
1

An Efficient Decoding Technique for Huffman Codes
 Rezaul Alam Chowdhury and M. Kaykobad

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka-1000, Bangladesh, email : shaikat,audwit@bdonline.com
Irwin King

Department of Computer Science and Engineering
The Chinese University of Hong Kong, email : king@cse.cuhk.edu.hk

Abstract
We present a new data structure for Huffman coding in which in addition to sending
symbols in order of their appearance in the Huffman tree one needs to send codes of all
circular leaf nodes (nodes with two adjacent external nodes), the number of which is always
bounded above by half the number of symbols. We decode the text by using the memory
efficient data structure proposed by Chen et al (IPL vol. 69 (1999) pp. 119-122).

1. Introduction

Since the discovery of Huffman encoding scheme [4] in 1952 Huffman codes have been
widely used in efficient storing of data, image and video [2]. Huffman coding has been subjected
to numerous investigations in the past 50 years. Schack [7] considered distribution of the length
of a typical Huffman codeword, while Katona and Nemetz [5] studied connection between the
self-information of a source letter and its codeword length in a Huffman code. Traditional
Huffman scheme collects frequency of occurrence of different symbols to be coded in the first
pass, constructs a tree based upon which symbols receive codes. Then in the second pass symbols
are coded and sent to the receiver. However, along with codes corresponding to symbols Huffman
tree is also sent. There is a single pass version of Huffman coding called dynamic Huffman
coding [8]. In the later case symbols are coded according to the frequencies of symbols so far
sent, and the tree is updated by both sender and receiver using the same algorithm. In this paper
we consider efficient decoding of the so-called static Huffman code.

Hashemian [3] presented an algorithm to speed up the search process for a symbol in a
Huffman tree and reduce the memory size. He proposed a tree-clustering algorithm to avoid
sparsity of Huffman trees. Finding the optimal solution of this clustering problem is still open.
Later, Chung [2] gave a data structure requiring memory size of only 2n - 3 to represent the
Huffman tree, where n is the number of symbols. Chen et al. [1] improved the data structure
further to reduce memory requirement to  ()  1log223 ++ nnn . In our scheme in addition to

sending information on symbols we send information on all circular leaf nodes (nodes with two
adjacent external nodes), that uniquely determines a Huffman tree. Our memory requirement is
better than any existing data structure since number of circular nodes is bounded above by  2n .

So in the worst case our memory requirement is  23n . In fact, the number of circular leaf

nodes of a Huffman tree is 1 more than the number of nodes with 2 internal son nodes. Such a
saving in the representation of Huffman trees is very important in the context of repeated
Huffman coding [6], where ultimate compression ratio depends upon the efficiency of
representation of the Huffman tree. In our case decoding of codes is based upon Chen’s data
structure for storing the Huffman tree. While Chen et al. [1] addressed the problem of efficient
decoding of a Huffman code, we address the problem of decoding streams of bits not knowing the

2

length of bit patterns that correspond to a symbol. For clarity of presentation we first describe the
idea of Chen et al. [1] and their data structure.

Let T be a Huffman tree, which contains n symbols. The symbols correspond to leaves of T
and are labeled from left to right as s0, s 1, …, sn-1 . The root is said to be at level 0. The level of
any other node is 1 more than the level of its father. The largest level is the height h of the
Huffman tree. The weight of a symbol is defined to be 2h-l, where h is the height of the tree and l
is the level of a node corresponding to a symbol. Let wi be the weight of symbol si, i = 0, …, n - 1.
Let, fi denote cumulative weight up to weight wi. Then f0 = w0, fi = fi-1 + wi, for i =1, 2 ,…, n - 1.

E

s1so s6

A

D

s9

B s4

s2 s3

s5

s8s7

C

Fig. 1. An example of a Huffman tree

Table 1. The values of wi and fi
i 0 1 2 3 4 5 6 7 8 9
wi 4 4 1 1 2 4 4 2 2 8

fi 4 8 9 10 12 16 20 22 24 32

While Chen et al. [1] give an algorithm for decoding a codeword, and give the correct
symbol as output or say that the given codeword does not correspond to any symbol, we address
the problem of decoding the bit streams sent by the sender according to the Huffman tree that is
available with the receiver in the data structure mentioned above. The above data structure
requires an overhead of sending n symbols and n integers corresponding to them. This overhead
can also be further reduced by the following.

If T is a Huffman tree of height h, then T′, the truncated Huffman tree, is obtained by
removing all l eaves (square nodes) and will have height h - 1. T′ uniquely determines the

3

Huffman tree T since symbols correspond to left and right son nodes of the circular leaf nodes
and the other sons of other single-son circular nodes. Then Huffman codes, representing circular
leaf nodes of T′ uniquely determines T. If there are m circular leaf nodes, m codewords
corresponding to them, and n symbols in order of appearance in the tree will suffice to represent
the Huffman tree.

Consider the example in Figure 1. Let the leaf circular nodes of Figure 1 be denoted by A,
B, and C respectively in order. Then the corresponding Huffman codes are 00, 0100 and 101.
However, each of these codewords can be represented uniquely by integers whose binary
representations are these codewords with 1 as prefix. The corresponding integers for A, B and C
are respectively 4 for 100, 20 for 10100 and 13 for 1101. Along with s0, s1, …, s9 if 4, 20 and 13
are sent as codes for the circular leaf nodes A, B and C, then the receiver can obtain Huffman
codes 00, 0100 and 101 by deleting the attached prefix. These bit patterns wil l enable the
receiver to construct all paths to the circular leaf nodes, and thus reconstruct the Huffman tree. So
to reconstruct Huffman tree T, we have the following theorem.

Theorem: Let S be the array of symbols in order of appearance in the Huffman tree T
and D be the set of integer codes, corresponding to circular leaf nodes, sent to the receiver.
Then the receiver can uniquely reconstruct the Huffman tree T.

Proof: Let di be the integer corresponding to a circular leaf node i. By deleting the
appropriate prefix from the binary representation of di, one can reconstruct the whole path leading
to that node uniquely since bit 0 will take to the left and 1 to the right, and there is no ambiguity.
Since each internal node of the Huffman tree will appear on the paths of some of these circular
leaf nodes, each internal node of the Huffman tree will appear in at least one of these paths. Now
external nodes will appear either as left or right sons of the circular leaf nodes, or as one of the
sons of circular nodes on the path to the circular leaf nodes. This will result in the construction of
a unique Huffman tree T since paths constructed for each di are unique. Furthermore, the set of
symbols S will l abel the external nodes in an orderly fashion with appropriate symbols. QED

Once the tree can be constructed all the values of Table 1 can be calculated, and decoding
can be successfully accomplished by using binary search algorithm in the array of cumulative
weights.

This gives us the possibility of reducing the overhead further since the number of circular
leaf nodes cannot be more than half of the number of symbols. The number m of circular leaf
nodes of any truncated Huffman tree is 1 more than the number nodes with 2 internal son nodes.
Huffman codes are much more efficient than block codes when corresponding Huffman trees are
sparse. In a sparse truncated Huffman tree the number of nodes with 2 internal son nodes can be
much less than the total number of internal nodes, which in turn is 1 less than the number of
external nodes corresponding to symbols. In the truncated Huffman tree, corresponding to Fig. 1,
there are two nodes with 2 internal son nodes, namely nodes labeled D and E. So in representing
the tree we need O(nlogn) bits for the symbols and O(h) bits for each circular leaf node, number
of which is (≤ ½ n) bounded above by O(n).

2. A Fast Decoding Technique

Chen et al. [1] give weight to a leaf v equal to the number of leaves in a complete binary
tree under the node v. Every leaf node is assigned a number equal to cumulative weights of all the

4

leaves appearing before it and including itself. So this gives us an opportunity to apply binary
search on these cumulative weights to obtain the symbol, bit pattern corresponding to which has
been extracted from the bit stream. At any stage our algorithm takes h bits from the stream. Since
a prefix of this string must contain a codeword we will always be able to decode that codeword
using the following algorithm. In the algorithm we assume that input bit stream does not contain
any error.

Algorithm Decode

Input: The values fi, i = 0, …, n - 1, of a Huffman tree T with height h and a bit stream bj, j = 1,
…, N.
Output: The text symbols ck, k = 1, …, M, corresponding to the input bit stream.

// j is the pointer to last bit already decoded, k is the pointer to the last decoded symbol, index is
the location where search for d + 1 fails. Otherwise, it is the location at which d + 1 has been
found. qi is a stream of i 1 bits. ‘#’ is the concatenation operator. //

j ← 0, k ← 0
f-1 ← 0
while j < N do
 if (h < N - j) then

 d ← b[j + 1 : j + h]
else
 d ← b[j + 1 : N] # qh - N + j

 endif
binsearch(f, d + 1, index)
k ← k + 1
ck ←findex

 j ← j + h – log2(findex - findex-1)
enddo

End of Algorithm Decode

In decoding the very last symbol of the text there may not be h bits available in the stream
in which case d is obtained by appending the bit stream with sufficient number of 1 bits. It is
obvious that in decoding a bit pattern we need to make a binary search among n symbols that
requires O(logn) comparisons. If there are m codewords, our algorithm will run in O(mlogn) time.
It may be mentioned here that in order to improve repeated application of Huffman coding it is
important to have the overhead of representing Huffman tree as efficiently as possible. So such
efficient representation of Huffman header as proposed in this manuscript gives rise to the
opportunity of applying repeated Huffman coding in cases where further compression is
desirable.

Acknowledgement

Authors express their sincere thanks to anonymous referees for pointing out errors in the
manuscript and for suggesting improvement of its presentation.

5

References

[1] Hong-Chung Chen, Yue-Li Wang and Yu-Feng Lan, A memory-eff icient and fast Huffman
decoding algorithm, Information Processing Letters, 69:119-122, 1999.

[2] K. L. Chung, Efficient Huffman decoding, Information Processing Letters, 61:97-99, 1997.

[3] R. Hashemian, Memory eff icient and high-speed search Huffman coding, IEEE Trans.
Comm., 43(10): 2576-2581, 1995.

[4] D. A. Huffman, A method for construction of minimum redundancy codes, Proc. IRE,
40:1098-1101, 1952.

[5] G. O. H. Katona and T. O. H. Nemetz, Huffman Codes and Self-Information, IEEE
Transactions on Information Theory, 22(3):337-340, 1978.

[6] J. N. Mandal, An approach towards development of eff icient data compression algorithms
and correction techniques, Ph.D. Thesis, Jadavpur University, India, 2000.

[7] R. Schack, The length of a typical Huffman codeword, IEEE Transactions on Information
Theory, 40(4): 1246-1247, 1994.

[8] J. S. Vitter, Design and analysis of dynamic Huffman codes, Journal of the ACM, 34(4):825-
845, 1987.

