An Efficient Decoding Technique for Huffman Codes
Rezaul Alam Chowdhuy and M. Kaykobad
Department of Computer Science and Engineering
Bandadesh University of Engineering andTednology
Dhaka-1000, Bangladesh, email : shaikat,audwit@bdorine.com
Irwin King
Department of Computer Science and Engineering
The Chinese University of Hong Kong, email : king@cse.cuhk.edu.hk

Abstract
We present a new data structure for Huffman coding in which in addition to sending
symbals in order of their appeaance in the Huffman tree one needs to send codes of all
circular led nodes (nodes with two adjacent external nodes), the number of which is always
bounded above by half the number of symbals. We demde the text by using the memory
efficient data structure proposed by Chen et a (IPL vol. 69 (1999) pp. 119-122).

1. Introduction

Since the discovery of Huffman encoding scheme [4] in 1952 Huffman codes have been
widely used in efficient storing of data, image and video [2]. Huff man coding has been subjected
to numerous investigations in the past 50 yeas. Schack [7] considered distribution of the length
of atypical Huffman codeword, while Katona and Nemetz [5] studied connection ketween the
self-information o a source letter and its codeword length in a Huffman code. Traditiona
Huff man scheme llects frequency of occurrence of different symbals to be aoded in the first
pass constructs atree based upon which symbals receive ades. Then in the second pass symbals
are coded and sent to the receiver. However, along with codes correspording to symbols Huff man
tree is also sent. There is a single pass version o Huffman coding caled dynamic Huffman
coding [8]. In the later case symbals are coded according to the frequencies of symbadls < far
sent, and the treeis updated by both sender and receiver using the same dgorithm. In this paper
we onsider efficient decoding of the so-cal ed static Huffman code.

Hashemian [3] presented an algorithm to speed up the search process for a symbad in a
Huff man tree and reduce the memory size. He propased a treeclustering algorithm to avoid
gparsity of Huffman trees. Finding the optimal solution of this clustering problem is still open.
Later, Churg [2] gave adata structure requiring memory size of only 2n - 3 to represent the
Huffman tree, where n is the number of symbals. Chen et al. [1] improved the data structure

further to reduce memory requirement to [3n/ 23 Kh/Z)Iog N[# 1. In ou schemein additionto
sending information an symbals we send information on al circular leaf nodes (nodes with two
adjacent external nodes), that uniquely determines a Huff man tree Our memory requirement is
better than any existing data structure since number of circular nodesis bounded above by [T/ 2.

So in the worst case our memory requirement is [3n/2[. In fad, the number of circular led

nodes of a Huffman treeis 1 more than the number of nodes with 2 internal son nodes. Such a
saving in the representation d Huffman trees is very important in the oontext of repeated
Huffman coding [6], where ultimate @mpression ratio depends upon the efficiency of
representation d the Huffman tree In ou case decoding of codes is based upon Chen’s data
structure for storing the Huffman tree While Chen et al. [1] addressed the problem of efficient
deaoding of a Huff man code, we aldress the problem of decoding streams of bits not knowing the

length of bit patterns that correspondto a symbadl. For clarity of presentation we first describe the
ideaof Chen et al. [1] andtheir data structure.

Let T be a Huffman tree, which contains n symbadls. The symbals correspondto leaves of T
and are labeled from left to right as s, S1, ..., Sv1 - Theroot is said to be at level 0. The level of
any other node is 1 more than the level of its father. The largest level is the height h of the
Huffman tree. The weight of asymbadl is defined to be 2™, where his the height of the treeand |
isthelevel of anode @rresponding to asymbadl. Let w; be the weight of symbad s,i =0, ...,n- 1.
L et, f, denote aumulative weight upto weight w;. Then fo =wp, fi =fi.;+ w;, fori=1,2,...,n- 1.

Fig. 1. An example of a Huffman tree

Table 1. The values of w; andf;

[0 1 2 3 4 5 6 7 8 9
W, 4 4 1 1 2 4 4 2 2 8
fi 4 8 9 10 12 16 20 22 24 32

While Chen et al. [1] give an agorithm for decoding a codeword, and give the rrect
symbad as output or say that the given codeword does not correspond to any symbadl, we aldress
the problem of deaoding the bit streams sent by the sender according to the Huff man treethat is
available with the recever in the data structure mentioned above. The &ove data structure
requires an overhead of sending n symbals and n integers correspording to them. This overhead
can aso be further reduced by the following.

If T is a Huffman tree of height h, then T’, the truncated Huffman tree, is obtained by
removing al leaves (square nodes) and will have height h - 1. T’ uniquely determines the

Huff man tree T since symbals correspond to left and right son nales of the circular leaf nodes
and the other sons of other single-son circular nodes. Then Huff man codes, representing circular
leaf nodes of T’ uniquely determines T. If there ae m circular leaf nodes, m codewords
corresponding to them, and n symbolsin arder of appeaance in the treewill sufficeto represent
the Huff man tree

Consider the example in Figure 1. Let the leaf circular nodes of Figure 1 be denoted by A,
B, and C respectively in order. Then the correspondng Huffman codes are 00, 01® and 101.
However, eath of these codewords can be represented uniquely by integers whose binary
representations are these codewords with 1 as prefix. The corresponding integers for A, B and C
are respectively 4 for 100,20 for 10100and 13for 1101.Along with s, S, ..., S if 4, 20and 13
are sent as codes for the circular leaf nodes A, B and C, then the receiver can dotain Huffman
codes 00, 01@ and 101 by deleting the attached prefix. These bit patterns will enable the
reaaiver to construct all pathsto the circular led nodes, and thus reamnstruct the Huffman tree. So
to reconstruct Huffman treeT, we have the following theorem.

Theorem: Let Sbethearray of symbolsin order of appearancein the Huffman tree T
and D be the set of integer codes, corresponding to circular leaf nodes, sent to the receiver.
Then the receiver can uniquely reconstruct the Huffman tree T.

Proof: Let d; be the integer corresponding to a drcular led node i. By deleting the
appropriate prefix from the binary representation of d;, one can remnstruct the whole path leading
to that node uniquely since bit O will take to the left and 1to the right, and there is no ambiguity.
Since e&h internal node of the Huff man treewill appea on the paths of some of these drcular
leaf nodes, each interna node of the Huffman tree will appear in at least one of these paths. Now
external nodes will appear either as left or right sons of the circular leaf nodes, or as one of the
sons of circular nodes on the path to the circular leaf nodes. Thiswill result in the @nstruction of
a unique Huffman tree T since paths constructed for each d; are unique. Furthermore, the set of
symbals Swill | abel the external nodes in an orderly fashion with appropriate symbals. QED

Oncethe tree ca be constructed all the values of Table 1 can be @ culated, and decoding
can be successfully accomplished by using binary search algorithm in the aray of cumulative
weights.

This gives us the possibility of reducing the overhead further since the number of circular
leaf nodes cannot be more than half of the number of symbads. The number m of circular leaf
nodes of any truncated Huff man tree is 1 more than the number nodes with 2 internal son nodes.
Huff man codes are much more dficient than block codes when corresponding Huffman trees are
gparse. In a sparse truncated Huff man treethe number of nodes with 2 internal son nodes can be
much lessthan the tota number of internal nodes, which in turn is 1 less than the number of
external nodes corresponding to symbals. In the truncated Huffman tree, correspording to Fig. 1,
there are two nodes with 2internal son nales, namely nodes labeled D and E. So in representing
the tree we need O(nlogn) bits for the symbals and O(h) bits for each circular leaf node, number
of whichis (< %n) bounded above by O(n).

2. A Fast Decoding Technique

Chen et al. [1] give weight to a leaf v equal to the number of leares in a cmplete binary
tree under the node v. Every led noce is assigned a number equal to cumulative weights of all the

leaves appearing before it and including itself. So this gives us an opportunity to apply binary
seach onthese cumulative weights to obtain the symbadl, bit pattern correspording to which has
been extracted from the bit stream. At any stage our algorithm takes h bits from the stream. Since
a prefix of this string must contain a awdeword we will always be @le to decode that codeword
using the following algorithm. In the dgorithm we asume that input bit stream does not contain
any error.

Algorithm Decode

Input: Thevaluesf,i =0, ...,n-1, d aHuffman tree T with height h and a bit stream b, j = 1,
...y N.
Output: Thetext symbasc, k=1, ..., M, correspondng to the input bit stream.

/'j is the pointer to last bit arealy decded, k is the pointer to the last decoded symbal, indexis
the location where search for d + 1 fails. Otherwise, it is the location at which d + 1 has been
found.q isastream of i 1 bits. ‘# isthe mncatenation gperator. //

j<0 k<0
fi<0
while j <N do
if (h< N-j)then
de-b[j+1:j+h]
else
d« b[] +1: N] #Qh_N+j
endif
binsearch(f, d + 1, index)
k- k+1
Ci « findex
J <] +h—logxfingex - fincex1)
enddo

End of Algorithm Decode

In deaoding the very last symbal of the text there may not be h bits available in the stream
in which case d is obtained by appending the bit stream with sufficient number of 1 hits. It is
obvious that in deaoding a bit pattern we need to make abinary search among n symbals that
requires O(logn) comparisons. If there ae m codewords, our algorithm will runin O(mlogn) time.
It may be mentioned here that in order to improve repeated appli cation of Huffman coding it is
important to have the overhead of representing Huff man tree & efficiently as possible. So such
efficient representation of Huffman header as proposed in this manuscript gives rise to the
oppatunity of applying repeated Huffman coding in cases where further compression is
desirable.

Acknowledgement

Authors express their sincere thanks to anonymous referees for painting out errors in the
manuscript and for suggesting improvement of its presentation.

References

[1] HongChung Chen, Yue-Li Wang and Yu-Feng Lan, A memory-efficient and fast Huffman
deaoding algorithm, Information Processing Letters, 69119122, 1999.

[2] K. L. Chung, Efficient Huff man decoding, Information Processing Letters, 61:97-99, 1997.

[3] R. Hashemian, Memory efficient and high-speed search Huffman coding, |IEEE Trans.
Comm, 4310): 2576-2581, 1995.

[4] D. A. Huffman, A method for construction of minimum redundcancy codes, Proc. IRE,
40:1098-1101, 1952.

[5] G. O. H. Katona and T. O. H. Nemetz, Huffman Codes and Self-Information, IEEE
Transactions on Information Theory, 22(3):337-340, 1978.

[6] J. N. Mandal, An approach towards development of efficient data compression agorithms
and correction techniques, Ph.D. Thes's, Jadavpur University, India, 2000.

[7] R. Schadk, The length of a typical Huffman codeword, IEEE Transactions on Information
Theory, 40(4): 12461247, 1994.

[8] J. S. Vitter, Design and analysis of dynamic Huff man codes, Journal of the ACM, 34(4):825-
845, 1987.

