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Introduction

Semi-supervised learning

Semi-supervised learning

semi-supervised learning is a class of machine learning techniques that
make use of both labeled and unlabeled data for training - typically a small
amount of labeled data with a large amount of unlabeled data.

Advantages

save manual labor in labeling data

improve accuracy in labeling data
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Introduction

Example

labeled

unlabeled

semi-supervised learning

drawn from the same
distribution

share the same label

manifold assumption

low density assumption

surveys: [Zhu, 2005], [Chapelle
et al., 2006]
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Introduction

Assumptions in semi-supervised learning

low density assumption
manifold assumption
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Introduction

Methods in semi-supervised learning

Semi-
supervised 
Learning

Manifold 
Assumption

Low Density 
Assumption

Co-training

Self-training

TSVM

Spectral Kernel 
Leanring

Manifold 
regularization

Label 
propagation

CCCP

Continuation

Convex 
Relaxation

Label-
Switching-
retraining

Gradient 
Decent

Branch& 
bound

We will focus on

Transductive Support Vector Machine (TSVM)
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Introduction

TSVM

Optimization in TSVM

combinatorial optimization

exponential complexity

Approximation methods for TSVM

e.g., gradient descent optimization, label-switching-retraining,
continuation method, Convex Concave Procedure, brunch and bound

either local optima, or

high complexity
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Introduction

Some challenges in semi-supervised learning

Challenges

perspectives for improving accuracy and efficiency:

optimization technique for TSVM

kernel for semi-supervised learning

sparse models
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Introduction

Topics of this talk

Topics

How to learn an efficient Convex relaxation for TSVM?

How to efficiently learn a kernel for semi-supervised learning?

How to select features for semi-supervised learning?
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Efficient Convex Relaxation for TSVM Model

Transductive SVM

SVM

SVM with unlabeled data

Transductive SVM
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Efficient Convex Relaxation for TSVM Model

Notations

training data: {xi}ni=1

kernel matrix: K

number of labeled examples: l

labels of training data: y`

decision function: f = w>x− b
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Efficient Convex Relaxation for TSVM Model

Transductive SVM

TSVM: label y as a free variable

TSVM

min
w,b,y∈{−1,+1}n,ξ

‖w‖2
2 + C

n∑
i=1

ξi (1)

s. t. yi (w
>xi − b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, 2, . . . , n

yi = y `i , i = 1, 2, . . . , l ,

margin error: ξ

tradeoff parameter:C
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Efficient Convex Relaxation for TSVM Model

Transductive SVM

◦: element-wise product;

e: vector of all ones

Dual form

max
α,y∈{−1,+1}n

α>e− 1

2
(α ◦ y)>K(α ◦ y) (2)

s. t. 0 ≤ α ≤ C ,

yi = y `i , i = 1, 2, . . . , l ,

problems:

non-convex problem

difficult to solve
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Efficient Convex Relaxation for TSVM Model

Transductive SVM

Calculate the Lagrangian of (2)

L(α, ν, δ, λ) = α>e− 1

2
(α ◦ y)>K(α ◦ y) + ν>α + λy>α + δ(Ce− α)

ν ∈ Rn: α ≥ 0
δ ∈ Rn: α ≤ C
λ: α>y = 0

Set ∂L
∂α = 0,

Dual form

min
ν,y,λ,δ

1

2
(e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy) (3)

s. t. ν ≥ 0,

yi = y `i , i = 1, 2, . . . , l ,

y 2
i = 1, i = l + 1, l + 2, . . . , n.

D(): diagonal matrix
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Efficient Convex Relaxation for TSVM Model

Primal form of TSVM

introduce 1
2 (e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy) ≤ t

According to Schur complement, (3) is equivalent to

Semi-definite programming for TSVM [Lanckriet et al., 2004]

min
y∈{−1,+1}n,t,ν,δ,λ

t (4)

s. t.

(
yy> ◦K e + ν − δ + λy

(e + ν − δ + λy)> t − 2Cδ>e

)
� 0

ν ≥ 0, δ ≥ 0, yi = y `i , i = 1, 2, . . . , l ,

problem:

still non-convex for y
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Efficient Convex Relaxation for TSVM Model

Convex Relaxation of TSVM

replace yy> with matrix M [Xu & Schuurmans, 2004]:

Convex Relaxation of TSVM

min
M,t,ν,δ,λ

t (5)

s. t.

(
M ◦K e + ν − δ

(e + ν − δ)> t − 2Cδ>e

)
� 0

ν ≥ 0, δ ≥ 0,

M � 0, Mi ,i = 1, i = 1, 2, . . . , n,

Mij = y `i y `j , 1 ≤ i , j ≤ l

polynomial solution
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Efficient Convex Relaxation for TSVM Model

Problems of the relaxation

1 O(n2) parameters in the SDP cone

high worst-case computational complexity: O(n6.5)
high storage complexity

2 drop the rank constraint of the matrix yy>

not tight approximation
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Efficient Convex Relaxation for TSVM Model

Our solution

Start from the hard margin case (δ = 0) of optimization problem (3),

min
ν,y,λ

1

2
(e + ν + λy)>D(y)K−1D(y)(e + ν + λy)

s. t. ν ≥ 0,

yi = y `i , i = 1, 2, . . . , l ,

y 2
i = 1, i = l + 1, l + 2, . . . , n.
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Efficient Convex Relaxation for TSVM Model

Our solution

introduce z = D(y)(e + ν) = y ◦ (e + ν)

z can be used as the prediction function

Hard margin TSVM

min
z,λ

1

2
(z + λe)>K−1(z + λe) (6)

s. t. y `i zi ≥ 1, i = 1, 2, . . . , l ,

z2
i ≥ 1, i = l + 1, l + 2, . . . , n.
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Efficient Convex Relaxation for TSVM Model

Our solution

reformulation:

w = (z, λ) ∈ Rn+1

P = (In, e) ∈ Rn×(n+1)

balance constraint (to avoid putting unlabeled examples to one side):

−ε ≤ 1
l

∑l
i=1 wi − 1

n−l

∑n
i=l+1 wi ≤ ε

min
w

w>P>K−1Pw (7)

s. t. y `i wi ≥ 1, i = 1, 2, . . . , l ,

w 2
i ≥ 1, i = l + 1, l + 2, . . . , n,

−ε ≤ 1

l

l∑
i=1

wi −
1

n − l

n∑
i=l+1

wi ≤ ε.
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Efficient Convex Relaxation for TSVM Model

Our solution

Lagragian of (7):

L = w>P>K−1Pw +
l∑

i=1

γi (1− y `i wi )

+
n∑

i=l+1

γi (1− w 2
i ) + α(c>w − ε) + β(−c>w − ε) (8)

Solution

w =
1

2
[A−D(γ ◦ b)]−1 (γ ◦ a− (α− β)c),

a = (yl , 0n−l , 0) ∈ Rn+1

b = (0l , 1n−l , 0) ∈ Rn+1

c = ( 1
l 1

l ,− 1
u1n−l , 0) ∈ Rn+1

A = P>K−1P
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Efficient Convex Relaxation for TSVM Model

Our solution

TSVM in dual

max
γ,t

−1

4
t +

n∑
i=1

γi − ε(α + β) (9)

s. t.

(
A−D(γ ◦ b) γ ◦ a− (α− β)c,

(γ ◦ a− (α− β)c)> t

)
≥ 0

α ≥ 0, β ≥ 0, γi ≥ 0, i = 1, 2, . . . , n.
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Efficient Convex Relaxation for TSVM Model

Properties of the proposed convex relaxation model

Lower worst-case computational complexity of O(n4.5): O(n)
parameters and O(n) linear equality constraints

Our prediction function f ∗ provides a tighter approximation [Hiriart et
al., 1993].

Related to the solution of [Zhu et al., 2003] :

z =

(
In −

n∑
i=l+1

γiKIin

)−1( l∑
i=1

γiy
`
i K(xi , ·)

)
(10)
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Efficient Convex Relaxation for TSVM Experiments

Data sets

Table: Data sets used in the experiments, where d represents the data
dimensionality, l means the number of labeled data points, and n denotes the
total number of examples.

Data set d l n Data set d l n

Iono 34 20 351 WinMac-m 7511 20 300

Sonar 60 20 208 IBM-m 11960 20 300

Banana 4 20 400 Course-m 1800 20 300

Breast 9 20 300 WinMac-l 7511 50 1000

IBM-s 11960 10 60 IBM-l 11960 50 1000

Course-s 1800 10 60 Course-l 1800 50 1000
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Efficient Convex Relaxation for TSVM Experiments

Comparison algorithms

SVM: baseline

label-switching-retraining in SVM-light [Joachims,1999]

Convex concave procedure [Collobert et al., 2006]

Gradient decent (∇TSVM), [Chapelle et al., 2005]
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Efficient Convex Relaxation for TSVM Experiments

Computation time comparison

CTSVM: convex relaxation TSVM proposed [Xu et al., 2007]

RTSVM: previous semi-definite relaxation TSVM [Xu & Schuurmans,
2004]

50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Samples

T
im

e 
(s

ec
on

ds
)

Time Comparison

 

 

CTSVM
RTSVM

Course, labeled 20

Irwin King (CUHK) Semi-supervised Methods Academia Sinica 2009 28 / 84



Efficient Convex Relaxation for TSVM Experiments

Accuracy comparison

Table: The classification performance of Transductive SVMs on benchmark data
sets. (Note: ∇TSVM = Gradient Decent TSVM, CCCP = Concave Convex
Procedure)

Data Set SVM SVM-light ∇TSVM CCCP CTSVM
IBM-s 52.75±15.01 67.60±9.29 65.80±6.56 65.62±14.83 75.25±7.49
Course-s 63.52±5.82 76.82±4.78 75.80±12.87 74.20±11.50 79.75±8.45
Iono 78.55±4.83 78.25±0.36 81.72±4.50 82.11±3.83 80.09±2.63
Sonar 51.76±5.05 55.26±5.88 69.36±4.69 56.01±6.70 67.39±6.26
Banana 58.45±7.15 - 71.54±7.28 79.33±4.22 79.51±3.02
Breast 96.46±1.18 95.68±1.82 97.17±0.35 96.89±0.67 97.79±0.23
WinMac-m 57.64±9.58 79.42±4.60 81.03±8.23 84.28±8.84 84.82±2.12
IBM-m 53.00±6.83 67.55±6.74 64.65±13.38 69.62±11.03 73.17±0.89
Course-m 80.18±1.27 93.89±1.49 90.35±3.59 88.78±2.87 92.92±2.28
WinMac-l 60.86±10.10 89.81±2.10 90.19±2.65 91.00±2.42 91.25±2.67
IBM-l 61.82±7.26 75.40±2.26 73.11±1.99 74.80±1.87 73.42±3.23
Course-l 83.56±3.10 92.35±3.02 93.58±2.68 91.32±4.08 94.62±0.97
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Efficient Convex Relaxation for TSVM Experiments

Discussion

More efficient than that in [Xu & Schuurmans, 2004]

Effective prediction accuracy compared with other semi-supervised
SVM algorithms

All algorithms sensitive to data sets

Consistent to the results in [Chapelle et al., 2008]
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Semi-supervised kernels

spectral kernel learning

the eigenvalues are readjusted according to some principle
Gaussian field kernel [Zhu et. al, 2002]
cluster kernel [Chapelle et. al, 2003]
spectral kernel [Zhang & Ando, 2005]

multiple kernel learning

a linear combination of a batch of base kernels [Lancriet et. al, 2004]

graph embedding

embed a graph structure into the supervised kernel [Sindhwani et. al,
2005]
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Graph embedding

Graph construction

G =< V, E >, where V = {xi}Ni=1

build adjacency graph

ε-NN. ε ∈ R+. Nodes xi and xj are connected if dist(xi , xj) ≥ ε
k-NN. k ∈ N+. Nodes xi and xj are connected if xi is among the k
nearest neighbors of xj .

graph weighting

Heat kernel. If xi and xj are connected, the weight Wij = exp−
dist(xi ,xj )

t ,
where t ∈ R+.
Simple-minded. Wij = 1 if xi and xj are connected.
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Graph embedding

G =< V, E >
Wij : weights on edge (xi , xj)

Dii =
∑n

j=1 Wij

graph Laplacian: L = D−W

weighted graph Laplacian:

L = D−
1
2 (D−W)D−

1
2
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Graph embedding

Question?

Can we define a kernel that is adapted to the geometry of the data
distribution?

⇓

Solution

Define a new RKHS to incorporate the data geometry, such that

〈f , g〉H̃ = 〈f , g〉H + 〈Sf , Sg〉V (11)

κ(x, ·): functional in the Reproducing Kernel Hilbert Space
(RKHS) H
κ̃(x, ·): functional in the new RKHS H̃
f (x) = 〈f , κ(x, ·)〉, κ(x, z) = 〈κ(x, ·), κ(x, ·)〉H
S : H → V: bounded linear operator
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Graph embedding

Define

S(f ) = (f (x1), . . . , f (xn)).

‖Sf ‖2
V = f>Lf

Graph embedding

According to [Sindhwani et. al, 2005], Given a kernel function κ(·, ·), the
new kernel κ̃(·, ·) embedded with the graph structure is defined as

κ̃(x, z) = κ(x, z)− kx(I + LK)−1Lkz. (12)

kx = (κ(x1, x), . . . , κ(xn, x))>
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Illustration

(a) data (b) labeled data

Figure: scatter plot of data
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Illustration

RBF kernel

(a) Gaussian kernel cen-
tered on labeled point 1

(b) Gaussian kernel cen-
tered on labeled point 2

(c) classifier learnt in the
RKHS

Figure: Gaussian kernel
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Semi-supervised Kernel learning via level method Semi-supervised Kernels

Illustration

kernel embedded with the graph structure

(a) embedded kernel
centered on labeled
point 1

(b) embedded kernel
centered on labeled
point 2

(c) classifier learnt in the
deformed RKHS

Figure: Kernel embedded with the graph structure

Irwin King (CUHK) Semi-supervised Methods Academia Sinica 2009 39 / 84



Semi-supervised Kernel learning via level method Semi-supervised Kernels

Challenges of graph embedding

Challenges

the kernel function κ(·, ·) for embedding, and

the graph structure that is used to calculate the graph Laplacian L.

Solutions

employ multiple kernel learning to select the kernel function κ(·, ·)
and the graph structure
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Semi-supervised Kernel learning via level method Semi-supervised kernel learning as MKL

Multiple kernel learning (MKL)

Multiple kernel learning

Given a list of base kernel functions/matrices Ki , i = 1, . . . ,m, MKL
searches for a linear combination of the base kernel functions that
maximizes a generalized performance measure.

Linear combination of kernels

K =
m∑

i=1

piKi , i = 1, . . . ,m

where p = (p1, . . . , pm) are combination weights in domain P

P = {p ∈ Rm : p>e = 1, 0 ≤ p ≤ 1}
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Semi-supervised Kernel learning via level method Semi-supervised kernel learning as MKL

Candidate graphs for semi-supervised learning

Parameter sets when constructing the graph

distance function: D = {d1, . . . , dr}
e.g. Euclidean distance, tangent distance

neighborhood number: K = {k1, . . . , ks}
e.g. 2, 10, 100, . . .

heat kernel width: T = {t1, . . . , tq}
e.g. 1e−2, 1e−1, 1, 10, . . .

Candidate graphs

u = r × s × q graphs

Li = Di −Wi for i = 1, . . . , u
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Semi-supervised Kernel learning via level method Semi-supervised kernel learning as MKL

Candidate embedded kernels for semi-supervised learning

For

i-th (i = 1, . . . , u) candidate graph

j-th (j = 1, . . . , v) base kernel

embedded kernels

κ̃ij(x, z) = κi (x, z)− kx(I + LjKi )
−1Ljkz. (13)
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Semi-supervised Kernel learning via level method Semi-supervised kernel learning as MKL

Multiple kernel learning

number of base kernels m = u × v

Multiple kernel learning in semi-supervised setting

min
p∈P

max
α∈Q

f (p, α) = α>e− 1

2
(α ◦ y)>

(
m∑

i=1

pi K̃i

)
(α ◦ y),

Properties

convex-concave problem (convex in p and concave in α)

saddle point (p∗, α∗) exists and corresponds to the optimal solution

f (p, α∗) ≤ f (p∗, α∗) ≤ f (p∗, α), ∀p ∈ P, α ∈ Q
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Semi-supervised Kernel learning via level method Optimization method

Level Method

min
x
{f (x) = [x ]2 : x ∈ X ,X = [−4, 4]}

Initialization: x0 = −3, λ = 0.9

Construct a cutting plane model g1(x)

Construct a level set L1

level1 = λ× f (x0) + (1− λ)× (−33)
L1 = {x ∈ X : g1(x) ≤ level1}
Project x0 to level set L1 , i.e.,
x1 = arg min

x

{
‖x − x0‖2

2 : x ∈ L1

}
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Illustration of Level Method
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Semi-supervised Kernel learning via level method Optimization method

Level method

min
x
{f (x) = [x ]2 : x ∈ [−4, 4]}

Construct a new cutting plane model
g2(x) = min

x
hi (x)

Construct a new level set L2

Project x1 to L2
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Semi-supervised Kernel learning via level method Optimization method

Cutting plane models

Cutting plane models

g i (p) = max
1≤j≤i

f (pj , αj) + (p− pj)>∇pf (pj , αj)

Properties

For any p ∈ P, we have

g i+1(p) ≥ g i (p), and

g i (p) ≤ maxα∈Q f (p, α)
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Semi-supervised Kernel learning via level method Optimization method

Lower and upper bounds

Lower and upper bounds

f i = min
p∈P

g i (p), f
i

= min
1≤j≤i

f (pj , αj)

Properties

f i ≤ f (p∗, α∗) ≤ f
i
,

f
1 ≥ f

2 ≥ . . . ≥ f
i
,

f 1 ≤ f 2 ≤ . . . ≤ f i .

where p∗ and α∗ are the optimal solution.
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Semi-supervised Kernel learning via level method Optimization method

Projection to level set

Level set

Li = {p ∈ P : g i (p) ≤ `i = λf
i

+ (1− λ)f i},

where λ ∈ (0, 1) is a predefined constant.

larger λ→ more regularization

λ = 0: the level method becomes the cutting plane method

Projection to level set

pi+1 = arg min
p∈P

{
‖p− pi‖2

2 : p ∈ Li
}
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Semi-supervised Kernel learning via level method Optimization method

Stopping Criterion

Define the gap ∆i as

∆i = f
i − f i .

Corollary

1 ∆j ≥ 0, j = 1, . . . , i

2 ∆1 ≥ ∆2 ≥ . . . ≥ ∆i

3 |f (pj , αj)− f (p∗, α∗)| ≤ ∆i

∆i measures how close the current solution is from the optimal one,
serving as the stopping criterion.
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Semi-supervised Kernel learning via level method Optimization method

The level method for multiple kernel learning

Given: λ (level set) and ε (desired accuracy)

1 Initialize: p0 = e/m, and i = 0

2 REPEAT

3 Solve dual SVM with K̃ =
∑m

j=1 pi
j K̃j for αi

4 Construct the cutting plane model g i (p)

5 Compute the lower & upper bounds f i and f
i
, and gap ∆i

6 pi+1 ← projection of pi to the level set Li

7 Update i = i + 1

8 UNTIL∆i ≤ ε
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Semi-supervised Kernel learning via level method Experiments and Discussion

Experimental setup: semi-supervised setting

Base kernel matrices for embedding

Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26}) on all
features,
Polynomial kernels of degree 1 to 3 on all features,

Graphs: 10 NN, cosine similarity

heat kernel width: {0.5, 1, 2, 4, 8}
Other settings similar to the supervised setting
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Semi-supervised Kernel learning via level method Experiments and Discussion

Experimental setup: semi-supervised setting

Competitive algorithms:

baseline: SVM

TSVM: Convex Concave Procedure (CCCP)

LapSVM-MKL: proposed

Dataset:

USPS (US Postal Service’s handwritten digits of 400 images and 20
labelled images)
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Semi-supervised Kernel learning via level method Experiments and Discussion

Performance comparison
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Figure: The results of Laplacian-SVM using the embedded kernel learned by MKL
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Semi-supervised Kernel learning via level method Experiments and Discussion

Summary

Semi-supervised kernel selection

learning graph structure and base kernels at the same time

convex optimization

good performance

efficient optimization via level method
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Semi-supervised Feature Selection

Outline

1 Introduction

2 Efficient Convex Relaxation for TSVM
Model
Experiments

3 Semi-supervised Kernel learning via level method
Semi-supervised Kernels
Semi-supervised kernel learning as MKL
Optimization method
Experiments and Discussion

4 Semi-supervised Feature Selection
Feature Selection
Semi-supervised Feature Selection
Experiments and Discussion
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Semi-supervised Feature Selection Feature Selection

Feature selection

Feature selection

Given the number of required features, denoted by m, the goal of feature
selection is to choose a subset of m features, denoted by S, that
maximizes a generalized performance criterion Q.
Combinatorial optimization:

S∗ = arg maxQ(S) s. t. |S| = m. (14)
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Semi-supervised Feature Selection Feature Selection

How many features do we need?

The number of required features is

dependant on learning tasks, e.g., data visualization

dependant on computational resources, e.g., sensor networks,
embedded system

a model selection problem

We assume that an external oracle decides the number of selected
features.
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Semi-supervised Feature Selection Feature Selection

Feature selection

Feature selection criterion

mutual information (Koller & Sahami, 1996)

maximum margin (Weston et al., 2000; Guyon et al., 2002)

kernel alignment (Cristianini et al., 2001; Neumann et al., 2005)

Hilbert Schmidt independence criterion (Song et al., 2007)
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Semi-supervised Feature Selection Feature Selection

Feature selection methods

SVM-based methods

Calculate weight/score w for each feature, and then select features with
the largest weights

L2-SVM (Vapnik, 1998; Guyon et al.,2002)

L1-SVM (Fung & Mangasarian, 2000; Ng, 2004)

Lasso/LARS (Tibshirani,1996; Efron et al., 2004)

L0-SVM (Bradley & Mangasarian, 1998; Weston et al., 2003;
Neumann et al., 2005; Chan et al.,2007)
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Semi-supervised Feature Selection Feature Selection

Feature selection

supervised

not work well when the number of labeled samples is small

unsupervised

unable to identify the discriminative features

semi-supervised

avoid the high cost in manually labeling data
exploit abundant unlabeled data
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Semi-supervised Feature Selection Feature Selection

Semi-supervised feature selection

Semi-supervised feature selection based on manifold regularization

maximum margin

discriminative
incorporating the interaction of features

manifold regularization

better exploits the underlying structural information of the unlabeled
data

convex-concave optimization

optimality
efficient solver (e.g., level method)
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Semi-supervised Feature Selection Semi-supervised Feature Selection

SFS

Notations

labeled data: X` = (x1, . . . , xl)

labels: y = (y1, y2, . . . , yl)

unlabeled examples: Xu

training data: X = (X`,Xu)

feature indicator: p = (p1, . . . , pd)> and pi ∈ {0, 1}, i = 1, . . . , d

kernel matrix: K

kernel defined on each feature: Ki = xix
>
i
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Semi-supervised learning

Manifold regularization

‖f‖2
I =

n∑
i=1

n∑
j=1

(f (xi )− f (xj))2Wij = f>Lf, (15)

Wij : weights on edge (xi , xj)

Dii =
∑n

j=1 Wij

L = D−W
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Semi-supervised SVM based on manifold regularization

Semi-supervised SVM

min
w,b,ξ

1

2
‖w‖2

2 + C
l∑

i=1

ξi +
ρ

2
w>X>LXw (16)

s. t. yi (w
>xi − b) ≥ 1− ξi , i = 1, . . . , l ,

ξi ≥ 0, i = 1, . . . , l ,

ξ: margin error

ρ: trade-off parameter
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Dual form

Semi-supervised SVM

max
α∈Q

α>e− 1

2
(α ◦ y)>X`(I + ρX>LX)−1X>` (α ◦ y)

Q = {α ∈ [0,C ]l |α>y = 0}
I ∈ Rn×n: identity matrix

◦: element-wise product.
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Semi-supervised feature selection

Semi-supervised feature selection

min
w,b,ξ,p∈P

1

2
‖w‖2

2 + C
l∑

i=1

ξi +
ρ

2
w>D(p)X>LXD(p)w (17)

s. t. yi (w
>D(p)xi − b) ≥ 1− ξi , i = 1, . . . , l ,

ξi ≥ 0, i = 1, . . . , l ,

P = {p ∈ [0, 1]d |p>e = m}.
D(): diagonal matrix
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Dual problem of semi-supervised feature selection

Semi-supervised feature selection

The dual of (17) is equivalent to the following min-max optimization
problem

min
p∈P

max
α∈Q

α>e− 1

2
(α ◦ y)>X`ΓX>` (α ◦ y) (18)

Γ = D(p) (I + ρZ)−1 D(p) (19)

Z = X>LX (20)

Irwin King (CUHK) Semi-supervised Methods Academia Sinica 2009 68 / 84



Semi-supervised Feature Selection Semi-supervised Feature Selection

Equivalent form

Equivalent form

min
p∈P

max
α∈Q,τ∈[0,1]

α>e− 1

2
(α ◦ y)>X`AX>` (α ◦ y) (21)

reduce the quadratic optimization of p to linear optimization

A = (1− τ)2D(p) +
τ2

ρ
Z−1 (22)

A � Γ for any τ ∈ [0, 1].
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Connection to multiple kernel learning

Linear kernel

K = X`X
>
` =

d∑
i=1

viv
>
i =

d∑
i=1

Ki ,

Semi-supervised feature selection as MKL

min
p∈P

max
α∈Q

α>e− 1
2 (α ◦ y)>M(α ◦ y) (23)

M = (1− τ)2
∑d

i=1 piKi + τ2

ρ H.

vi : i-th feature of X

H = X>` (X>LX)−1X`
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Level method for semi-supervised feature selection

cutting plane model

g i (p) = max
1≤j≤i

ϕ(pj , αj) + (p− pj)>∇p(pj , αj) (24)

lower bound and upper bound

ϕi = min
p∈P

g i (p), ϕi = min
1≤j≤i

ϕ(pj , αj). (25)

projection

min
p∈Li
‖p− pi‖2

2 (26)

gap

∆i = ϕi − ϕi . (27)
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Semi-supervised Feature Selection Semi-supervised Feature Selection

Level method for semi-supervised feature selection

1 Initialize p0 = m
d e and i = 0

2 REPEAT

3 Obtain αi by solving SVM with M = (1− τ)2X`D(pi )X>` + τ2

ρ H

4 Construct the cutting plane model g i (p) in (24)

5 Calculate the lower bound ϕi and the upper bound ϕi in (25), and

the gap ∆i in (27)

6 Obtain pi+1 via the projection step (26)

7 UNTIL∆i ≤ ε
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Semi-supervised Feature Selection Experiments and Discussion

Experimental setup

Comparison algorithms

Fisher that calculates a Fisher/Correlation score for each feature
(Bishop, 1995).

L0-appr that approximates the L0-norm by minimizing a logarithm
function (Weston et al., 2003).

L1-SVM that replaces L2-norm of w with L1-norm in SVM (Fung &
Mangasarian, 2000).
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Semi-supervised Feature Selection Experiments and Discussion

Experimental setup

Comparison algorithms

10% of data are employed for training

normalize each feature to be a Gaussian distribution with zero mean
and unit standard deviation, based on the training data

C in all SVM-based feature selection methods is chosen by a 5-fold
cross validation
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Semi-supervised Feature Selection Experiments and Discussion

Results on text data

Table: The classification accuracy (%) on text data sets. The best result, and
those not significantly worse than it (t-test with 95% confidence level), are
highlighted.

Data #F FS-Manifold L1-SVM L0-SVM Fisher

DS1
50 82.9±2.4 82.2±2.9 82.3±2.9 82.3±3.5

100 83.5±2.2 82.9±2.6 83.2±2.6 83.4±2.6

DS2
50 89.7±3.9 88.7±8.6 89.1±4.9 89.8±6.9

100 91.1±3.4 90.9±5.8 90.3±3.7 90.3±5.6

DS3
50 84.2±4.3 82.0±4.4 82.9±4.3 81.3±4.7

100 85.8±3.9 84.1±4.2 85.2±4.4 84.3±4.1
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Semi-supervised Feature Selection Experiments and Discussion

Results on USPS data
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Figure: The comparison among different feature selection algorithms when the
number of selected features is equal to 10.
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Figure: The comparison among different feature selection algorithms when the
number of selected features is equal to 20.
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Conclusion

Conclusion

Presented

a brief introduction to semi-supervised learning

three semi-supervised methods

an efficient convex relaxation model for Transductive SVM
an effective method for semi-supervised kernel learning
an effective method for semi-supervised feature selection

Future topics

when semi-supervised learning will be helpful?

what is the connection between the low-density assumption and
manifold assumption in semi-supervised learning?

how to obtain or better approximate the optimal solution of
semi-supervised models?
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Conclusion

Recent publications of our lab in machine learning

Conference papers
1 Z. Xu, R. Jin, J. Ye, I. King, and M. R. Lyu. Non-monotonic feature
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2 Z. Xu, R. Jin, M. R. Lyu, and I. King. Semi-supervised Feature
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4 Z. Xu, R. Jin, K. Huang, I. King, and M. R. Lyu. Semi-supervised text
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5 K. Huang, Z. Xu, I. King, and Michael R. Lyu, Semi-supervised
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Thanks for your attention!
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