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Abstract. In large content-based image database applications, e�cient
information retrieval depends heavily on good indexing structures of the

extracted features. While indexing techniques for text retrieval are well

understood, e�cient and robust indexing methodology for image retrieval
is still in its infancy. In this paper, we present a non-hierarchical clus-

tering scheme for index generation using the Rival Penalized Compet-

itive Learning (RPCL) algorithm. RPCL is a stochastic heuristic clus-

tering method which provides good cluster center approximation and

is computationally e�cient. Using synthetic data as well as real data,
we demonstrate the recall and precision performance measurement of

nearest-neighbor feature retrieval based on the indexing structure gen-

erated by RPCL.

1 Introduction

One of the key issues in information retrieval of data in large and voluminous

database is the design and implementation of an e�cient and e�ective indexing

structure for the data objects in the database.1 Without a properly designed

indexing structure, the retrieval of information may be reduced to a linear ex-

haustive search. On the other hand, a good indexing structure will make the

retrieval accurate and computationally e�cient.

The following paragraphs outline the basic feature vector model for nearest-

neighbor search. In our framework, we let DB = fIigNi=1 be a set of image

objects. Without loss of generality, a feature extraction function f : I � � !Rd

extracts from an image I, with a set of parameters � = f�1; �2; � � � ; �mg, a real-
valued d-dimensional vector. Hence, we may view the extracted feature vector

as a point in a d-dimensional vector space. Furthermore, we may use a random

variable X to denote the feature vector extracted from the image set DB and

? This work is supported in part by the RGC Grant #CUHK4176/97E. Portions of

this manuscript have been presented in [8].
1 In this paper, data objects and feature vectors are interchangeable unless stated
otherwise.



xi; i = 1; 2; � � �; N to denote the instance of the feature vector extracted from

DB.

Once the feature vectors have been obtained. Similar feature (content-based)

search can be performed as a nearest-neighbor search by using a distance func-

tion. A typical distance function D is de�ned as D : F � F ! R satisfying:

(1) D(x; y) � 0, (2) D(x; y) = D(y; x), (3) D(x; y) = 0 i� x = y, and (4)

D(x; y) + D(y; z) � D(x; z) where x, y, and z 2 F and F is a feature vector

set. Here, L2-norm (Euclidean distance) is one of the common distance functions

and it is de�ned as: D as: D(x; y) = kx� yk = (
Pd

i=1(xi � yi)
2)1=2.

There are two typical types of query involved in image databases: (1) Range

Search and (2) k Nearest-Neighbor Search. Given a set of N features X =

fxigNi=1, a Range Query, x̂, returns the set, P , of features as P = fxjx 2
X and 0 � D(x; x̂) � �g, where � is a pre-de�ned positive real number and

D is a distance function. As in the k Nearest-Neighbor Search case, given a set of

N features X = fxigNi=1, a k Nearest-Neighbor Query, x̂, returns the set P � X

satisfying: (1) jP j = k for 1 � k � N and (2) D(x̂; x) � D(x̂; y) for y 2 X � P

where D is a distance function. In this paper, we will focus on the latter type of

query.

Once the features have been extracted and the query model has been de�ned.

The crucial link between the features and user query is the indexing structure

(organization). A well-organized indexing structure of the underlying feature

vectors support an e�cient and e�ective retrieval of user queries.

Recently, researchers have developed many new indexingmethods for content-

based retrieval in multimedia databases. For example, rectangle-based indexing

as in R-Tree [6], R+-Tree [11], R*-Tree [1], SR-Tree [7]. Partition-based Indexing

as in Quad-tree [5], k-d Tree [2], VP-Tree [4, 13], and MVP-tree [3].

However, one major problem of these indexing techniques has been that these

methods fail to utilize the underlying data distribution to their advantage in their

indexing structure. This results in what is known as the boundary query problem

where the retrieval Precision will degrade when a query is near the boundary

of a partition in the indexing structure due to the systematic yet unfavorable

partitioning of some indexing techniques. To overcome this, we will present a non-

hierarchical clustering algorithm based on Rival Penalized Competitive Learning

(RPCL) heuristic and demonstrate its e�ectiveness in generating indexing struc-

ture for large image databases.

In Section 2 we will present more details on RPCL and the associated non-

hierarchical indexing. Experimental results of the proposed method are presented

in Section 3. We will discuss some issues associated with the proposed method

and conclude in Section 4.

2 Non-Hierarchical Clustering with RPCL

There are two main goals in our proposed solution: (1) �nd a quick way to par-

tition the input feature set into partitions and (2) impose an indexing structure



over these partitions so that the nearest-neighbor information retrieval can be

made e�ectively.

Rival Penalized Competitive Learning (RPCL) clustering [12] can be re-

garded as an unsupervised extension of Kohonen's supervised learning vector

quantization algorithm LVQ2 [9]. It can also be regarded as a variation to the

more typical Competitive Learning (CL) algorithms [10]. RPCL is a stochastic

clustering algorithm that is able to perform adaptive clustering e�ciently and

quickly leading to an approximation of clusters that are statistically adequate.

The proposed solution is to use RPCL to �nd hierarchical clusters such that

the indexing structure can be created based on a natural partition of the feature

vector distribution. Although this may not result in a balanced tree structure,

this indexing structure will be able to answer nearest-neighbor queries more

e�ectively.

The main advantages of RPCL are: (1) the heuristic is computationally ef-

�cient, (3) it is no worse than other methods when high dimensional features,

and (3) RPCL can be implemented in a distributed environment achieving even

greater speed-up in generating indexing structure of feature vectors.

2.1 The RPCL Algorithm

Step 0: Initialization Randomly pick ci; i = 1; 2; � � �; k as the initial

cluster centers.

Step 1: Winner-Take-All Rule Randomly take a feature vector x

from the feature sample set X, and for i = 1; 2; �; k, we let

ui =

8>>>><
>>>>:

1; if i = w such that

wkx � cwk2 = minj jkx� cjk2;
�1; if i = r such that

rkx� crk2 = minj jkx� cjk2;
0; otherwise

(1)

where w is the winner index, r is the second winner (rival) index,

j = nj=
Pk

i=1 ni and ni is the cumulative number of the occurrences

of ui = 1. This term is added to ensure that every cluster center will

eventually become the winner during the updating process.

Step 2: Updating Cluster Centers Update the cluster center vector

ci by

�ci =

8<
:

�w(x� ci); if ui = 1;

��r(x� ci); if ui = �1;
0; otherwise.

(2)

where 0 � �w; �r � 1 are the learning rates for the winner and rival

unit, respectively.

Assuming there are k cluster centers, the basic idea behind RPCL is that

in each iteration, the cluster center for the winner's unit is accentuated where



as the weight for the second winner, or the rival, is attenuated. The remaining

k � 2 centers are una�ected. The winner is de�ned as the cluster center that is

closest to the randomly selected feature vector. Instead of k can be of any value,

in our application we use the special version of the RPCL clustering algorithm

when k = 2i; i = 1; 2; 3; � � � so that a systematic index tree can be formed.

Let k, cw and cr to denote the number of clusters, cluster center points for

the winner and rival clusters respectively. The algorithm is illustrated in the

boxed region above.

Step 1 and 2 are iterated until one of the following criteria is satis�ed: (1)

the iteration converges, (2) �w ! � for a time decaying learning rate of �w
with a pre-speci�ed threshold of �, or (3) the number of iterations reaches a

pre-speci�ed value.

2.2 Non-Hierarchical RPCL Indexing

There are two ways to perform the clustering. One is the non-hierarchical ap-

proach and the other is the hierarchical approach. In this paper, we will only

focus on the former approach.

The non-hierarchical indexing approach considers the whole feature vector

space each time for clustering by RPCL. We use an example here to explain

its basic idea. Given a set of feature vectors, our method clusters the set into 2

clusters at the �rst time (see Fig. 1 (a)). If four partitions are required at the

next time, our method will consider the whole space again and clusters the set

into 4 clusters (see Fig. 1 (b)). In the non-hierarchical clustering, clusters at a

subsequent stage may not be nested into clusters from a previous stage, but this

method ensures to obtain the correct natural clusters at each stage.
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Fig. 1. (a) Two and (b) Four cluster partitions generated by the non-hierarchical ap-
proach. The dots are the database objects whereas the crosses are the centers. An

inverted �le (the right one) is used for indexing.



3 Experimental Results

We conducted four di�erent sets of experiments for the four methods: RPCL, k-

means, Competitive Learning (CL) clustering, and VP-tree to test their accuracy

and e�ciency for indexing and retrieval. All of the experiments were conducted

on an Ultra Sparc 1 machine running Matlab V4.2c. Here we assume that a

cluster of feature vectors is often retrieved as the result of a query for nearest-

neighbor search. An indexing method which can locate natural clusters from

the input feature vector set accurately and quickly will make nearest-neighbor

search more e�ective and e�cient. Therefore, in these experiments, we restrict

to retrieve the �rst visited feature vector cluster or leaf node as the result of a

nearest-neighbor query so that, based on the result, we can show that how accu-

rate and e�cient the tested methods are to locate natural clusters for indexing

and retrieval.

We used two performance measurements: Recall and Precision in the exper-

iments to measure the accuracy of the tested methods. Given a set of user-

speci�ed target database objects, Recall and Precision performance measure-

ments are de�ned as:

Recall =
Number of target database objects retrieved

Number of target database objects
; (3)

Precision =
Number of target database objects retrieved

Number of database objects retrieved
; (4)

where 0 � Recall, Precision � 1. Recall shows the ratio of target database objects

are actually retrieved out of all the expected target database objects whereas

Precision indicates the ratio of target database objects in the retrieved set. For

example, there are 10 database objects and 4 of them are pre-speci�ed as target

database objects. For a query, 5 database objects are retrieved and 3 of them

are target database objects. In this case, Recall is 0.75 and Precision is 0.6.

Typically, the higher the Recall and Precision, the more accurate the method for

retrieval. By using Recall and Precision, we can calculate the accuracy for each

of the generated clusters based on the information of its corresponding natural

cluster. If we do not use them for accuracy, we can only evaluate the accuracy by

using a small set of queries. Therefore, we use Recall and Precision to evaluate

the accuracy of these methods in the experiments.

There are three types of data being used in our experiments. They are (1)

synthetic data with Gaussian distribution, (2) synthetic data with uniform dis-

tribution, and (3) real data. We now give more details to each of the data set

used.

1 Synthetic Data in Gaussian Distribution:

We test our method with synthetic data sets in Gaussian distribution. It is

because many distributions can be approximated by using Gaussian dis-

tribution. Let � = (�1; �2; : : : ; �n) and � = (�1; �2; : : : ; �n), we gener-

ated the input distribution of the feature vectors from the mixture of n



Gaussian distributions N (�; �2) with the generating function de�ned as

g(x) = 1=(�
p
2�) exp[�[(x � �)2=2�2]], �1 < x < 1. In our experiments,

we used a constant 0.05 for �. Moreover, we let n = 2; 4; 8; 16, and 32. Fi-

nally, for each input distribution, di�erent numbers of cluster partitions are

generated for the input feature vectors for testing.

2 Synthetic Data in Uniform Distribution:

We also use synthetic data sets in uniform distribution with no clear bias

toward any cluster centers.

3 Real Data:

Apart from the two synthetic data sets, we also use real data in the exper-

iments to test our method in a real world situation. For our experiments,

the real data features are the feature vectors extracted from real images.

Basically, we �rstly �nd some real images from di�erent kinds of catalogs.

By considering the global color information of each image, we calculate an

8-bucket color histogram form the image and transform it into a feature

vector. All of the output feature vectors form the real data set for testing.

We have devised four experiments to test out various aspects of the proposed

indexing scheme. The �rst experiment tests the Recall, Precision, and the pre-

processing speed performance of RPCL, CL, k-means, and VP-tree. Once the

favorable results from RPCL has been established. The second experiment fo-

cuses on RPCL's performance under di�erent sizes of input data set. The third

experiment measures the RPCL performance with di�erent numbers of dimen-

sions. The last experiment compares the RPCL indexing scheme against actual

nearest-neighbor results.

3.1 Experiment 1: Test for Recall and Precision Performance

In the �rst experiment, we evaluate the accuracy and e�ciency of the four tested

methods: RPCL, CL, k-means, and VP-tree to build indexing structures for

retrieval. We measure the Recall and Precision performance of these methods

for accuracy. Moreover, we also kept the time used for pre-processing which

includes clustering and indexing of the feature vectors for e�ciency. The main

aim of this experiment is to �nd out which tested method has the best overall

performance for locating natural clusters for indexing and retrieval.

We used three di�erent kinds of data sets in this experiment: (1) synthetic

data in Gaussian distribution, (2) synthetic data in uniform distribution, and (3)

real data. Each of the data sets consists of 2048 8-dimensional feature vectors.

In addition, we used 8-D feature vectors in our experiment. Moreover, for each

input data set, di�erent numbers of cluster partitions were generated for the

input feature vectors by the four tested methods respectively. We conducted 20

trails with di�erent initial starting points of the centers of the to-be generated

cluster partitions for these methods to calculate their average Recall and Preci-

sion performance measurement and the average time used for building indexing

structure.



The results are presented as follows. For the data sets in Gaussian distribu-

tion with di�erent mixture groups, Tables 1 and 2 show the Recall and Precision

results. For the data set in uniform distribution and the real data set, we can sim-

ply use Figures 2 and 3 to present their results respectively. Moreover, Tables 3,

4, and 5 show the main observations of this experiment.

No. of Generated Clusters (RPCL, CL, k-means, VP-tree)

#MG 2 4 8 16 32

2 1.0, 1.0, 1.0, 1.0 .51, .45, .66, .50 .27, .25, .57, .25 .15, .14, .53, .13 .22, .09, .51, .06

4 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 .52, .58, .80, .50 .39, .43, .77, .25 .53, .31, .76, .13
8 1.0, .91, 1.0, .87 1.0, 1.0, 1.0, .71 1.0, 1.0, .94, .56 .75, 1.0, .89, .31 .73, .56, .88, .17

16 .96, .95, 1.0, .90 1.0, .99, 1.0, .86 1.0, 1.0, 1.0, .76 .99, .98, .96, .65 .93, .83, .94, .41

32 .96, .98, .99, .93 .98, .96, 1.0, .86 .97, .87, .99, .80 .98, .87, 1.0, .69 .98, .87, .94, .63
Table 1. Recall table for the data sets in Gaussian distributions in Experiment 1.

#MG is the number of Gaussian mixture groups.

No. of Generated Clusters (RPCL, CL, k-means, VP-tree)

#MG 2 4 8 16 32

2 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0

4 .50, .50, .50, .50 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0

8 .25, .23, .25, .15 .46, .50, .50, .20 1.0, 1.0, .93, .36 1.0, 1.0, .97, .63 1.0, 1.0, 1.0, .79

16 .11, .12, .13, .10 .26, .24, .27, .16 .54, .54, .61, .21 .97, .93, .88, .39 .98, .85, .97, .68

32 .06, .05, .06, .05 .11, .11, .14, .08 .25, .18, .26, .13 .51, .39, .56, .21 .94, .71, .87, .41

Table 2. Precision table for the data sets in Gaussian distributions in Experiment 1.

#MG is the number of Gaussian mixture groups.

Measures RPCL CL k-means VP-tree

Recall high middle highest lowest

Precision high middle highest lowest

Preprocessing Speed highest high lowest middle

Table 3. Comparison of the average performance of the four methods for indexing and

retrieval with data sets in Gaussian distributions.

3.2 Experiment 2: Test for Di�erent Sizes of Input Data Sets

In this experiment, we test the accuracy and e�ciency of RPCL for indexing and

retrieval with di�erent sizes of input feature vector sets. We measure the Recall
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Fig. 2. Results for the uniform data set in Experiment 1. (a) The Recall results. (b)

The Precision results. (c) The pre-processing time.
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Fig. 3. Results for the real data set in Experiment 1. (a) The Recall results. (b) The

Precision results. (c) The pre-processing time.

Measures RPCL CL k-means VP-tree

Recall high low highest low

Precision high low highest low

Preprocessing Speed highest high lowest middle

Table 4. Comparison of the average performance of the four methods for indexing and
retrieval with the uniform data set.

Measures RPCL CL k-means VP-tree

Recall high low high high
Precision high low high high

Preprocessing Speed highest middle lowest middle

Table 5. Comparison of the average performance of the four methods for indexing and

retrieval with a given real data set.



and Precision performance of our method for accuracy and record the time used

for pre-processing for e�ciency. We use two di�erent kinds of data sets in this

experiment: (1) synthetic data in Gaussian distribution and (2) synthetic data

in uniform distribution. The data sets are 8-dimensional feature vector sets with

sizes varying from 1024 to 40960. For each input data set, di�erent numbers

of cluster partitions are generated for the experiment. We conducted 20 trails

with di�erent initial starting points of the centers of the to-be generated cluster

partitions for RPCL to calculate its average Recall and Precision Performance

and the average time used for building indexing structure.
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Fig. 4. Results for the data sets in Gaussian distribution with 16 mixture groups in

Experiment 2. (a) The Recall results. (b) The Precision results. (c) The pre-processing

time.
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Fig. 5. Results for the uniform data sets in Experiment 2. (a) The Recall results. (b)

The Precision results. (c) The pre-processing time.



No. of Generated Clusters No. of Generated Clusters

#MG 2 4 8 16 32 #MG 2 4 8 16 32

2 1.0 .47 .28 .23 .17 2 1.0 1.0 1.0 1.0 1.0

1.0 .47 .28 .12 .06 1.0 1.0 1.0 1.0 1.0

1.0 .51 .26 .11 .11 1.0 1.0 1.0 1.0 1.0
1.0 .47 .30 .12 .06 1.0 1.0 1.0 1.0 1.0

1.0 .47 .29 .14 .06 1.0 1.0 1.0 1.0 1.0

1.0 .53 .29 .14 .06 1.0 1.0 1.0 1.0 1.0

4 1.0 1.0 .54 .67 .57 4 .50 1.0 1.0 1.0 1.0

1.0 1.0 .50 .37 .43 .50 1.0 1.0 1.0 1.0

1.0 1.0 .64 .25 .14 .50 1.0 1.0 1.0 1.0

1.0 1.0 .62 .25 .15 .50 1.0 1.0 1.0 1.0

1.0 1.0 .64 .25 .12 .50 1.0 1.0 1.0 1.0

1.0 1.0 .65 .26 .13 .50 1.0 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0 .79 8 .27 .58 1.0 1.0 1.0

.99 1.0 1.0 .78 .64 .23 .58 1.0 1.0 1.0

1.0 .92 1.0 .53 .56 .27 .46 1.0 1.0 1.0

1.0 1.0 1.0 .57 .31 .27 .50 1.0 .97 1.0

1.0 1.0 1.0 .62 .27 .25 .50 1.0 1.0 1.0

1.0 1.0 1.0 .57 .27 .25 .58 1.0 1.0 1.0

16 .96 1.0 .94 .96 .84 16 .10 .25 .46 .97 .98

.97 1.0 .98 1.0 .82 .11 .24 .44 1.0 1.0

1.0 1.0 1.0 1.0 .94 .13 .25 .54 .97 1.0

.99 .98 .98 1.0 .62 .11 .24 .51 1.0 1.0

.96 1.0 .98 1.0 .56 .11 .23 .52 1.0 1.0

.96 .99 1.0 1.0 .56 .11 .26 .52 1.0 1.0
32 .97 .96 .97 .95 .95 32 .06 .10 .20 .44 .83

.98 .95 .97 .98 1.0 .06 .09 .23 .50 .97

.98 .90 .96 .96 1.0 .05 .10 .19 .46 .97

.97 .98 .98 .99 1.0 .05 .11 .23 .42 .97

.99 1.0 .97 1.0 .99 .05 .11 .19 .46 .97

.99 .98 1.0 .99 1.0 .05 .10 .20 .47 .98

(a) (b)

Table 6. Results for the data sets in Gaussian distributions in Experiment 2. (a) The

Recall table. (b) The Precision table. Each entry of the tables is a column of 6 values
for 6 di�erent sizes of the data sets: 1024, 2048, 4096, 10240, 20480, and 40960. #MG

is the number of Gaussian mixture groups.



Size of # Generated Clusters Size of # Generated Clusters

Data Set 2 4 8 16 32 Data Set 2 4 8 16 32

1024 .73 .62 .62 .61 .59 1024 .74 .64 .63 .62 .63

2048 .70 .61 .59 .59 .61 2048 .70 .61 .59 .60 .62
4096 .70 .61 .59 .61 .60 4096 .70 .61 .59 .61 .60

10240 .72 .62 .60 .60 .61 10240 .72 .62 .60 .60 .61

20480 .71 .62 .57 .60 .62 20480 .71 .63 .58 .60 .62

40960 .72 .61 .59 .60 .62 40960 .73 .61 .59 .61 .62

(a) (b)
Table 7. Results for the data sets in uniform distribution in Experiment 2. (a) The

Recall table. (b) The Precision table.

No. of Generated Clusters (DIM = 4, 8, 16, 32)

#MG 2 4 8 16 32

2 1.0, 1.0, 1.0, 1.0 .51, .49, .53, .55 .25, .25, .26, .28 .13, .12, .14, .11 .07, .07, .06, .06

4 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 .61, .48, .62, .62 .27, .27, .27, .26 .14, .14, .13, .12

8 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 .50, .49, .54, .64 .32, .24, .27, .28

16 1.0, .96, .98, 1.0 1.0, 1.0, 1.0, 1.0 .98, 1.0, 1.0, 1.0 .98, 1.0, 1.0, 1.0 .58, .57, .57, .57

32 .94, .99, .99, .98 .93, .97, .99, .99 .93, .95, 1.0, .98 .96, .97, 1.0, 1.0 .97, 1.0, 1.0, 1.0
Table 8. The Recall table for the data sets in Gaussian distributions in Experiment 3.

3.3 Experiment 3: Test for Di�erent Numbers of Dimensions

Apart from di�erent sizes of data sets, we also test the performance of RPCL for

indexing with feature vectors having di�erent numbers of dimensions in terms

of Recall and Precision for accuracy and the pre-processing time for e�ciency.

Two di�erent kinds of data sets are used in this experiment: (1) synthetic data in

Gaussian distribution and (2) synthetic data in uniform distribution. All the data

sets are �xed to have 10240 feature vectors with di�erent numbers of dimensions

such as 4, 8, 16, and 32. We �xed the size of each data set to 10240 as it is

not too large or too small for testing and we do not use data more than 32-D

because it is not so e�cient for our method to work with such high dimensional

data. Moreover, for each input data set, di�erent numbers of cluster partitions

are generated for the experiment. We conducted 20 trails with di�erent initial

starting points of the centers of the to-be generated cluster partitions for RPCL

to calculate its average Recall and Precision Performance and the average time

used for building indexing structure.

By increasing the number of dimensions, the experimental results show that

the accuracy is not a�ected for the data sets in Gaussian distributions, but it

may be lowered for the data sets in uniform distribution. The relatively lower

Recall and Precision results found for uniform data because there are no explicit



No. of Generated Clusters (DIM = 4, 8, 16, 32)

#MG 2 4 8 16 32

2 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0

4 .50, .50, .50, .50 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0

8 .23, .27, .25, .57 .67, .58, .54, .80 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0
16 .11, .09, .12, .21 .23, .20, .22, .25 .48, .48, .50, .54 .80, 1.0, 1.0, 1.0 .92, 1.0, 1.0, 1.0

32 .05, .05, .07, .06 .08, .11, .11, .11 .15, .20, .25, .32 .39, .51, .53, .54 .72, 1.0, 1.0, 1.0
Table 9. The Precision table for the data sets in Gaussian distributions in Experiment

3.

# Generated Clusters # Generated Clusters

DIM 2 4 8 16 32 DIM 2 4 8 16 32

4 .80 .74 .78 .83 .78 4 .80 .74 .78 .83 .78

8 .71 .60 .59 .58 .62 8 .72 .60 .59 .58 .63
16 .69 .55 .47 .45 .45 16 .69 .55 .47 .45 .45

32 .65 .49 .41 .36 .34 32 .65 .49 .41 .36 .34

(a) (b)

Table 10. Results for the uniform data sets in Experiment 3. (a) The Recall table. (b)

The Precision table.
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Fig. 6. Results for the data sets in Gaussian distribution with 16 mixture groups in

Experiment 3. (a) The Recall results. (b) The Precision results. (c) The pre-processing
time.
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Fig. 7. Results for the uniform data sets in Experiment 3. (a) The Recall results. (b)

The Precision results. (c) The pre-processing time.

natural clusters for RPCL to locate. Therefore, we can conclude that our method

is more suitable for data sets with distributions similar to Gaussian distribution.

3.4 Experiment 4: Compare with Actual Nearest-neighbor Results

In this experiment, we compare the results given by our method with the actual

nearest-neighbor results in order to check the actual accuracy of our method. In

the �rst three sets of experiments, we mainly evaluate the Recall and Precision

performance of the tested methods. We want to �nd out the (accuracy) percent-

age of the database objects retrieved by our method can also be found in the

actual nearest-neighbor results in the experiment for accuracy.

We use three di�erent kinds of data sets in this experiment: (1) synthetic

data in Gaussian distribution, (2) synthetic data in uniform distribution, and

(3) real data. Each of the data sets contains 8-dimensional 10240 feature vec-

tors. Moreover, for each input data set, di�erent numbers of cluster partitions

are generated for the experiment. We conducted 20 trails with di�erent initial

starting points of the centers of the to-be generated cluster partitions for RPCL

to �nd out the results of the given queries. The results of this experiment are

presented by Tables 11, 12, and 13.

There are several observations for the accuracy percentages of the three dif-

ferent kinds of data sets similar to those in Experiment 1. For data sets in

Gaussian distributions, when the number of generated clusters (#GC) is the

same as the number of Gaussian mixture groups (#MG) of the input distribu-

tion, the percentages are higher than the others. The reason is the same as the

one in Experiment 1. Another observation with the same reason as the one in

Experiment 1 is that the percentages for the uniform data set are the lowest and

those for the real data set are in the middle. These same observations show that

Recall and Precision are good measurements for accuracy.



No. of Generated Clusters

#MG 2 4 8 16 32

2 88.14 56.14 40.72 33.40 29.55

4 73.42 84.34 56.58 40.85 29.30

8 65.40 60.97 79.10 54.41 39.58

16 62.14 54.14 57.22 75.34 45.04

32 64.05 49.82 49.42 49.88 73.08

Table 11. Accuracy percentages for the data sets in Gaussian distributions in Exper-

iment 4. #MG is the number of Gaussian mixture groups.

No. of Generated Clusters

2 4 8 16 32

59.67 42.43 35.09 32.08 28.91

Table 12. Accuracy percentages for the uniform data set in Experiment 4.

From the experimental results, the accuracy percentages (for �rst cluster

retrieval) are relatively high (73%-88%) for the data sets in Gaussian distribution

when #GC = #MG, but we �nd that the larger the number of generated cluster

partitions, the lower the accuracy percentage. It is because the chance of the

occurrence of the boundary problem is higher when there are many generated

clusters. It shows that our method can lessen the boundary problem, but it still

cannot solve it completely.

4 Discussion and Conclusion

From Experiment 1, we �nd that although k-means is the most accurate way for

clustering, it is also the slowest and most ine�cient. RPCL turns out to be a good

compromise when accuracy and e�ciency are both taken into account. RPCL's

accuracy is una�ected by the input size in general in Experiment 2. The results

in Experiment 3 suggests that RPCL's accuracy depends on the underlying data

distribution when the feature vector has high dimensions since the accuracy is

lower in the uniform distribution case than the Gaussian distribution case. In

the last experiment, the result correlates well with Experiment 1. Hence we may

conclude that RPCL is most e�ective when the underlying data has a Gaussian

distribution.

In summary, we propose a novel way to use RPCL algorithm to produce non-

hierarchical cluster partitions for generating indexing structures. From the exper-

imental results, we show that our RPCL indexing method gives good searching

No. of Generated Clusters

2 4 8 16 32

67.72 56.97 48.39 44.76 37.51
Table 13. Accuracy percentages for the real data set in Experiment 4.



performance and it is the fastest method to build an indexing structure among

the tested methods.

Our method using the non-hierarchical approach for indexing seems to be a

good method, but there are still some limitations. First, it is not so e�cient to

perform insertion and deletion in our indexing method. Since our method uses

a non-hierarchical indexing structure, there is no relationship in between two

di�erent levels' nodes. We have to �nd the target node at each level individually

for insertion and deletion. Second, we �nd that our method still cannot solve the

boundary problem completely. It does not give 100% nearest-neighbor result for

a query in general. One possible extension of the proposed method is to add the

branch-and-bound search technique to the indexing structure for better results.
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