Social Network Analysis & Community Question Answering

Irwin King, Baichuan Li, Tom Chao Zhou

Department of Computer Science & Engineering The Chinese University of Hong Kong

6/10/2012

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary

- Introduction
- Question Subjectivity Analysis
- Question Retrieval
- Question Recommendation

References

Content

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary
- 2 Community Question Answering
 - Introduction
 - Question Subjectivity Analysis
 - Question Retrieval
 - Question Recommendation
- References

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary
- Community Question Answering
 - Introduction
 - Question Subjectivity Analysis
 - Question Retrieval
 - Question Recommendation
- References

The Web Is a Graph

Google	wcci 2012	٩	SateSearch off ¥
Search	About 78,600 results (0.38 seconds)		
Web	Welcome to WCCI 2012		
Images	www.ince.wccizu1z.org/see-wcci2012/index.php? Cached Call for Participation: IEEE Women in Computational Intelligence and Women in		
Maps	Engineering Reception and Panel @ WCCI 2012. The IEEE Women in		
Videos	Special Sessions - WCCI 2012		
News	www.isee-wccl2012.org/isee-wccl2012/index.php? Cached Call for Participation: IEEE Women in Computational Intelligence and Women in		
Shopping	Engineering Reception and Panel @ WCCI 2012. The IEEE Women in		
More	Computational Intelligence: WCCI 2012 Panel Session on		
The such	5 days ago – The following panel session at WCCI 2012 is organised by the IEEE		
Pages from Hong Kong	comparational manigence decisity's connection decommittee (which i		
More search tools	IEEE/WCCI 2012 - Systems and Industrial Engineering - University		
	Special Session on Emerging trends in Fuzzy Cognitive Maps, at the 2012 IEEE International Conference on Europe Sections, (EU/27 IEEE 2012) Part of the		
	mentatione constance of reacy systems. (reac acce zone) r an orme		
	The PTSP Game Competition www.ptsp-pame.net/ - Cached		
	Welcome to the Physical Traveling Salesman Problem competition, which will be held at WCC12012 and CIS 2012. This competition is being run by Diago.		
	the second se		
	WCCI 2012 Panel on Real-World Applications of Cl rese-cits trogspot.com/zu12//wcci-zu12-panel-on-real-world		
	17 May 2012 - WCCI 2012 Panel on Real-World Applications of CI. The Industry Liaison Sub-Committee would like to announce that the WCCI 2012 Panel		

I. King, B. Li, T. C. Zhou (CUHK)

PageRank

Idea

- Most web pages contain hyperlinks
- Assign a score to each page to measure its importance (i.e., PageRank value, usually between 0 and 1)
- A web page propagate its PR through out-links, and absorb others' PRs through in-links

Teleport

• What about the web pages without out-links (dead-ends)?

- Random surfer: *teleport*
 - Jumps from a node to any other node in the web graph
 - Choose the destination uniformly at random
 - E.g., let N is the total number of nodes in the web graph, the surfer to each node has the probability of $\frac{1}{N}$

Algorithm

If page A has pages {T₁, T₂, ..., T_n} which point to it, let Out(T₁) denote the number of out-links of T₁:

$$PR(A) = d \cdot \frac{1}{N} + (1 - d) \cdot \left(\frac{PR(T_1)}{Out(T_1)} + \frac{PR(T_2)}{Out(T_2)} + \dots + \frac{PR(T_n)}{Out(T_n)}\right)$$

where $d \in (0,1)$ is a damping factor, N is the total number of web pages

• $\frac{1}{N}$ represents the *teleport* operation

Transition Probability Matrix

- \bullet Use a matrix P to represent the surfer probability from one node to the other
 - P_{ij} tells the probability that we visit node j of node i

•
$$\forall i, j, P_{ij} \in [0, 1]$$

• $\forall i, \sum_{j=1}^{N} P_{ij} = 1$

If
$$\alpha = 0.5$$
,

$$P = \begin{pmatrix} 0.1 & 0.225 & 0.225 & 0.225 & 0.225 \\ 0.6 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.35 & 0.35 & 0.1 \\ 0.1 & 0.1 & 0.35 & 0.1 & 0.35 \\ 0.1 & 0.1 & 0.1 & 0.6 & 0.1 \end{pmatrix}$$

Markov Chain

- P is a transition probability matrix for a Markov chain
 - A Markov chain is a discrete-time stochastic process
 - Consists of N states
 - The Markov chain can be in one state *i* at any given time-step, and turn into state *j* in the next time-step with probability *P*_{ij}
 - Probability vector $\vec{\pi}$

Ergodic Markov Chain

- A Markov chain is called an ergodic chain if it is possible to go from every state to every state (non necessary in one move)
- For any ergodic Markov chain, there is a unique steady-state probability vector $\vec{\pi}$
 - $\vec{\pi}$ is the principle left eigenvector of P with the largest eigenvalue
 - PageRank=steady state probability

How to Compute PageRank?

Compute PageRank iteratively

- Let $\vec{\pi}$ be the initial probability vector
- At time t, the probability vector becomes $\vec{\pi}P^t$
- When t is very large, $\vec{\pi}P^{t+1} = \vec{\pi}P^t$, regardless of where we start (The initialization of $\vec{\pi}$ is unimportant)
- Compute PageRank directly
 - $\vec{\pi}P = 1 \cdot P$
 - $\vec{\pi}$ is the eigenvector of P whose corresponding eigenvalue is 1

Example

$\vec{x_0}$	1	0	0
$\vec{x_1}$	1/6	2/3	1/6
$\vec{x_2}$	1/3	1/3	1/3
$\vec{x_3}$	1/4	1/2	1/4
$\vec{x_4}$	7/24	5/12	7/24
x	5/18	4/9	5/18

PageRank in Information Retrieval

Preprocessing

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank Issues

- Real surfers are not random surfers
 - Back buttons, bookmarks, directories and search!
- Simple PageRank ranking produces bad results for many pages
 - Consider the query [video service]
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both *video* and *service*.
 - According to PageRank, the Yahoo home page would be top-ranked
 - Clearly not desirable
- In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors

Topic-Sensitive PageRank

Motivation

- PageRank provides a general "importance" of a web page
- The "importance" biased to different topics
- Compute a set of "importance" scores of a page with respect to various topics

Standard PageRank

Topic-Sensitive PageRank

A P P P

Phase 1: ODP-biasing

- Generate a set of biased PageRank vectors using a set of basis topics
 - Cluster the Web page repository into a small number of clusters
 - Utilize the hand constructed Open Directory
- Performed offline, during preprocessing of crawled data
- Let T_j be the set of URLs in the ODP category c_j , we compute the damping vector $\mathbf{p} = \mathbf{v}_j$ where

$$v_{ji} = \begin{cases} \frac{1}{|T|} & i \in T_j \\ 0 & i \notin T_j \end{cases}$$

The PageRank vector for topic c_j is given by **PR**(α , **v**_j).

Compute the 16 class term vectors D_j where D_{jt} gives the number of occurrences of term t in documents of class c_j.

Phase 2: Query-Time Importance Score

- Performed at query time
- Compute the class probabilities for each of the 16 top-level ODP classes

$$P(c_j|q') = rac{P(c_j)P(q'|c_j)}{P(q')} \propto P(c_j) \Pi_i P(q_i'|c_j)$$

- Retrieve URLs for all documents containing the original query terms q
- Compute the query-sensitive importance score of each of these retrieved URLs

$$S_{qd} = \sum_{j} P(c_j | q') \cdot r_{jd},$$

where r_{jd} is the rank of document *d* given by the rank vector **PR**(α , **v**_j).

Two Type of Web Pages

HITS – Hyperlink-Induced Topic Search

- Idea: Two different types of web pages on the web
- Type 1: Authorities. An authority page provides direct answers to the information need
 - The home page of the Chicago Bulls sports team
- Type 2: Hubs. A hub page contains a number of links to pages answering the information need
 - E.g., for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- PageRank don't make the distinction between these two

Definition of Hubs and Authorities

- A good hub page for a topic links to many authority pages for that topic
- A good authority page for a topic is linked to by many hub pages for that topic
- Circular definition Iterative computation

How to Compute Hub and Authority Scores

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call this larger set the base set
- Finally, compute hubs and authorities for the base set •

Root Set and Base Set

- Base set:
 - Nodes that root set nodes link to
 - Nodes that link to root set nodes

Hub and Authority Scores

- Goal: compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d) until convergence
 - For all d: $h(d) = \sum_{d \mapsto y} a(y)$ For all d: $a(d) = \sum_{y \mapsto d} h(y)$
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest *a* scores as top authorities
 - So we output two ranked lists

Details

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration
 - Scaling factor doesn't really matter
 - We care about the relative (as opposed to absolute) values of the scores
- In most cases, the algorithm converges after a few iterations

Example: Authorities for query [Chicago Bulls]

- www.nba.com/bulls 0.85
- 0.25 www.essex1.com/people/jmiller/bulls.htm "da Bulls"
- 0.20 www.nando.net/SportServer/basketball/nba/chi.html "The Chicago Bulls"
- users.aol.com/rynocub/bulls.htm 0.15 "The Chicago Bulls Home Page"
- 0.13 www.geocities.com/Colosseum/6095 "Chicago Bulls"

(Ben-Shaul et al, WWW8)

Example: Hubs for query [Chicago Bulls]

- 1.62 www.geocities.com/Colosseum/1778 "Unbelieveabulls!!!!!"
- 1.24 www.webring.org/cgi-bin/webring?ring=chbulls "Erin's Chicago Bulls Page"
- 0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html "Chicago Bulls"
- 0.52 www.nobull.net/web_position/kw-search-15-M2.htm "Excite Search Results: bulls"
- 0.52 www.halcyon.com/wordsltd/bball/bulls.htm "Chicago Bulls Links"

(Ben-Shaul et al, WWW8)

Adjacency Matrix

• We define an $N \times N$ adjacency matrix A

 For 1 ≤ i, j ≤ N, the matrix entry A_{ij} tells us whether there is a link from page i to page j (A_{ij} = 1) or not (A_{ij} = 0)

	d_1	d_2	d3
d_1	0	1	0
d_2	1	1	1
dz	1	0	0

Matrix Form of HITS

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ where h_i is the hub score of page d_i
- Similarly for \vec{a}
- $h(d) = \sum_{d\mapsto y} a(y)$: $\vec{h} = A\vec{a}$
- $a(d) = \sum_{y \mapsto d} h(y)$: $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T \vec{h}$ and $\vec{a} = A^T A \vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA

Example

Table: Adjacent Matrix A

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d 2	1	0	1	2	0	0	0
d3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d ₆	0	0	0	2	1	0	1

Hub Vectors

- Set \vec{h}_0 uniformly
- $\vec{h}_i = \frac{1}{d_i} A \cdot \vec{a}_i, i \ge 1$

	\vec{h}_0	$ec{h}_1$	\vec{h}_2	\vec{h}_3	$ec{h}_4$	\vec{h}_5
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
d_2	0.14	0.28	0.32	0.33	0.33	0.33
d ₃	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority Vectors

- Set \vec{a}_0 uniformly
- $\vec{a}_i = \frac{1}{c_i} A^T \cdot \vec{h}_{i-1}, i \ge 1$

	\vec{a}_1	ā ₂	ā3	\vec{a}_4	\vec{a}_5	\vec{a}_6	ia₁7
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_2	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d ₃	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_6	0.19	0.14	0.13	0.13	0.13	0.13	0.13

Top-ranked Pages

- Pages with highest in-degree: d_2 , d_3 , d_6
- Pages with highest out-degree: d_2 , d_6
- Pages with highest PageRank: d₆
- Pages with highest hub score: d_6 (close: d_2)
- Pages with highest authority score: d_3

PageRank vs. HITS

- PageRank can be precomputed, HITS has to be computed at query time
 - HITS is too expensive in most application scenarios.
- PageRank and HITS are different in
 - the eigenproblem formalization
 - the set of pages to apply the formalization to.
- On the web, a good hub almost always is also a good authority.

R Package for PageRank

Resources

- Package: http://cran.r-project.org/web/packages/igraph/index.html
- Function: http://igraph.sourceforge.net/doc/R/page.rank.html
- Manual: http://cran.r-project.org/web/packages/igraph/igraph.pdf
- Author: Tamas Nepusz and Gabor Csardi

Description

page.rank igraph: Calculates the Google PageRank for the specified vertices.

How to use

Usage

page.rank (graph, vids = V(graph), directed = TRUE, damping = 0.85, weights = NULL, options = igraph.arpack.default)

Example

```
g = random.graph.game(20, 5/20, directed=TRUE)
page.rank(g)
g2 = graph.star(10)
page.rank(g2)
```


R Package for HITS

Resources

- Package: http://cran.r-project.org/web/packages/igraph/index.html
- Function: http://igraph.sourceforge.net/doc/R/kleinberg.html
- Manual: http://cran.r-project.org/web/packages/igraph/igraph.pdf
- Author: Gabor Csardi

Description

kleinberg igraph: Kleinberg's hub and authority scores.

How to use

Usage

authority.score (graph, scale = TRUE, options = igraph.arpack.default) hub.score (graph, scale = TRUE, options = igraph.arpack.default)

Example

```
#An in-star
g = graph.star(10)
hub.score(g)
authority.score(g)
#A ring
g2 = graph.ring(10)
hub.score(g2)
authority.score(g2)
```


Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages

Community Detection

- Introduction
- Methods
- Summary
- 2 Community Question Answering
 - Introduction
 - Question Subjectivity Analysis
 - Question Retrieval
 - Question Recommendation

References

Communities

Community

A community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group.

- Users form communities in social media
- Community is formed through frequent interacting
- A set of users who do not interact with each other is not a community

Why Communities Are Formed?

- Human beings are social
- Social media are easy to use
 - · People's social lives are easy to extend with the help of social media
- People connect with friends, relatives, colleges, etc. in the physical world as well as online

I. King, B. Li, T. C. Zhou (CUHK)

Examples of Communities

Siannen Sinelte + Link your profile to these 36 Pages? Google+ 🗇 🖾 🛞 🔊 Find people People in your citcles (177) People whole added you (1150) Find and Inite (194) We've improved the profile so that it doesn't just list your information, but now links to Pages instead. We Set by Releases . View profile. More actions + matched your info to the Pages below. Remember, your Pages are public. Learn more. Add a new Stanford University Stanford University . College Graduate School Class of 2005 Class of 2006 Charges Art 💮 -----Symbolic Systems Computer Science Acalanes High Mountain View, California High School Class of 2001 Drop here to create a new circle Walnut Creek, California Documentaries Hometown Movie Genre Link All to My Profile Choose Pages individually Ask Me Later 02011 Geogle - Terms - Content Policy - Privace

Community Detection

Community Detection

Two Types of Users

- Explicit Groups: Formed by user subscriptions
 - E.g., Groups in Facebook
- **2** Implicit Groups: implicitly formed by social interactions
 - E.g., Community question answering

Community Detection

Discovering groups in a network where individuals' group memberships are not explicitly given

Approaches

Four categories

- Node-centric approach
 - Each node in a group satisfies certain properties
- Group-centric approach
 - Consider the connections inside a group as a whole
- Network-centric approach
 - Partition nodes of a network into several disjoint sets
- Hierarchy-centric approach
 - Build a hierarchical structure of communities based on network topology

Node-Centric Community Detection

- Nodes satisfying certain properties within a group
 - Complete mutuality
 - cliques: A clique is a maximum complete subgraph in which all nodes are adjacent to each other
 - Reachability of members
 - k-clique: A k-clique is a maximal subgraph in which the largest geodesic distance between any two nodes is no greater than k
 - k-clan: The geodesic distance within the group to be no greater than k

Group-Centric Community Detection

Density-Based Groups

- It is acceptable for some nodes to have low connectivity
- The whole group satisfies a certain condition
 - E.g., the group density \geq a given threshold
- A subgraph $G_s(V_s, E_s)$ is γ dense (quasi-clique, Abello et al., 2002) if

$$\frac{E_s}{V_s(V_s-1)/2} \geq \gamma$$

- Greedy search through recursive pruning
 - Local search: sample a subgraph and find a maximum $\gamma-\mathit{dense}$ quasi-clique (say, of size k)
 - Heuristic pruning: remove nodes with degree less than $k\cdot\gamma$

Network-Centric Community Detection

- Consider the global topology of a network
- Partition nodes of a network into disjoint sets
- Optimize a criterion defined over a partition rather than over one group
- Approaches:
 - Clustering based on vertex similarity
 - Latent space models (multi-dimensional scaling)
 - Block model approximation
 - Spectral clustering
 - Modularity maximization

Clustering Based on Vertex Similarity

- Vertex similarity is defined in terms of the similarity of their social circles
- Structural equivalence: two nodes are structurally equivalent iff they are connecting to the same set of actors

- Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 6.
- Structural equivalence is too restrict for practical use
- Apply k-means to find communities

Vertex Similarity Measurements

- Cosine Similarity: $Cosine(v_i, v_j) = \frac{|N_i \bigcap N_j|}{\sqrt{|N_i| \cdot |N_j|}}$
- Jaccard Similarity: $Jaccard(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$

$$Cosine(4,6) = \frac{1}{\sqrt{4 \cdot 4}} = \frac{1}{4}$$

Jaccard(4,6) = $\frac{|\{5\}|}{|\{1,3,4,5,6,7,8\}|} = \frac{1}{7}$

Latent Space Models

- Map nodes into a low-dimensional Euclidean space such that the proximity between nodes based on network connectivity are kept in the new space
- Multi-dimensional scaling (MDS)
 - Given a network, construct a proximity matrix $P \in \mathbb{R}^{n \times n}$ representing the pairwise distance between nodes
 - Let $S \in \mathbb{R}^{n \times k}$ denote the coordinates of nodes in the low-dimensional space

$$SS^{T} \approx -\frac{1}{2}(I - \frac{1}{n}ee^{T})(P \circ P)(I - \frac{1}{n}ee^{T}) = \tilde{P},$$

where \circ is the element-wise matrix multiplication

- Objective: min $||SS^T \tilde{P}||_F^2$
- Let $\Lambda = diag(\lambda_1, ..., \lambda_k)$ (the top-k eigenvalues of \tilde{P}), V the top-k eigenvectors
- Solution: $S = \Lambda V^{1/2}$
- Apply k-means to S to obtain communities

SNA & CQA

Example of MDS

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

I. King, B. Li, T. C. Zhou (CUHK)

SNA & CQA

Block Model Approximation

• Objective: Minimize the difference between an adjacency matrix and a block structure

$$\min_{S,\Sigma} ||A - S\Sigma S^T||_F^2$$

where $S \in \{0,1\}^{n imes k}$, and $\Sigma \in R^{k imes k}$ is diagonal

- Challenge: S is discrete, difficult to solve
- Relaxation: Allow S to be continuous satisfying $S^T S = I_k$
- Solution: the top k eigenvectors of A
- Apply k-means to S to obtain communities

I. King, B. Li, T. C. Zhou (CUHK)

6/10/2012

Cut

- \bullet Community detection \rightarrow graph partition \rightarrow minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut: Find a graph partition such that the number of edges among different sets is minimized
 - Minimum cut often returns an imbalanced partition, e.g., node 9
 - Consider community size
 - Let C_i denote a community, $|C_i|$ represent the number of nodes in C_i , and $vol(C_i)$ measure the total degrees of nodes in C_i

$$\mathsf{RatioCut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\mathsf{cut}(\mathsf{C}_i, \bar{\mathsf{C}}_i)}{|\mathsf{C}_i|} \quad \mathsf{NormalizedCut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\mathsf{cut}(\mathsf{C}_i, \bar{\mathsf{C}}_i)}{\mathsf{vol}(\mathsf{C}_i)}$$

Ratio Cut & Normalized Cut Example

• For partition in red (π_1)

- $RatioCut(\pi_1) = \frac{1}{2}(\frac{1}{1} + \frac{1}{8}) = 0.56$
- NormalizedCut $(\pi_1) = \frac{1}{2}(\frac{1}{1} + \frac{1}{27}) = 0.52$
- For partition in green (π_2)
 - $RatioCut(\pi_2) = \frac{1}{2}(\frac{2}{4} + \frac{2}{5}) = 0.45 < RatioCut(\pi_1)$
 - NormalizedCut $(\pi_2) = \frac{1}{2}(\frac{2}{12} + \frac{2}{16}) = 0.15 < NormalizedCut(\pi_1)$
- Smaller values mean more balanced partition

Spectral Clustering

- Finding the minimum ratio cut and normalized cut are NP-hard
- An approximation is spectral clustering

$$\min_{S \in \{0,1\}^{n \times k}} Tr(S^T \tilde{L}S) \qquad s.t., S^T S = I_k$$

• \tilde{L} is the (normalized) Graph Laplacian

$$\begin{split} \tilde{L} &= D-A \\ \textit{Normalized} - L &= I - D^{-1/2}AD^{-1/2} \\ D &= diag\{d_1, d_2, ..., d_n\} \end{split}$$

- Solution: S are the eigenvectors of L with smallest eigenvalues (except the first one)
- Apply k-means to S to obtain communities

Spectral Clustering Example

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

Modularity Maximization

- Modularity measures the network interactions compared with the expected random connections
- In a network with *m* edges, for two nodes with degree d_i and d_j , the expected random connections are $\frac{d_i d_j}{2m}$

- The expected number of edges between nodes 1 and 2 is $3\times 2/(2\times 14)=3/14$
- Strength of a community: $\sum_{i \in C, j \in C} (A_{ij} d_i d_j/2m)$

• Modularity:
$$Q = \frac{1}{2m} \sum_{C} \sum_{i \in C, j \in C} (A_{ij} - d_i d_j / 2m)$$

I. King, B. Li, T. C. Zhou (CUHK)

Matrix Formation

• The modularity maximization can be reformed in the matrix form:

$$Q = \frac{1}{2m} Tr(S^T B S)$$

• B is the modularity matrix

$$B_{ij} = A_{ij} - d_i d_j / 2m$$

• Solution: top eigenvectors of the modularity matrix

• Modularity:
$$Q = \frac{1}{2m} \sum_{C} \sum_{i \in C, j \in C} (A_{ij} - d_i d_j / 2m)$$

• Apply k-means to S to obtain communities

Modularity Maximization Example

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

A Unified Process

• Goal of network-centric community detection: Partition network nodes into several disjoint sets

Utility Matrix
$$M = \begin{cases} \widetilde{P} & (\text{latent space models}) \\ A & (\text{block model approximation}) \\ \widetilde{L} & (\text{spectral clustering}) \\ B & (\text{modularity maximization}) \end{cases}$$

• Limitation: The number of communities requires manual setting

Hierarchy-Centric Community Detection

- Goal: Build a hierarchical structure of communities based on network topology
- Facilitate the analysis at different resolutions
- Approaches:
 - Top-down: Divisive hierarchical clustering
 - Bottom-up: Agglomerative hierarchical clustering

Summary

- Goal: Discovering groups in a network where individuals' group memberships are not explicitly given
- Approaches
 - Node-centric approach
 - Each node in a group satisfies certain properties
 - Group-centric approach
 - Consider the connections inside a group as a whole
 - Network-centric approach
 - Partition nodes of a network into several disjoint sets
 - Hierarchy-centric approach
 - Build a hierarchical structure of communities based on network topology
- Which one to choose?
- Scalability issue in real applicants

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary
- Community Question Answering
 - Introduction
 - Question Subjectivity Analysis
 - Question Retrieval
 - Question Recommendation

References

Introduction

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary

Community Question Answering

- Introduction
- Question Subjectivity Analysis
- Question Retrieval
- Question Recommendation

Community Question Answering

Answers.com

YAHOO! ANSWERS

joogle

- Knowledge dissemination, information seeking
- Natural language questions
- Explicit, self-contained answers

Community Question Answering

Home > All Categories > Consumer Electronics > Land Phones > Resolved Question

 Final And a comparise solution of the phone solution of the ph		Resolved Question	Show me another »	
Annell they're talking on the phones! Shows Shows paople say I sound like my more when thalking to them on the phone, which in this, is now paople say I sound like my more when thalking to them on the phone, which is now paople say I sound like my more when going out for like a weak). His voice sounded a the phone. Weak only been going out for like a weak). His voice sounded a the phone, when the phone the phone, the phone the phone, the phone the phone, the phone th	19	Why do peoples' voices sound different when		
A come people say 1 sound like my more when that liking to them on the phone, which is the source of version. Because I was advected that the phone. When you be phone is the week I was advected to the phone. When you be you be phone is the you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone is the you be you be phone. When you be you be phone is the you be you be phone is the you be you be phone is the you be you he you favour the you he you would get by you he you favour the you he you be you would get by you he you favour the you he you be you would get by you he you favour the you he you would get by you would get by you he you favour the you favour the you would get by you would get by you he you favour the you favour the you would get by you would get by you he you favour the you favour the you you would get by you you you you you you you you you yo	Anna!!!	they're talking on the phone?		
4 years and Perpet Abuse Paul 156: Best Answer - Chosen by Asker Paul 156: Best Answer - Chosen by Asker Dest Answer - Chosen by Asker The range of the human ear can extend right up 20kHz or narrower bandwidth, typically restricting the highest frequencies transmitted to a little ower 3kHz in many cases. That's adequate to convey intelligible speech, but naturally it changes the sound of the voice subtly by filtering out the highest-fiched components. It's the same sout of the voice subtly by filtering out the highest priched components. It's the same sout of the voice subtly by filtering out the highest priched components. It's the same sout of the voice subtly by filtering out the highest priched components. It's the same sout of the subtle range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range as the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the audible range at the very lowest end of the very lowest end of the very lowest end of the very lowest		Some people say I sound like my morn when I'm talking to them on the phone, which I think is sort of weird because I was adopted This was the first time I've talked Today I was talking to my boyfriend on the phone This was the first time I've talked to him on the phone (we've only been going out for like a week). His voice sounded a little deeper or something. Or could that just be because he was nervous?		
Paul 196: Bet Answer - Chosen by Asker Paul 196: The major reason for voices sounding different is that the frequency response of the former, especially in younger people. A connection over the telephone has a much more system is limited. The range of the human ear can extend right up 20kHz or more, specially in younger people. A connection over the telephone has a much more shall be the highest frequencies transmitted to a little over 3kHz in many cases. The sadequate to convey intelligible speech, but naturally it changes the sound of the voice subty by filtering out the highest-pitched components. It's the same sont of effect as you would get by listening to your favorite record on A.M. radio versus listening to in or F.M. or from a C.D. The telphone also reduces frequencies at the very lowest end of the audible range as used to see the set of		4 years ago	P Report Abuse	
Year Second the sec	Paul_196	Best Answer - Chosen by Asker		
That's adequate to corvey intelligible speech, but naturally it changes the sound of the voice subty by filtering out the highest-pitched components. It's the same sont of effect as you would get by listening to your favorite record on A.M. radio versus listening to it on F.M. or from a C.D. The telphone also reduces frequencies at the very lowest end of the audible range as well. 4 years ago 259 people rated this as good Asker's Rating: ***** Thanks =)		One major reason for voices sounding different is that the frequency response of the telephone system is limited. The range of the human ear can extend right up 20kHz or more, especially in younger people. A connection over the telephone has a much narrower bandwidth, typically restricting the highest frequencies transmitted to a little over 3KHz in many cases.		
The telphone also reduces frequencies at the very lowest end of the audible range as well: 4 years ago PReport Abuse 259 people rated this as good Asker's Rating: ***** Thanks =)		That's adequate to convey intelligible speech, but naturally it changes the sound of the voice subty by filtering out the highest-pitched components. It's the same sont of effect as you would get by listening to your favorite record on A.M. radio versus listening to in of F.M. of from a C.D.		
4 years ago Report Abuse		The telphone also reduces frequencies at the very lowest end of the audible range as well.		
ds 259 people rated this as good Asker's Rating: ★★★★★ Thanks =)		4 years ago	Report Abuse	
Asker's Rating: ★★★★★ Thanks =)		👍 259 people rated this as good		
		Asker's Rating: ***** Thanks =)		
Action Day 285 A Interacting = S Email Comment (0) the Cause =	Astion Dec		(D)	

Community Question Answering

Artificial Neural Networks Machine Learning 2 Edit

How do convolutional neural networks work? 2 Edit

Especially, what kind of benefits does convolution give you? 2 Edit

P Comment - 2 Post (1) - Wiki - Options - Redirect Question

2 Answers - Create Answer Wiki

Mikio L. Braun, Ph.D. in machine learning, 10+ years ... Svotes by Kat Li, Barak Cohen, and Lucian Sasu Convolutional neural networks work like learnable local filters.

The best example is probably their application to computer vision. The first step in image analysis is often to perform some local filtering of the image, for example, to enhance edges in the image.

You do this by taking the neighborhood of each pixel and convolve it with a certain mask (set of weights). Basically you compute a linear combination of those pixels. For example, if you have a positive weight on the center pixel and negative weights on the surrounding pixels you compute the difference between the center pixel and the surrounding, giving you a crude kind of edge detector.

Now you can either put that filter in there by hand or learn the right filter through a convolutional neural network. If we consider the simplest case, you have an input layer representing all pixels in your image while the output layer representing the filter responses. Each node in the output layer is connected to a pixel and its neighborhood in the input layer. So far, so good. What makes convolutional neural networks special is that the weights are shared, that is, they are the same for different pixels in the image (but different with respect to the position relative to the center pixel). That way you effectively learn a filter, which also turns out to be suited to the problem you are trying to learn.

P Comment - Ø Post - Thank - Sep 29, 2011

Advantages of Community Question Answering

- Could solve information needs that are personal, heterogeneous, specific, open-ended, and cannot be expressed as a short query
- No single Web page will directly answer these complex and heterogeneous needs, CQA users should understand and answer better than a machine
- Have accumulated rich knowledge
 - More than one billion posted answers in Yahoo! Answers http://yanswersblog.com/index.php/archives/2010/05/03/1-billionanswers-served/
 - More than 190 million resolved questions in Baidu Zhidao
 - In China, 25% of Google's top-search-results page contain at least one link to some Q&A site, Si et al., VLDB, 2010

Community Question Answering

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary

Community Question Answering

- Introduction
- Question Subjectivity Analysis
- Question Retrieval
- Question Recommendation

References

Question Subjectivity Analysis

- Question Analysis is to analyze characteristics of questions
- Understand User Intent
- Provide rich information to question search, question recommendation, answer quality prediction, etc.
- Question Subjectivity Analysis is an important aspect of question analysis

Question Subjectivity Analysis: Definition

Subjective question

- Private statements
- Personal opinion and experience
- What's the difference between chemotherapy and radiation treatments?

Objective question

- Objective, verifiable information
- Often with support from reliable sources
- Has anyone got one of those home blood pressure monitors? and if so what make is it and do you think they are worth getting?

Question Subjectivity Analysis: Motivation

- More accurately identify similar questions, improve question search
- Better rank or filter the answers based on whether an answer matches the question orientation
- Crucial component of inferring user intent, a long-standing problem in Web search
- Route subjective questions to users for answer, trigger automatic factual question answering system for objective questions

Question Subjectivity Analysis: Challenge

- Ill-formatted, e.g., word capitalization may be incorrect or missing, consecutive words may be concatenated
- Ungrammatical, include common online idioms, e.g., using "u" means "you", "2" means "to"

g Question Subjectivity Analysis

Question Subjectivity Analysis: Supervised Learning

- Baoli Li, Yandong Liu, Ashwin Ram, Ernest V. Garcia and Eugene Agichtein, Exploring Question Subjectivity Prediction in Community QA, SIGIR, 2008
- Support Vector Machine with linear kernel
- Features
 - Character 3-gram
 - Word
 - Word + character 3-gram
 - Word n-gram
 - Word POS n-gram, mix of word and POS tri-grams
- Term weighting schemes: binary, TF, TF*IDF

Question Subjectivity Analysis: Semi-Supervised Learning

Figure: Yahoo Answers Example.

- Baoli Li, Yandong Liu and Eugene Agichtein, CoCQA: Co-Training Over Questions and Answers with an Application to Predicting Question Subjectivity Orientation, EMNLP, 2008
- Incorporate relationships between questions and corresponding answers
- Co-training, two views of the data, question and answer

I. King, B. Li, T. C. Zhou (CUHK)

- At step 1,2, each category has top K_j most confident examples chosen as additional "labeled" data
- Terminate when the increments of both classifiers are less than threshold X or maximum number of iterations are exceeded

- Tom Chao Zhou, Xiance Si, Edward Y. Chang, Irwin King and Michael R. Lyu, A Data-Driven Approach to Question Subjectivity Identification in Community Question Answering, AAAI, 2012
- Li et al. 2008 (supervised), Li et al. 2008 (CoCQA, semi-supervised) based on manual labeling data
- Manual labeling data is quite expensive

Web-scale learning is to use available large-scale data rather than hoping for annotated data that isn't available

- Halevy, Norvig and Pereira

Whether we can utilize social signals to collect training data for question subjectivity identification with NO manual labeling?

- Like Signal: like an answer if they find the answer useful
- Intuition
 - Subjective: answers are opinions, different tastes; best answer receives similar number of likes with other answers
 - Objective: like an answer which explains universal truth in most detail; best answer receives high likes than other answers

- Vote Signal: users could vote for best answer
- Intuition
 - Subjective: vote for different answers, support different opinions; low percentage of votes on best answer
 - Objective: easy to identify answer contain the most fact; percentage of votes of best answer is high

Report Abuse

Who invented the computer mouse?

does anyone know who invented the first Computer mouse and when was it invented?

3 years ago

Best Answer - Chosen by Asker

A guy called Engelbart - here it is http://sloan.stanford.edu/MouseSite/Arch...

...mmmmm, sweet!! Source(s): http://inventors.about.com/library/week!...

Inventors of the Modern Computer

The History of the Computer Mouse and the Prototype for Windows - Douglas Engelbart

By Mary Bellis

"It would be wonderful if I can inspire others, who are struggling to realize their dreams, to say "if this country kid could do it, let me keep slogging eway"." - Douglas Engelbart

- Source Signal: reference to authoritative resources
- Intuition
 - Only available for objective question that has fact answer

I. King, B. Li, T. C. Zhou (CUHK)

- Poll and Survey signal
- User intent is to seek opinions
- Very likely to be subjective

- What is something you learned in school that you think is useful to you today?
- If you could be a cartoon character, who would you want to be?

- Answer Number signal: the number of posted answers to each question
- Intuition
 - Subjective: alertpost opinions even they notice there are other answers
 - Objective: may not post answers to questions that has received other answers since an expected answer is usually fixed
 - A large answer number indicate subjectivity
 - A small answer number may be due to many reasons, such as objectivity, small page views

Summary of Social Signals								
Name	Description	Training Data						
Like	Capture users' tastes	Positive && Negative						
Vote	Reflect users' judgments	Positive && Negative						
Source	Measure confidence on authoritativeness	Negative						
Poll and Survey	Indicate users' intent	Positive						
Answer Number	Imply users' willingness to answer a question	Positive						

Features

- Word: term frequency
- Word n-gram: term frequency
- Question length: information needs of subjective questions are complex, users use descriptions to explain, larger question length
- Request word: particular words to explicitly indicate their request for seeking opinions; manual list of 9 words

- Subjectivity clue: external lexicon, over 8000 clues, manually compiled word list from news to express opinions
- Punctuation density: density of punctuation marks
- Grammatical modifier: inspired by opinion mining research of using grammatical modifiers on judging users' opinions, adjective and adverb
- Entity: objective question expects fact answer, leading to less relationships among entities, subjective questions contains more descriptions, may involve relatively complex relations

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary

Community Question Answering

- Introduction
- Question Subjectivity Analysis
- Question Retrieval
- Question Recommendation

Question Retrieval

Ask a Question

Home > Ask Question

What's Your Question

What should i do if my laptop got blue screen?

You have 64 characters left.

Now add a little more detail (optional)

Make sure your question follows the community guidelines.

Continue

Problem and Opportunity

Problem

- Askers need to wait some time to get an answer, time lag
- 15% of the questions do not receive any answer in Yahoo! Answers, which is one of the first CQA sites on the Web
- Opportunity
 - 25% questions in certain categories are recurrent, Anna, Gideon and Yoelle, WWW, 2012
- Answer new questions by reusing past resolved questions
- Question Retrieval: find semantically similar past questions for a new question

Question Retrieval Example

Search

What should i do if my laptop got blue screen?

Search Y! Answers

Sort by: Relevance | Newest 🖾 | Most Answers 📼

What should I do if I keep getting the "blue screen of death" for my Windows7 laptop?

...I keep getting the blue screen of death telling me that the pc is getting prepared for a... scary to imagine what would happen if I wasn't. I just bought this Windows7 Toshiba laptop from office depot in the summer...to crash (so early)? What should I do?

In Laptops & Notebooks - Asked by nelson316@verizon.net - 4 answers - 4 months ago

I just got a random blue screen of death, should I be worried?

...just suddenly got a random blue screen of death. Ive never got one on this laptop before, and Ive had no problems with my laptop at all until this bsod..., It said that if it was my first time...free. I don't even remember what sites I was on..., with no problems. I do remember that the programs...off bsod like my old laptop? Or should I be worried?...

1 😭 In Other - Hardware - Asked by Kaylee - 6 answers - 2 weeks ago

why is my laptop showing the blue screen?

..to it, so I'm not sure if they could have done anything, but now when i turn my laptop on i would get a blue screen saying all this jumble...a boot disk, so i dont know what else should i do. Any help/advice? ☆ In Laptops & Notebooks - Asked by doodle - 6 answers - 5 years ago

Laptop blue screen problem!!!?

...malicious URL block and then this **blue screen** comes up and **my laptop** turns off and asks **me if I** want to go into safe mode. **What should I do**? Is there any way...for a new **laptop** cause **I got** low practice SAT scores...

In Laptops & Notebooks - Asked by Mathhew Colman - 5 answers - 10 months ago

sony vaio **blue screen** problem, **what should i do**? please help?

Benefit of Question Retrieval

- Provide an alternative to automatic question answering
- Help askers get an answer in a timely manner
- Guide answerers to answer unique questions, better utilize users' answering passion

Notations

Symbol	Description					
Q	A new question					
D	A candidate question					
·	Length of the text					
С	Background collection					
W	<i>w</i> A term in the new question					
t	t A term in a candidate question					

Community Question Answering

Lexical-based Approach: Language Model

- In language modeling, similarity between a query and a document is given by the probability of generating the query from the document language model
- Unigram language model, i.i.d. sampling

$$P(Q|D) = \prod_{w \in Q} P(w|D)$$

• In question retrieval syntax, query is the new question, document is a candidate question

Lexical-based Approach: Language Model

• To avoid zero probabilities and estimate more accurate language models, documents are smoothed using a background collection

$$P(w|D) = (1 - \lambda)P_{ml}(w|D) + \lambda P_{ml}(w|C)$$

• λ is a smoothing parameter, $0 \le \lambda \le 1$

$$P_{ml}(w|D) = \frac{termfrequency(w, D)}{\sum\limits_{w' \in D} termfrequency(w', D)}$$

• Maximum likelihood estimator to calculate $P_{ml}(\cdot)$

Language Model Example

- Query (q): revenue down
- Document 1 (d₁): xyzzy reports a profit but revenue is down
- Document 2 (*d*₂): quorus narrows quarter loss but revenue decreases further

•
$$\lambda = 0.5$$

 $P(Q|D) = \prod_{w \in Q} P(w|D)$
 $P(w|D) = (1 - \lambda)P_{ml}(w|D) + \lambda P_{ml}(w|C)$
 $P(q|d_1) = [(1/8 + 2/16)/2] \times [(1/8 + 1/16)/2] = 3/256$
 $P(q|d_2) = [(1/8 + 2/16)/2] \times [(0/8 + 1/16)/2] = 1/256$

• Ranking: $d_1 > d_2$

Lexical-based Approach: Translation Model

LM	
Advantage	Simple
Disadvantage	Lexical Gap

• Lexical Gap, two questions that have the same meaning use very different wording

- Is downloading movies illegal?
- Can I share a copy of a DVD online?
- Jiwoon Jeon, W. Bruce Croft and Joon Ho Lee, Finding Similar Questions in Large Question and Answer Archives, CIKM, 2005

Lexical-based Approach: Translation Model

$$\begin{aligned} & \text{Language Model} \\ \hline P(w|D) &= (1-\lambda)P_{ml}(w|D) + \lambda P_{ml}(w|C) \\ & \text{Translation Model} \\ \hline P(w|D) &= (1-\lambda)\sum_{t\in D} (T(w|t)P_{ml}(t|D)) + \lambda P_{ml}(w|C) \end{aligned}$$

• T(w|t) is the probability that word w is the translation of word t, denotes semantic similarities between words

Lexical-based Approach: Translation Model

Table: Questions share few common words, but may have high semantic relatedness according to translation model

Id like to insert music into PowerPoint.

How can I link sounds in PowerPoint?

How can I shut down my system in Dos-mode.

How to turn off computers in Dos-mode.

Photo transfer from cell phones to computers.

How to move photos taken by cell phones.

Which application can run bin files?

I download a game. How can I execute bin files?

Rank	$_{\mathrm{bmp}}$	format	music	intel	excel	font	watch	memory
1	$^{\mathrm{bmp}}$	format	music	pentium	excel	font	watch	memory
2	jpg	format*	file	4	korean	korean	time	virtual
3	gif	xp	tag	celeron	function	97	background	shortage
4	save	windows	sound	amd	novice	add	start	ram
5	file	hard	background	intel	cell	download	date	message
6	picture	98	song	performance	disappear	control-panel	display	configuration
7	change	partition	play	support	convert	register	tray	256
8	ms-paint	drive	mp3	question	if	install	power	extend
9	convert	disk	cd	buy	xls	default	screen	system
10	photo	С	source	cpu	record	photoshop	wrong	windows

Figure: The first row shows the source words and each column shows top 10 words that are most semantically similar to the source word. A higher rank means a larger T(w|t) value

- How to learn T(w|t)?
 - Prepare a monolingual parallel corpus of pairs of text, each pair should be semantically similar
 - Employ machine translation model IBM model 1 on the parallel corpus to learn T(w|t)
 - IBM model 1: Brown et al., Computational Linguistics, 1990
- How this paper prepares monolingual parallel corpus
 - Each pair contains two questions whose answers are very similar

- Delphine Bernhard and Iryna Gurevych, Combining Lexical Semantic Resources with Question & Answer Archives for Translation-Based Answer Finding, ACL, 2009
- Propose several methods to prepare parallel monolingual corpora
 - $\bullet~$ Question answer pairs: question \leftrightarrow answer
 - Question reformulation pairs: question \leftrightarrow question reformulation by user

RUClimate (supervisor) [332] merged the question Why iare clouds white into Why are clouds white 9 Feb 2012 17:03

RUClimate (supervisor) [332] merged the question What makes the clouds appeared to be white into Why are clouds white 9 Feb 2012 16:44

RUClimate (supervisor) [332] merged the question Why does Clouds appear white into Why are clouds white 9 Feb 2012 16:44

RUClimate (supervisor) [332] merged the question Why do clouds appear white into Why are clouds white 9 Feb 2012 16:43

RUClimate (supervisor) [332] merged the question Why do clouds look white into Why are clouds white 9 Feb 2012 16:43

RUClimate (supervisor) [332] merged the question Why do clouds in the sky appear white into Why are clouds white 9 Feb 2012 16:43

RUClimate (supervisor) [332] merged the question How does the cloud is white into Why are clouds white 9 Feb 2012 16:43

I. King, B. Li, T. C. Zhou (CUHK)

SNA & CQA

- Lexical Semantic Resources: glosses and definitions for the same lexeme in different lexical semantic and encyclopedic resources can be considered as near-paraphrases, since they define the same terms and hence have the same meaning
- moon
 - Wordnet: the natural satellite of the Earth
 - English Wiktionary: the Moon, the satellite of planet Earth
 - English Wikipedia: the Moon (Latin: Luna) is Earth's only natural satellite and the fifth largest natural satellite in the Solar System

Question Retrieval

Lexical-based Approach: Translation-based Language Model

ТМ	
Advantage	Tackle lexical gap to some extent
Disadvantage	T(w w) = 1 for all w while maintaining other word
	translation probabilities unchanged, produce inconsistent
	probability estimates and make the model unstable

- Xiaobing Xue, Jiwoon Jeon and W. Bruce Croft, Retrieval Models for Question and Answer Archives, SiGIR, 2008
- Translation-based Language Model

Lexical-based Approach: Translation-based Language Model

$$\begin{array}{c} \text{Translation Model} \\ P(w|D) = (1-\lambda) \sum_{t \in D} (T(w|t)P_{ml}(t|D)) + \lambda P_{ml}(w|C) \\ \text{Translation-based Language Model} \\ P(w|D) = \frac{|D|}{|D|+\lambda}P_{mx}(w|D) + \frac{\lambda}{|D|+\lambda}P_{ml}(w|C) \\ P_{mx}(w|D) = (1-\beta)P_{ml}(w|D) + \beta \sum_{t \in D} T(w|t)P_{ml}(t|D) \end{array}$$

- Linear combination of language model and translation model
- Answer part should provide additional evidence about relevance, incorporating the answer part

$$P_{mx}(w|(D,A)) = \alpha P_{ml}(w|D) + \beta \sum_{t \in D} T(w|t) P_{ml}(t|D) + \gamma P_{ml}(w|A)$$

$$\alpha + \beta + \gamma = 1$$

Syntactic-based Approach: Syntactic Tree Matching

- Some similar questions neither share many common words, nor follow identical syntactic structure
 - How can I lose weight in a few months?
 - Are there any ways of losing pound in a short period?
- Kai Wang, Zhaoyan Ming and Tat-Seng Chua, A Syntactic Tree Matching Approach to Finding Similar Questions in Community-based QA Services, SIGIR, 2009
- Syntactic tree matching

Figure: (a) The Syntactic Tree of the Question "How to lose weight?". (b) Tree Fragments of the Sub-tree covering "lose weight".

Syntactic-based Approach: Syntactic Tree Matching

• Tree kernel: utilize structural or syntactic information to capture higher order dependencies between grammar rules

$$k(T_1, T_2) = \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} C(n_1, n_2)$$

• N_1 , N_2 are sets of nodes in two syntactic trees T_1 and T_2 , and $C(n_1, n_2)$ equals to the number of common fragments rooted in n_1 and n_2

Syntactic-based Approach: Syntactic Tree Matching

• Limitation of tree kernel

- Tree kernel function merely replies on the intuition of counting the common number of sub-trees, whereas the number might not be a good indicator of the similarity between two questions
- Two evaluated sub-trees have to be identical to allow further parent matching, for which semantic representations cannot fit in well

Syntactic tree matching

- A new weighting scheme for tree fragments that are robust against some grammatical errors
- Incorporate semantic features

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary

Community Question Answering

- Introduction
- Question Subjectivity Analysis
- Question Retrieval
- Question Recommendation

Motivation

- Question Recommendation
 - Retrieve and rank other questions according to their likelihood of being good recommendations of the queried question
 - A good recommendation provides alternative aspects around users' interest

Example

Queried question:

Any cool clubs in Berlin or Hamburg?

Question search:

What are the best/most fun clubs in Berlin?

Question recommendation

How far is it from Berlin to Hamburg?

Where to see between Hamburg and Berlin?

Hong long does it take to get to Hamburg from Berlin on the train?

Cheap hotel in Hamburg?

Community Question Answering

- Yunbo Cao, Huizhong Duan, Chin-Yew Lin, Yong Yu and Hsiao-Wuen Hon, Recommending Questions Using the MDL-based Tree Cut Model, WWW, 2008
- Step 1: Represent questions as graphs of topic terms
- Step 2: Rank recommendations on the basis of the graphs
- Formalize both steps as the tree-cutting problems and employ the MDL (Minimum Description Length) for selecting the best cuts

- Question
 - Any cool clubs in Berlin or Hamburg?
- Question topic
 - Major context/constraint of a question, characterize users' interests
 - Berlin, Hamburg
- Question focus
 - Certain aspect of the question topic
 - cool club
- Suggest alternative aspects of the queried question's topic

- Extraction of topic terms: base noun phrase, WH-ngram
- Reduction of topic terms: MDL-based tree cut model

I. King, B. Li, T. C. Zhou (CUHK)

- Topic profile
 - Probability distribution of categories $\{p(c|t)\}_{c \in C}$
 - $p(c|t) = \frac{count(c,t)}{\sum_{c \in C} count(c,t)}$
 - count(c, t) is the frequency of the topic term t within the category c
- Specificity
 - Inverse of the entropy of the topic profile
 - Topic term of high specificity usually specifies question topic
 - Topic term of low specificity is usually used to represent question focus
- Topic chain
 - Topic chain is a sequence of ordered topic terms sorted from big to small according to specificity
- Question tree
 - Prefix tree built over topic chains of the question set Q

Question Recommendation

- Ranking recommendation candidates
 - Determine what topic terms (question focus) should be substituted
 - Collect a set of topic chains $Q^c = \{q_i^c\}_{i=1}^N$ such that at least one topic term occurs in both q^c and q_i^c
 - Construct a question tree from the set of topic chains Q^c ∪ q^c
 - Employ MDL to separate topic chains into Head, H and Tail, T

- Ranking recommendation candidates
 - Score recommendation candidates rendered by various substitutions
 - Specificity: the more similar are H(q^c) and H(q^c), the higher score
 - Generality: the more similar are T(q^c) and T(q^c), the lower score

Question Recommendation: TopicTRLM

- Tom Chao Zhou, Chin-Yew Lin, Irwin King, Michael R. Lyu, Young-In Song and Yunbo Cao, Learning to Suggest Questions in Online Forums, AAAI, 2011
- Suggest semantically related questions in online forums
 - How is Orange Beach in Alabama?
 - Is the water pretty clear this time of year on Orange Beach?
 - Do they have chair and umbrella rentals on Orange Beach?
 - Topic: travel in Orange Beach
- Fuse both lexical and latent semantic information

Question Recommendation: TopicTRLM

Document representation

- Bag-of-words
 - Independent
 - Fine-grained representation
 - Lexically similar
- Topic model
 - Assign a set of latent topic distributions to each word
 - Capturing important relationships between words
 - Coarse-grained representation
 - Semantically related

Question Recommendation: TopicTRLM

Outline

Social Network Analysis

- Link Analysis
 - PageRank
 - HITS
 - R Packages
- Community Detection
 - Introduction
 - Methods
 - Summary
- 2 Community Question Answering
 - Introduction
 - Question Subjectivity Analysis
 - Question Retrieval
 - Question Recommendation

- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, An Introduction to Information Retrieval (Book), 2008.
- Brin, S. and Page, L., The Anatomy of a Large-Scale Hypertextual Web Search Engine, 1998.
- Jon M. Kleinberg, Authoritative sources in a hyperlinked environment, 1999.
- Taher H. Haveliwala, Topic-sensitive PageRank, 2002.

- L. Tang and H. Li, Community Detection and Mining in Social Media (Book), 2010.
- H. Liu, L. Tang, and N. Agarwal, Community Detection and Behavior Study for Social Computing (Tutorial), 2009.
- R. Andersen and K. J. Lang, Communities from seed sets, WWW, 2006:
- S.Fortunato, Community detection in graphs, 2010.

- D. Gibson, R. Kumar, and A. Tomkins, Discovering large dense subgraphs in massive graphs, VLDB, 2005.
- M. S. Handcock, A. E. Raftery, and J. M. Tantrum, Model-based clustering for social networks, 2007.
- P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, 2002.
- A. Java, A. Joshi, and T. Finin. Detecting Communities via Simultaneous Clustering of Graphs and Folksonomies, WebKDD, 2008.

- R. Kumar, J. Novak, and A. Tomkins, Structure and evolution of online social networks, KDD, 2006.
- Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing communities and their evolutions in dynamic social networks, TKDD, 2009.
- B. Long, Z.M. Zhang, X.Wu, and P. S. Yu, Spectral clustering for multi-type relational data, ICML, 2006.
- B. Long, P. S. Yu, and Z.M. Zhang, A general model for multiple view unsupervised learning, SDM, 2008.
- I. Borg and P. Groenen, Modern Multidimensional Scaling: theory and applications (2nd ed.) (Book), 2005.

- Chengxiang Zhai and John Lafferty, A Study of Smoothing Methods for Language Models Applied to Information Retrieval, ACM Transactions on Information Systems, 2004
- Jiwoon Jeon, W. Bruce Croft and Joon Ho Lee, Finding Semantically Similar Questions Based on Their Answers, SIGIR, 2005
- Jiwoon Jeon, W. Bruce Croft and Joon Ho Lee, Finding Similar Questions in Large Question and Answer Archives, CIKM, 2005
- Xiaobing Xue, Jiwoon Jeon and W. Bruce Croft, Retrieval Models for Question and Answer Archives, SIGIR, 2008
- Hu Wu, Yongji Wang and Xiang Cheng, Incremental Probabilistic Latent Semantic Analysis for Automatic Question Recommendation, RecSys, 2008

- Yunbo Cao, Huizhong Duan, Chin-Yew Lin, Yong Yu and Hsiao-Wuen Hon, Recommending Questions Using the MDL-based Tree Cut Model, WWW, 2008
- Baoli Li, Yandong Liu and Eugene Agichtein, CoCQA: Co-Training Over Questions and Answers with an Application to Predicting Question Subjectivity Orientation, EMNLP, 2008
- Delphine Bernhard and Iryna Gurevych, Combining Lexical Semantic Resources with Question & Answer Archives for Translation-Based Answer Finding, ACL, 2009
- Kai Wang, Zhaoyan Ming and Tat-Seng Chua, A Syntactic Tree Matching Approach to Finding Similar Questions in Community-based QA Services, SIGIR, 2009
- Alon Halevy, Peter Norvig, and Fernando Pereira, The Unreasonable Effectiveness of Data, IEEE Intelligent Systems, 2009

- Kai Wang, Zhao-Yan Ming, Xia Hu and Tat-Seng Chua, Segmentation of Multi-Sentence Questions: Towards Effective Question Retrieval in cQA Services, SIGIR, 2010
- Xin Cao, Gao Cong, Bin Cui, Christian S. Jensen, A Generalized Framework of Exploring Category Information for Question Retrieval in Community Question Answer Archives, WWW, 2010
- Tom Chao Zhou, Chin-Yew Lin, Irwin King, Michael R. Lyu, Young-In Song and Yunbo Cao, AAAI, 2011
- Shuguang Li and Suresh Manandhar, Improving Question Recommendation by Exploiting Information Need, ACL, 2011
- Tom Chao Zhou, Xiance Si, Edward Y. Chang, Irwin King and Michael R. Lyu, A Data-Driven Approach to Question Subjectivity Identification in Community Question Answering, AAAI, 2012

- Onur Kucuktunc, B. Barla Cambazoglu, Ingmar Weber, Hakan Ferhatosmanoglu, A Large-Scale Sentiment Analysis for Yahoo! Answers, WSDM, 2012
- Xingliang Ni, Yao Lu, Xiaojun Quan, Liu Wenyin, Bei Hua, User interest modeling and its application for question recommendation in user-interactive question answering systems, Information Processing and Management, 2012
- Anna Shtok, Gideon Dror and Yoelle Maarek, Learning from the Past: Answering New Questions with Past Answers, WWW, 2012
- Xiance Si, Edward Y. Chang, Zoltan Gyongyi and Maosong Sun, Confucius and Its Intelligent Disciples: Integrating Social with Search, VLDB, 2010
- Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer and Paul S. Roosin, A Statistical Approach to Machine Translation, Computational Linguistics, 1990

I. King, B. Li, T. C. Zhou (CUHK)

Thanks for your attention!

I. King, B. Li, T. C. Zhou (CUHK)