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Abstract

The Biased Minimax Probability Machine (BMPM) constructs a classifier which deals with the imbalanced learning tasks. It provides a
worst-case bound on the probability of misclassification of future data points based on reliable estimates of means and covariance matrices of
the classes from the training data samples, and achieves promising performance. In this paper, we develop a novel yet critical extension training
algorithm for BMPM that is based on Second-Order Cone Programming (SOCP). Moreover, we apply the biased classification model to medical
diagnosis problems to demonstrate its usefulness. By removing some crucial assumptions in the original solution to this model, we make the
new method more accurate and robust. We outline the theoretical derivatives of the biased classification model, and reformulate it into an SOCP
problem which could be efficiently solved with global optima guarantee. We evaluate our proposed SOCP-based BMPM (BMPMSOCP) scheme
in comparison with traditional solutions on medical diagnosis tasks where the objectives are to focus on improving the sensitivity (the accuracy
of the more important class, say “ill” samples) instead of the overall accuracy of the classification. Empirical results have shown that our method
is more effective and robust to handle imbalanced classification problems than traditional classification approaches, and the original Fractional
Programming-based BMPM (BMPMFP).
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Classifiers are widely being used in various disciplines
with applications such as Information Retrieval (Peng &
King, 2006a, 2006b), Bioinformatics (Huang, Yang, King,
& Lyu, 2006b; Huang, Yang, King, Lyu, & Chan, 2004c),
Text Categorization (Macskassy, Hirsh, Banerjee, & Dayanik,
2001; Nigam, Mccallum, Thrun, & Mitchell, 1999), etc. In
particular, biased classifiers, a special kind of classifiers, seek
to make the accuracy of the important class, instead of the
overall accuracy, as high as possible, while maintaining the
accuracy of the less important class at an acceptable level.
Recently, a novel biased classification model, Biased Minimax
Probability Machine (BMPM), provides a worst-case bound on
the probability of misclassification of future data points based
I An abbreviated version of some portions of this article appeared in Peng
and King (2007) as part of the IJCNN 2007 Conference Proceedings, published
under IEE copyright.
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on reliable estimates of means and covariance matrices of the
classes from the training data points and achieves promising
performance (Huang, Yang, King, & Lyu, 2004a, 2006a).

Applying machine learning techniques to medical diagnosis
tasks has the advantage of saving time and reducing
cost (Kononenko, 2001; West & West, 2000). Many different
techniques have been applied to medical diagnosis in
the machine learning literature, including Naive Bayesian
method (NB) (Langley, Iba, & Thompson, 1992), the k-
Nearest Neighbor method (kNN) (Aha, Kibler, & Albert,
1991), the decision tree (Quinlan, 1993) and the logistic
regression (Jordan, 1995). The challenging task of medical
diagnosis based on machine learning techniques requires an
inherent bias, i.e., the diagnosis should favor the positive
identification of the “ill” class over the misidentification of
the “healthy” class, since a misdiagnosis of an ill patient
as a healthy one may delay the therapy and aggravate the
illness. Therefore, the objective in the identification task is
not to improve the overall accuracy of the classification, but
to focus on improving the sensitivity (the accuracy of the
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“ill” class) while maintaining an acceptable specificity (the
accuracy of the “healthy” class) (Grzymala-Busse, Goodwin,
& Zhang, 2003). Some current methods adopt roundabout
ways to impose a certain bias toward the important class,
i.e., they try to utilize some intermediate factors to influence
the classification (Cardie & Nowe, 1997; Chawla, Bowyer,
Hall, & Kegelmeyer, 2002; Kubat & Matwin, 1997; Maloof,
Langley, Binford, Nevatia, & Sage, 2004). However, it remains
uncertain whether these methods can improve the classification
performance systematically.

In this paper, by employing the Biased Minimax Probability
Machine (BMPM), we deal with the issue in a more
elegant way and directly achieve the objective of appropriate
medical diagnosis. We extend the original BMPM model of
Huang et al. (2006b) and propose a new training algorithm
to tackle the complexity and accuracy issues in BMPM
learning task. This model is transformed into a Second-Order
Cone Programming (SOCP) problem instead of a Fractional
Programming (FP) one (Peng & King, 2007). Under this new
proposed framework, the imbalanced classification problem
could be modelled and solved efficiently. Moreover, we
apply the model to handle the biomedical problems in this
work.

The rest of this paper is organized as follows. Section 2
reviews the concept of Biased Minimax Probability Ma-
chine (BMPM) and related work. Section 3 presents a robust
learning algorithm based on the Second-Order Cone Program-
ming for BMPM. Section 4 gives out the results of our empiri-
cal study on the derived learning scheme. Conclusion and future
work are given in Section 5.

2. Biased minimax probability machine

In this section, we present the biased minimax framework,
designed to achieve the goal of the imbalanced classification.
We first introduce and define the linear Biased Minimax
Probability Machine (BMPM) model. We then review
optimization solutions that solve the linear version of the
BMPM model.

2.1. Model definition

We assume that two random vectors x and y represent two
classes of data with means and covariance matrices as {x,Σx}

and {y,Σy}, respectively in a two-category classification task,
where x, y, x, y ∈ Rn , and Σx, Σy ∈ Rn×n . For convenience,
in the following, we use x and y to represent the corresponding
class of the x data and the y data respectively.1

Assuming that {x,Σx}, {y,Σy} for two classes of data
are reliable, Biased Minimax Probability Machine (BMPM)
attempts to determine the hyperplane aT z = b (a 6= 0, z ∈ Rn ,
b ∈ R) with aT z > b being considered as class x and aT z < b
being judged as class y to separate the important class of data
x with a maximal probability while keeping the accuracy of
less important class of data y acceptable. We formulate this
objective as follows:
1 The reader may refer to Huang, Yang, King, Lyu, and Chan (2004d) for a
more detailed and complete description of the BMPM model.
Fig. 1. Decision Lines Comparison: MPM Decision Line (dotted red line),
BMPM Decision Line (dotted green line), SVM Decision Line (dotted blue
line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

max
α,β,b,a6=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aT x ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aT y ≤ b} ≥ β,

β ≥ β0,

(1)

where α and β represent the lower bounds of the accuracy
for future data classification, namely, the worst-case accuracy.
Meanwhile, β0 is a pre-specified positive constant which
represents an acceptable accuracy for the less important class.

This optimization will maximize the accuracy for the biased
class x (the probability α) while maintaining the class y’s
accuracy at an acceptable level by setting a lower bound β0 as
indicated in the third constraint of optimization problem (1).
The hyperplane a∗T z = b∗ given by the solution of this
optimization will favor the classification of the important class
x over the class y, and will be more suitable in handling biased
classification tasks. This is illustrated in Fig. 1.

2.2. Solving the biased minimax probability machine

With the ground work found in Huang et al. (2006b), Huang
et al. (2004c) and Lanckriet, Ghaoui, Bhattacharyya, and Jordan
(2003), we adopt the transformed optimization problem by
using Lemma 1 from Lanckriet et al. (2003) as:

max
α,β,b,a6=0

α (2)

s.t. −b + aT x ≥ κ(α)
√

aT Σxa, (3)

b − aT y ≥ κ(β)

√
aT Σya, (4)

β ≥ β0, (5)

where κ(α) =

√
α

1−α
, κ(β) =

√
β

1−β
.
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From constraints (3) and (4), we eliminate b from this
optimization problem. Without considering the influence of
magnitude of a on the optimal solution for the above
problem, we set aT (x − y) = 1. In addition, since κ(α)

increases monotonically with α, maximizing α is equivalent to
maximizing κ(α). Thus the problem can be finally transformed
to the Fractional Programming problem as,

max
a6=0

1 − κ(β0)

√
aT Σya√

aT Σxa
(6)

s.t. aT (x − y) = 1, (7)

κ(β) ≥ κ(β0), (8)

where the objective function is a linear function with respect to

κ(β), and
√

aT Σya is a positive term.
In the earlier work of this model, Rosen Gradient projection

method (Bertsekas, 2004) is employed to find the solution of
this concave-convex FP problem. Furthermore it is observed
that the inequalities in (3) and (4) will become equalities at the
optimal point. The optimal b will thus be obtained by

b∗
= a∗T y + κ(β0)

√
a∗T Σya∗ = a∗T x − κ(α∗)

√
a∗T Σxa∗.

3. Robust BMPM training

3.1. Motivation

Biased Minimax Probability Machine (BMPM) has been
extensively studied as a state-of-the-art learning techniques in
various areas, such as bioinformatics (Huang et al., 2006b,
2004c), information retrieval (Peng & King, 2006a, 2006b)
and statistical learning (Huang, Yang, King, & Lyu, 2004b).
Most of the recent studies on BMPM are generally based on
the Fractional Programming problem (we name it BMPMFP)
which could be solved by Rosen Gradient method. However
the problem reformulation has some crucial assumptions which
may lead to failure of the model solution. Another issue is
the Fractional Programming-based BMPMFP would be very
sensitive to data dimension and time consuming when applied
to some domain-specific applications. As we can see in its
original solution, it directly sets aT (x − y) = 1. However this
is not necessarily the case in every learning problem.

Motivated from these shortcomings of FP-based BMPM
solutions, we formulate the model into a Second-Order Cone
Programming (SOCP) problem without any loss of model
information. With this, the BMPM could be effectively trained
and applied to biased machine learning problems with more
accurate results.

3.2. Proposed strategy

Our main result is stated below.

Theorem 1. If x = y, then the minimax probability decision
problem (1) does not have a meaningful solution: the optimal
worst-case misclassification probability that we obtain is 1 −

α∗
= 1. Otherwise, an optimal hyperplane H(a∗, b∗) exists,

and can be determined by solving the convex optimization
problem:

min
t,a6=0

t − aT (x − y)

s.t. ‖Σ
1
2

x a‖ ≤ 1,

‖Σ
1
2

y a‖ ≤

√
1 − β0

β0
t,

(9)

and setting b to the value

b∗
= a∗T y + κ(β0)

√
a∗T Σya∗ = a∗T x − κ(α∗)

√
a∗T Σxa∗,

where a∗ is the optima of (9), and t ∈ R is a new optimization
variable. The optimal worst-case misclassification probability
for class x and y is

Pr(Misclassificationx) = 1 − α∗, (10)

Pr(Misclassificationy) = 1 − β0, (11)

respectively. Furthermore, if either Σx or Σy is positive definite,
the optimal hyperplane is unique.

Proof. It is observed that the optimization problem (1) could be
transformed to the following format:

max
α,b,a6=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aT x ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aT y ≤ b} ≥ β0.

(12)

By using Lemma 1 in Lanckriet et al. (2003), the above
optimization becomes:

max
α,a6=0

α

s.t.

√
α

1 − α

√
aT Σxa

+

√
β0

1 − β0

√
aT Σya ≤ aT (x − y).

(13)

Since
√

α
1−α

is a monotonic increasing function of α, we can

change variables and rewrite our problem as

max
α,a6=0

√
α

1 − α

s.t.

√
α

1 − α

√
aT Σxa

+

√
β0

1 − β0

√
aT Σya ≤ aT (x − y).

(14)

Considering Σx and Σy can be viewed as positive definite
matrices, we formulate the optimization as following:

max
α,a6=0

√
α

1 − α

s.t.

√
α

1 − α
≤

aT (x − y) −

√
β0

1−β0

√
aT Σya√

aT Σxa
,

(15)
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which allow us to eliminate
√

α
1−α

,

max
a6=0

aT (x − y) −

√
β0

1−β0

√
aT Σya√

aT Σxa
. (16)

It is observed that the optimization problem (16) is
equivalent to bound the denominator to 1, and then maximize
its numerator. Otherwise if the denominator has no bound,
we would have no way to obtain the optimal solution.2

Furthermore, the maximization of an item is equivalent to
minimize its opponent. Hence, we obtain the transformed
problem as,

min
a6=0

−aT (x − y) +

√
β0

1 − β0

√
aT Σya

s.t.
√

aT Σxa ≤ 1.

(17)

And it could be further transformed to

min
t,a6=0

t − aT (x − y)

s.t.
√

aT Σxa ≤ 1,√
aT Σya ≤

√
1 − β0

β0
t.

(18)

Eq. (18) is exactly a Second-Order Cone Programming
problem in the form of:

min
t,a6=0

t − aT (x − y)

s.t. ‖Σ
1
2

x a‖ ≤ 1,

‖Σ
1
2

y a‖ ≤

√
1 − β0

β0
t.

(19)

The above problem is convex, feasible, and its objective is
linear; therefore, there exists an optimal point, a∗. The linearity
of the objective function which is strict convex implies that
the optimal point is unique. This ends our proof of the
theorem. �

Lemma 1. The Second-Order Cone Programming problem
with linear objective function and norm constraints is a convex
optimization problem and thus is solvable.

Proof. This can be directly observed from the properties of
convex optimization. �

A number of software packages can be used to solve
this problem. For example, SeDuMi can solve the trans-
formed BMPM model efficiently with the global optima guar-
antee (Sturm, 1999).

3.3. Kernelized biased minimax probability machine and its
solution

We use the kernelization technique to map the n-dimensional
data points into a high-dimensional feature space R f , in which
2 This is a common technique to tackle optimization problems.
a linear classifier corresponds to a nonlinear hyperplane in the
original space.

Assuming that the training data points are represented by

{xi }
Nx
i=1 and {y j }

Ny
j=1 for class x and class y, respectively, we can

formulate the kernel mapping as:

x → ϕ(x) ∼ (ϕ(x),Σϕ(x)),

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)),

where ϕ : Rn
→ R f is a mapping function. The corresponding

linear classifier in R f is aT ϕ(z) = b, where a, ϕ(z) ∈ R f

and b ∈ R. Similarly, the transformed SOCP optimization in
BMPM can be written as:

min
t,a6=0

t − aT (ϕ(x) − ϕ(y))

s.t. ‖Σ
1
2
ϕ(x)a‖ ≤ 1,

‖Σ
1
2
ϕ(y)a‖ ≤

√
1 − β0

β0
t.

(20)

To make the kernel work, we represent the final
decision hyperplane and the optimization into a kernel form,
K (z1, z2) = ϕ(z1)

T ϕ(z2), namely an inner product form of
the mapping data points. Due to the limited scope of this
paper, we will not present a detailed kernelization procedure
here. Readers interested in the details can refer to Huang et al.
(2004d).

We now outline the kernelized optimization function for
Biased Minimax Probability Machine as follows:

min
t,a6=0

t − wT (k̃x − k̃y)

s.t.

√
1

Nx
wT K̃

T
x K̃xw ≤ 1,√

1
Ny

wT K̃
T
y K̃yw ≤

√
1 − β0

β0
t,

(21)

which is a Second-Order Cone Program (SOCP) that has a
similar form as the SOCP in (9) and can thus be solved in a
similar way.

Remark. We omit the introduction of some notations here due
to the space limitations. Interested readers could refer to Huang
et al. (2006b).

4. Experimental results

In this section we discuss the experimental evaluation of
our proposed biased learning algorithm in comparison to some
state-of-the-art approaches. For a consistent evaluation, we
conduct our empirical comparisons on two standard datasets
for medical diagnosis: the breast-cancer dataset, and the heart
disease dataset. The traditional algorithms are the NB classifier,
the kNN method, and the Minimax Probability Machine (MPM)
in this paper, along with the two BMPMs, BMPMSOCP and
BMPMFP.
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3 http://bnt.sourceforge.net/.
4 http://people.revoledu.com/kardi/tutorial/KNN/resources.html.
5 http://cosmal.ucsd.edu/˜gert/publications.html.
Table 1
An overview of the breast-cancer dataset

Dataset #Instances #Features #Classes

Breast-cancer dataset 699 9 2

Table 2
An overview of the heart disease dataset

Dataset #Instances #Features #Classes

Heart disease dataset 270 13 2

4.1. Experimental testbeds

Two medical datasets, the breast-cancer dataset and the
heart disease dataset, obtained from the UCI machine learning
repository (Asuncion & Newman, 2007), are used in this
experiment (Table 1).

4.1.1. Breast-cancer dataset
It has been widely employed as a benchmark dataset for

evaluating biomedical diagnosis problems. The breast-cancer
dataset consists of 458 instances of the benign class and 241
instances of the malignant class. Each instance is described by
9 attributes.

4.1.2. Heart disease dataset
The heart disease dataset includes 120 instances with heart

disease and 150 instances without heart disease. Each instance
is described by 13 attributes (Table 2).

We pre-process the datasets by removing any instances
with missing attribute values since handling of these missing
attribute values is out of the scope of this paper. For these two
datasets, the preferred class x is the malignant class and the
heart disease class, respectively. Therefore, the sensitivity, or
the true positive rate, corresponds to the accuracy of the class
x, and the specificity is the accuracy of the class y.

4.2. Experimental settings

Applying BMPM-based technique in medical diagnosis
is a very straightforward task, where we separate the two
classes of cases by maximizing the worst-case (minimal)
probability that an “ill” case is correctly classified into the
“ill” class with respect to all distributions with these means
and covariance matrices, while maintaining acceptable the
worst-case (minimal) probability that a healthy case is also
correctly diagnosed. These probabilities can also be considered
as the corresponding accuracies, namely, the sensitivity and
the specificity. Therefore we just need to assume the patients
to be the more important class (x) in the biased classification
framework while assuming the healthy ones to be the less
important class (y).

We use three performance measurements to evaluate
the BMPM model. They are: (1) the Receiver Operating
Characteristic (ROC), (2) Maximum Sum (MS), and (3) Test-
Set Accuracy (TSA). The ROC curve plots a series of
sensitivities against the corresponding one minus specificities,
or the true positive rates versus the false positive rates for
short. Moreover, if the ROC curves are generated with good
shapes evenly distributed along their length, they can be used
to evaluate biased learning algorithms by using the area under
the curve. The larger the area under the curves, the higher
the sensitivity for a given specificity, and hence the better the
method’s performance (Huang et al., 2006b).

We use another metric to perform evaluations, namely the
criterion of maximum sum (MS). Instead of using the area
as the metric in the ROC curve analysis, this criterion uses a
typical point that achieves the largest sum of the sensitivity
and the specificity (or the maximum difference between the
true positive rate and the false positive rate) (Grzymala-Busse
et al., 2003; Huang et al., 2006b). This criterion is originally
designed to evaluate the performance for imbalanced data. In
this context, the data associated with one class are far fewer than
those associated with the other class. If using the traditional
metric, i.e., the metric of maximizing the overall accuracy of
data, the learning algorithms tend to classify all the data into
the majority yet less important class; such cases can be avoided
by using the MS criterion. Note that, in medical diagnosis tasks
there also exist cases in which the number of the disease data is
far smaller than the number of the healthy data (e.g., for certain
peculiar diseases that occur rarely) (Huang et al., 2006b).

The other measurement which is used to demonstrate the
effectiveness of our proposed model and strategy is Test-Set
Accuracy (TSA). It consists of three measurements, i.e., Test-
Set Accuracy on Class x (TSAx), Test-Set Accuracy on
Class y (TSAy) and the overall Test-Set Accuracy on both
classes (TSA).

To examine the effectiveness and efficiency of the learning
model and proposed solving strategy, we use three reference
models in our experiments. The first reference model is
the Naive Bayesian classifier (NB)3 which is an efficient
classification model based on Bayes Theorem. The second
reference model is based on kNN4 which is a traditional
classification tool. We also include Minimax Probability
Machine (MPM)5 for performance comparison intention.
Finally, BMPM has been conducted based on both FP and
SOCP frameworks. By comparing with these three models, we
are able to demonstrate that the BMPM model is more reliable
to handle the imbalanced medical diagnosis classification
problem, and the advantages of our proposed training strategy.

To implement the SOCP-based BMPM algorithm, we adopt
the standard optimization package, i.e., SeDuMe (Sturm,
1999) and YALMIP (Lofberg, 2004), to solve the Second-Order
Cone Programming problem in our algorithm. The FP-based
BMPM framework is based on the Rosen Gradient Projection
method described in Huang et al. (2006b).

http://bnt.sourceforge.net/
http://people.revoledu.com/kardi/tutorial/KNN/resources.html
http://cosmal.ucsd.edu/~gert/publications.html
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4.3. Performance evaluation

4.3.1. Test-set accuracy comparison
Table 3 shows the experimental results of Test-Set

Accuracy (TSA) performance over the breast-cancer dataset.
First, as listed in the first and the second columns of Table 3,

we observe that the two classifiers, BMPMSOCP and BMPMFP,
outperform the other three models. Take the parameter α

for example, BMPMSOCP and BMPMFP achieves noticeably
better performance than MPM, which makes the worst-
case (maximum) misclassification probability much lower with
the value 1 − α reduced. Second, we compare the performance
of the two BMPM classifiers with the traditional classifiers,
i.e., NB and kNN. The results are listed in the fourth and
fifth columns of Table 3. We find that the average TSA
performance, which is indicated as TSA in the table, of
these two learning methods become closer than the BMPM
models. But for the TSA of the more important class indicated
as TSAx is much lower than BMPM models. For example,
the TSAx of BMPMSOCP is much better than NB though
it shows the shortcoming in the TSA measurement. Finally,
we compare the performance of the proposed Second-Order
Cone-Programming-based algorithm, i.e., BMPMSOCP, to the
Fractional-Programming-based methodology BMPMFP. It is
evident that the proposed learning algorithm outperforms its
original approach.

In order to evaluate the performance substantially, the
classification results of the heart disease dataset is listed in
Table 4. From the experimental results, we can see that our
two BMPM models achieve better performances than the other
algorithms in most of the cases while the BMPMSOCP generally
outperforms the BMPMFP method.

4.3.2. MS analysis
We first evaluate the BMPM approach against other

algorithms based on the MS criterion. The results of breast-
cancer dataset are shown in Table 5. It can be seen that the
BMPMs, i.e., BMPMSOCP and BMPMFP, achieve the best
performance. Although NB is very close with the BMPMFP,
a significance analysis according to the traditional analysis
of variance (ANOVA) shows that difference of the means of
BMPMSOCP, NB and kNN are significantly different (p <

0.05).
The results of the heart disease dataset are shown in Table 6.

In this dataset, the BMPM models demonstrate a superiority
to the other learning models. The BMPMSOCP and BMPMFP
achieve the best results of 0.872 and 0.838, respectively. They
are both greater than 0.827, the best result from NB and kNN.
Furthermore, the ANOVA test shows that the difference of the
BMPMSOCP, BMPMFP, and the other algorithms are significant
(p < 0.05).

In summary, in terms of the MS criterion, our BMPM models
demonstrate better performance when compared with other
algorithms in both the breast-cancer and heart disease datasets,
while the BMPMSOCP outperforms the original BMPMFP.
Fig. 2. Full range of the ROC curves on two datasets.

4.3.3. ROC curve analysis

It is difficult for MPM to generate the ROC curves due to its
balanced setting. Without loss of generality, since the worst-
case sensitivity and the worst-case specificity output by the
MPM model is equal, BMPM will be equal or better than MPM
in most cases, we have omitted MPM in this set of experiments.

We generate the ROC curves as illustrated in Fig. 2. It is
observed that the BMPMSOCP and BMPMFP perform better
than the NB and kNN classifiers for the two data collections,
since the BMPM curves are above of the ones for NB and kNN
methods at most cases. In addition, usually not all the portions
of the ROC curve are of great interest. In general, those with a
small false positive rate and a high true positive rate are most
important. In light of this, we show the critical portions of Fig. 2
in Fig. 3 with more detail when the false positive rate is in the
range of [0, 0.3] and the true positive rate is in the range of [0.7,
1.0], respectively. In this critical region, most parts of the ROC
curve of BMPMs are above the corresponding curves of NB and
kNN models in both datasets along with the BMPMSOCP curve
is above the one of BMPMFP, which again demonstrates the
superiority of the BMPM models and our proposed BMPMSOCP

algorithm.
More specifically, we calculate the areas under the ROC

curves as illustrated in Table 7. For the breast-cancer dataset,
it produces a curve with an area of 0.996 in BMPMSOCP and a
curve with an area of 0.992 in BMPMFP, which are both greater
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Table 3
Lower bound α and test-set accuracy on the breast-cancer dataset (%)

Parameter BMPMSOCP BMPMFP MPM kNN(11) NB

α 98.4±0.2↑ 97.3 ± 0.1 ↑ 90.1 ± 0.3 – –
β 50.0±0.0 50.0 ± 0.0 90.1 ± 0.3 – –
TSAx 100.0±0.1↑ 99.7 ± 0.2 ↑ 96.2 ± 0.2 94.3 ± 0.1 96.1 ± 0.2
TSAy 92.1±0.1 88.4 ± 0.1 97.2 ± 0.3 95.1 ± 0.2 98.6 ± 0.1
TSA 97.2±0.2 94.8 ± 0.1 96.7 ± 0.2 94.6 ± 0.1 97.7 ± 0.2

Table 4
Lower bound α and test-set accuracy on the heart disease dataset (%)

Parameter BMPMSOCP BMPMFP MPM kNN(11) NB

α 65.2±0.2↑ 61.4 ± 0.1 ↑ 58.2 ± 0.1 – –
β 50.0±0.0 50.0 ± 0.0 58.2 ± 0.1 – –
TSAx 87.1±0.1↑ 83.5 ± 0.2 ↑ 81.3 ± 0.2 81.7 ± 0.3 82.3 ± 0.2
TSAy 85.6±0.2 85.2 ± 0.1 86.6 ± 0.3 82.1 ± 0.2 80.7 ± 0.1
TSA 86.2±0.1 84.3 ± 0.1 85.2 ± 0.1 81.4 ± 0.2 82.4 ± 0.2
Fig. 3. Crucial part of the ROC curves on two datasets.

than those of the other methods. We also obtain similar results
for the heart disease dataset.

5. Conclusion and future work

The computational complexity of our method for Biased
Minimax Probability Machine (BMPM) is comparable to the
quadratic program that one has to solve for the support vector
machine (SVM) and Minimax Probability Machine (MPM).
Table 5
Comparison of model performance based on the MS criterion on the breast-
cancer dataset

Model Sensitivity Specificity (Sensitivity + Specificity)/2

BMPMSOCP 0.995 ± 0.001 0.975 ± 0.003 0.985 ± 0.003
BMPMFP 0.991 ± 0.002 0.962 ± 0.002 0.976 ± 0.002
kNN(11) 0.978 ± 0.006 0.966 ± 0.004 0.972 ± 0.004
NB 0.983 ± 0.004 0.967 ± 0.007 0.975 ± 0.006

Table 6
Comparison of model performance based on the MS criterion on the heart
disease dataset

Model Sensitivity Specificity (Sensitivity + Specificity)/2

BMPMSOCP 0.892 ± 0.005 0.852 ± 0.003 0.872 ± 0.004
BMPMFP 0.840 ± 0.002 0.835 ± 0.006 0.838 ± 0.003
kNN(11) 0.850 ± 0.005 0.753 ± 0.008 0.802 ± 0.006
NB 0.813 ± 0.004 0.842 ± 0.006 0.827 ± 0.005

Table 7
Comparison of model performance based on the ROC analysis

Breast-cancer dataset Heart disease dataset
Model ROC area Model ROC area

BMPMSOCP 0.996 ± 0.008 BMPMSOCP 0.921 ± 0.007
BMPMFP 0.992 ± 0.002 BMPMFP 0.902 ± 0.004
kNN(11) 0.957 ± 0.003 kNN(11) 0.867 ± 0.005
NB 0.983 ± 0.006 NB 0.876 ± 0.006

While we have viewed this model from the viewpoint of a
convex optimization problem, we believe that there is much
to gain from exploiting analogies to the SVM and developing
specialized optimization procedures for our model. Another
direction that we are currently investigating is the extension of
our model to multiway classification.
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