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Abstract

This paper presents an adaptive scheme for code-
book design by using a self-creating neural network,
called Branching Competitive Learning network. In
our scheme, not only codevectors, but also codebook
size are adpatively modi�ed according to input image
data and a distortion tolerance. In the situation that
the input image is visually simple or the image data
have a centralized distribution, our codebook design
algorithm will assign a relatively small codebook; and
for a complex image, our algorithm will give a rela-
tively large codebook. Experimental results are given
to illustrate the adaptability and the e�ectiveness of
our scheme.

1 Introduction

Recently, neural network based competitive learning
algorithms have been developed for vector quantiza-
tion [1, 2, 3]. Compared to the conventional vec-
tor quantization algorithms, i.e., K-mean algorithm
or sometimes known as Generalized Lloyd Algorithm
(GLA) [4], the algorithms based on competitive learn-
ing of neural networks o�er the advantages of on-
line operation and require little storage. However,
most competitive learning neural network, such as Self-
Organizing Feature Map (SOFM) [6] and Frequency

Sensitive Competitive Learning (FSCL) [1, 5], need to
assume a network with a �xed number of nods, which
means that the cluster number of input data set must
be pre-speci�ed in advance. In the situation that there
is no a priori information available about the underly-
ing data distribution, it is very di�cult and even im-
possible to appropriately estimate the cluster number
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in a data set. As a result, we often realize only at
the end of experiment that a di�erent cluster number
setting may be more proper.

In this paper, we �rst present a self-creating neural net-
work model by adding a branching mechanism to the
classical competitive leaning network. The proposed
model, called Branching Competitive Learning (BCL)
network, starts from one unit in the output layer �rst,
and afterwards, the unit and it o�spring dynamically
split and merge along with the competitive learning
process under control of the Branching Criteria. With
this self-creating mechanism, our network can adap-
tively determine its size according to the input data
distribution, and gives a more appropriate clustering
result. As an application of the BCL network, we de-
velop an adaptive scheme for codebook design. In our
scheme, not only codevectors, but also codebook size
will adaptively be modi�ed according to the image data
distribution. Experimental results are given to show
the e�ciency of our scheme.

2 Data Clustering By Competitive Learning

Vector quantization is a problem of data clustering.
Assume there are N data vectors, f�!x ig

N
i=1 and �!x i 2

Rd, and the codebook size (or the cluster number),
M , is pre-speci�ed, then, the codebook design can be
de�ned as: Find f�!! ig

M
i=1 in R

d to minimize the average
distortion or the mean squared error (MSE):

MSE =
1

N

MX

i=1

NiX

j=1

k�!x i(j)��!! ik
2; (1)

where Ni is data number in cluster i, �!x i(j) represent

data point in cluster i (j = 1; 2; � � � ; Ni), N =
PM

i=1Ni,
and k � k is the L2 norm.

Competitive learning network is very e�cient for the
task of data clustering. Kosko [8] proved that the set
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of centroids of clusters is the solution of the above prob-
lem, and the synaptic vectors of learning network con-
verge to these centroids exponentially fast.

The classical Competitive Learning (CL) is a winner-
take-all scheme, which can be expressed by:

�!! c(t+ 1) = �!! c(t) + �c(�!x ��!! c(t))

for c = argminjk�!x ��!! jk
2

�!! j(t+ 1) = �!! j(t) for j 6= c (2)

where �!x is a randomly selected input data point, t
represents the current step of competitive learning, �!! j

denotes the synaptic vectors corresponding to the jth
neural unit (for simplicity, �!! j also represents the jth
neural unit), and �c is the learning rate. In practice, to
guarantee the convergence of the learning procedure, a
gradually decreasing learning rate is often adopted :

�c(t) = �0(1�
t

T
); (3)

where �0 is the initial learning rate, and T denotes a
pre-speci�ed number of iteration.

The classical competitive learning algorithm is very
simple and easily implemented; however, it su�ers from
the so called dead unit problem, which means that some
units may never be activated by the competition. To
deal with this problem, some modi�cation have been
developed. Kohonen's SOFM [6] employs a winner-
take-quota strategy to alleviate the dead unit prob-
lem. In SOFM, not only the winner, but also the win-
ner's neighbors can learn from a competition. Although
SOFM can alleviate the dead unit problem, the perfor-
mance of SOFM is greatly a�ected by the selection of
neighborhood function, and ill-adjusted neighborhoods
may lead SOFM to perform poorly.

Another modi�cation of CL is FSCL [1, 5]. The com-
petitive learning rule of FSCL di�ers from CL just by
adding a winning frequency term to avoid the situation
that some neurons always fail in the competition:

�!! c(t+ 1) = �!! c(t) + �c(�!x ��!! c(t))

for c = argminjjk�!x ��!! jk
2 (4)

where j is the frequency that �!! j has won the com-

petition up to now, that is j = nj=
Pt

i ni and ni is
the cumulative number of �!!i winning the competition.
Obviously, when the winning frequency of a unit be-
comes large enough, the chance it continues winning
will become small; contrarily, as the winning rate of
a unit becomes small enough, the probability it wins
the next competition will become large. In this way,
FSCL achieves nearly equal node-utilization, and there-
fore avoids dead units.

3 Branching Competitive Learning Network

The above competitive learning algorithms have one
thing in common: the network size M must be pre-
speci�ed in advance, or, in other words, the cluster
number M for input data set need to be pre-speci�ed.
Because there is usually no a priori information avail-
able to appropriately estimate cluster number. We
have to try to use di�erent value of M to obtain better
clustering result. An attractive way to solve this prob-
lem is to add a growing mechanism to neural network,
so that network can automatically increase its size to
an appropriate value according to the input data dis-
tribution. In the following, we present a self-creating
scheme based on our previous work [10].

3.1 Branching Criteria and the BCL Algorithm

Intuitively, in the process of competitive learning, when
a synaptic vector exhibits an intense oscillatory move-
ment, it usually means that the vector is \attracted"
by two or more di�erent data clusters, and, at this
moment, splitting this synaptic vector can notably
decrease the clustering distortion MES. In the BCL
scheme, we employ two geometrical measurements of
winner's movement in the weight space to measure the
intensity of winner's oscillation. The �rst one is the
angle of a winner changing its moving direction in the
weight space in two consecutive activations. The sec-
ond is the minimal distance of winner's consecutive
movements. Our Branching Criteria can be described
as:�

ang(�!x (tc)��!! c; �!x (tl)��!! c) > '0

min(k�!x (tc)��!! ck; k�!x (tl)��!! ck) > d0
(5)

where �!!c denotes a winner in current competition,
�!x (tc) and �!x (tl) represent the two data presentation
in two consecutive activation of �!! c, tc denotes the
current competition step and tl represents the previ-
ous activated step, '0 and d0 are angle and distance
thresholds pre-speci�ed to control the branching pro-
cess. Geometrically, the larger of a winner chang-
ing its moving direction and longer of its movements
in two consecutive activations, the more intense of
the winner's oscillation. So, in the weight space as
shown in Fig. 3.1, ang(�!x (tc) � �!! c; �!x (tl) � �!! c) and
min(k�!x (tc)��!! ck; k�!x (tl)��!! ck) can help us to mea-
sure the intensity of a winner's oscillation.

Usually, the threshold '0 in the Branching Criteria is
set to 90�, and therefore, the Angle Criterion becomes:

(�!x (tc)��!! c) � (�!x (tl)��!! c) < 0: (6)

In practice, BCL may sporadically generate a few dead
units which no longer or in a very low frequency be
activated by the competitive learning. To avoid this
situation, we simply introduce a threshold, �, called
pruning rate, to delete the dead units: if j < �, then

2117



Figure 1: An illustration of branching point, where ' �
'0 and min(k

�!
d lk; k

�!
d ck) � d0.

delete �!! j from the set of neural units, where j denotes
the frequency that �!! j has won the competition from
its birth to the current competition step. Now, let us
formulate the BCL algorithm for data clustering:

1. Initialize the \seed" or the �rst synaptic vector.

2. Randomly take a sample �!x from data set, �nd
the winner �!! c of current competition in the set
of synaptic vector f�!! jg (j = 1; 2; � � � ; n), that is
c = argminjk�!x ��!! jk

2.

3. if �!! c satis�es the Branching Criteria, a new neu-
ral unit �!! n+1 is spawn o� from �!! c:

�!! n+1 = �!! c + �c(�!x ��!! c)

otherwise, just update �!! c by �!! c+�c(�!x ��!! c).

4. For each unit �!! j , if its winning frequency j from
its birth time to current competition step less
then the prespeci�ed pruning rate �, i.e., j < �,
then cancel the unit �!! j from the network.

In practice, the whole procedure can be divided into
two phases: growing phase and data clustering phase.
In the �rst phase, network keeps growing until its size
reaches a dynamical equilibrium. Following this phase,
network will no more split. It will just modify the
synaptic vectors to approximate cluster centers.

3.2 Multiresolution Data Clustering by BCL

From a viewpoint of multiresolution, cluster number
detection is resolution-dependent, and data clustering
can also be viewed as problem of multiresolution spa-
tial partition. For example, in the viewpoint of coarse
resolution (Fig. 2(a)), we can say that the data set just
has four clusters. However, when we view the data set
in a relatively �ne resolution (Fig. 2(b)), we can �nd
four small clusters in each cluster.
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Figure 2: A multiresolution data set.

In the BCL scheme, the threshold parameter d0 plays a
key role in controlling the resolution. A large value of
d0 may results in an under estimation of cluster num-
ber. From the viewpoint of multiresolution, this is nat-
ural, because a large value of d0 means that we are
viewing the data distributions with coarse resolution,
in which an aggregation of locally compact clusters in
the �ne scale could be viewed as just one single cluster.
Using di�erent values of d0, we can easily implement a
multiresolution data clustering.

3.3 Simulations

We conduct two set of experiments on synthetic data
sets in order to: (1) examine the ability of the BCL to
detect cluster number automatically and to (2) show
the validity of the multiresolution data clustering by
the BCL.

In the �rst simulation, we use two sets of 2-dimensional
data, as shown in Fig. 3. Each data set contains 1,000
samples with four Gaussian clusters. Figure. 3(a) and
(b) show data set 1 and the learning branching traces
of synaptic vectors under the \seed" initialization by
point [4,4] (Fig. 3(a)), or by the origin (Fig. 3(b)).
Data set 2, in which there are some overlapping be-
tween clusters, and the learning traces are shown in
Fig. 3 (c) and (d).

In the experiments, we �x the learning rate with
�c = 0:05. The threshold of angle and distance in the
Branching Criteria are set with '0 = 90� and d0 = 1:8.
The pruning rate is set with � = 1

3
. From the learn-

ing traces, we can see that BCL can automatically and
correctly detect the number of clusters in data distribu-
tion, even in the case that there are some overlapping
between clusters.

In the second simulation, the data set, as shown in
Fig. 4, consists of 16 Gaussian distributions with stan-
dard variance � = 0:8. Each cluster contains 200 sam-
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Figure 3: Data sets and the learning branching traces of

the synaptic vectors.

ples, and the total number of sample is 3,200.

We conduct a 2-level multiresolution clustering. In
level 1, we set the distance threshold with d1 = 5:6;
while in level 2, the distance threshold is set with
d2 = 2:8. The learning rate is �xed with � = 0:02,
the original synaptic vector is initialized by point (0,0),
and the pruning rate is set to � = 1

3
.

The experimental results are shown in Fig. 4. Fig-
ure 4(a) shows the learning traces of the synaptic vec-
tors in level 1. We can see that in the resolution level 1,
data points are divided into four clusters and the con-
vergent synaptic vectors are correctly located at the
centroids of each clusters. Figure 4(b) shows the learn-
ing traces of the further branching in resolution level
2. We can see that the �nal detected cluster number
just is 16, the actual cluster number.

4 Codebook Design Using the BCL Network

In this section, we compare the performance of code-
book design based on the BCL algorithm with other
algorithms, such as GLA, spliting GLA [4], CL, FSCL,
and RPCL [7]. The test images used here are Lena,
boat, bridge, and pepper in size of 256� 256 with 256
gray levels. Each image contains 4,028 image blocks
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(a) Resolution level 1.
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Figure 4: 2-level multiresolution clustering.

with size of 4 � 4, and these image blocks make up
a 16-dimension data set. The problem of codebook
design requires that these 4,028 blocks data be coded
or quantized by k blocks data, where k, the codebook
size, is either pre-speci�ed or adaptively determined
according to image data distribution. As usual, we
use MSE to compare the accuracy of all codebooks,
MSE = 1

2562

P
i;j(x(i; j) � x(i; j))2, where x refers to

original image, and x refers to the reconstructed image.

4.1 Codebook Design with Fixed Book Size

In the �rst experiments, the codebook size k is set to
be 64, 128, 256, 512, 1024, or 2048 respectively. We
adopt a piecewise random way to initialize the code-
books of GLA, CL, FSACL, and RPCL, that is, we
�rst uniformly divide the data into k segments, then
we randomly select a data sample from each segment
to construct the initial codebook. As for BCL, we al-
ways initialized the \seed" by the origin point. For
the competitive learning based schemes, the winner's
learning rates are set in the form as in Eq. (3) with
�c(0) = 0:5, while the rival's learning rate for RPCL is
also set as in Eq. (3) with �(0) = 0:02. The splitting
GLA algorithm is implemented as [4]. We adopt the
\fractional drop of distortion" in two consecutive itera-
tions as the convergence marker of GLA algorithm, i.e.,
if D1�D2

D1

< 0:0001, stop the iterations of GLA, where
D1 and D2 denote two MSEs in the previous and cur-
rent iteration. For other algorithms, we just simply
stop the competitive learning when the total number
of learning reaches a pre-speci�ed number. The pre-
speci�ed number is adopted in the form of mS, where
m, called \epoch", is a positive integer, and S is the to-
tal number of data in the data set. In our experiments,
the epoch is always set to be 20. For BCL, the prun-
ing rate is set with � = 1

6
, and the distance threshold

d0 is set to 32:0 when k < 2; 048, or set to 16:0 when
k = 2048. Experimental results of average MSE and
average CPU running time in ten consecutive trials are
shown in Table 1 for the Lena image. Figure 5 shows
the comparisons of BCL with other codebook design
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Table 1: Comparison of the algorithms for VQ design (for Lena image).
k 64 128 256 512 1024 2048

GLA MSE 137.16 107.75 86.85 66.39 45.98 23.25
time(s) 42.82 89.56 155.16 201.56 354.94 491.90

split MSE 137.16 106.97 85.68 61.06 37.68 17.06
GLA time(s) 45.92 74.04 159.51 208.38 349.50 543.71

CL MSE 135.20 102.43 72.58 47.50 28.73 14.22
time(s) 20.85 42.52 84.14 167.38 337.38 737.57

FSCL MSE 156.93 126.69 98.09 70.26 43.20 18.40
time(s) 28.84 44.76 125.38 253.23 481.73 945.23

RPCL MSE 155.66 125.73 97.23 69.70 43.03 17.89
time(s) 22.41 45.78 89.61 178.18 360.33 803.39

BCL MSE 136.35 102.53 71.97 43.65 18.42 4.88
time(s) 16.95 33.17 65.09 132.35 376.02 817.29

algorithms in term of average MSE for the boat and
pepper images.
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Figure 5: Comparison of BCL with other algorithms in
term of average MSE.

From these experimental results, we can see that the
BCL algorithm almost always provides a better code-
book with lower MSE (especially for large codebook)
than other algorithms, while, in most cases, it requires
the same or even less computation time comparing with
other CL algorithms.

4.2 Adaptively Determining Codebook Size

In this section, we conduct experiments to investigate
the performance of BCL network for adaptively code-
book design. In the experiments, the learning rate is

�xed at �c = 0:5 in the growing phase, in which net-
work continues growing until its size reaches a dynami-
cal equilibrium. If the uctuation of network size keeps
in an acceptable range for a long period, the �nal net-
work size is then accepted as the codebook size. Af-
ter that, the network stops growing, and the synaptic
vectors of the network are treated as the initial code-
vectors. In practice, when the uctuation of network

size Sc satis�es jSc(t2)�Sc(t1)j
Sc(t2)

� 0:01 in three consec-

utive \epochs", we think the network size reaches its
dynamical equilibrium. In the following competitive
learning, network just modi�es the codevectors to ap-
proximate cluster centers. In this procedure, learning
rate is adopted in a decreasing format as Eq. 3 with
�c(0) = 0:5.

Figure 6(a) presents three images, obviously, each of
them has di�erent visual complexity. Under a same
distance threshold d0 = 120, our BCL network assigns
di�erent codebooks with di�erent size to them. Fig-
ure 6(b)�(d) show the corresponding growing phases
and the �nal values of the codebook size. We can see
that BCL can adaptively determine codebook size ac-
cording to image data distribution or image's visual
complexity. Besides, we also compare, in term of MSE,
the adaptive codebook with other codebooks for Lena
image. This time, the codebook size obtained from
BCL is used as the pre-speci�ed codebook size for other
codebood design schemes. Figure 7 gives the experi-
mental results, from which we can see that BCL net-
work almost always generates better codebook with low
MSE.

5 Conclusion

We presents an adaptive scheme for codebook design
by using the Branching Competitive Learning network.
In our scheme, not only codevectors, but also codebook
size are adpatively modi�ed according to input image
data and a distortion tolerance. With a same distor-
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(a) Original images.
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Figure 6: Adaptively determined codebook.
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tion tolerance, our codebook design algorithm will au-

tomatically assign a relatively small codebook to the

visually simple images; while for a complex image, our

algorithm will give a relatively large codebook. Exper-

imental results are given to illustrate this adaptability

and the e�ectiveness of our scheme.
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