technologies: Applications and Graphical Models, 2007.
- Z. Xu, I. King, and M. R. Lyu, Feature Selection Based on Minimum Error Minimax Probability Machine, IJPRAI, 2007.
- K. Huang, D. Zheng, I. King, and M. R. Lyu, Arbitrary Norm Support Vector Machines, Neural Computation, 2009.
- S. K. Huang, H. Yang, M. R. Lyu, and I. King, Maxi-Min Margin Machine: Learning Large Margin Classifiers Locally and Globally, IEEE Transactions on Neural Networks, 2008.

Conclusion

References

- O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised SVMs, ICML 2006.
- O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
- O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-supervised support vector machines, NIPS 2006.
- O. Chapelle and A. Zien. Semi-supervised classification by low density separation. Tenth International Workshop on Artificial Intelligence and Statistics, 2005.
- S. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs. Journal of Machine Learning Research, 2006.
- T. Joachims. Transductive inference for text classification using support vector machines, ICML 1999.
- G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 2004.
- I. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. AAAI 2005.
- X. Zhu. Semi-supervised learning literature survey. Technical report, Computer Sciences, University of Wisconsin-Madison, 2005.
- X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian field and harmonic functions, ICML 2003

Conclusion

References

- G. Fung and O. L. Mangasarian. Data selection for support vector machine classifiers. KDD 2000
- I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003
- I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 2002
- O. Koller and M. Sahami. Toward optimal feature selection. ICML 1996
- A. Rakotomamonjy. Variable selection using svm-based criteria. Journal of Machine Learning Research, 2003
- 🧿 Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. ICML 2004
- L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. ICML 2007
- J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research, 2003
- J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. NIPS 2000
- 🔟 Z. Zhao and H. Liu, Semi-supervised Feature Selection via Spectral Analysis, SDM 2007

de la

Thanks for your attention!

