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Abstract

Support Vector Regression (SVR) has been applied successfully to financial

time series prediction recently. In SVR, the ε-insensitive loss function is usually

used to measure the empirical risk. The margin in this loss function is fixed

and symmetrical. Typically, researchers have used methods such as cross-

validation or random selection to select a suitable ε for that particular data

set. In addition, financial time series are usually embedded with noise and the

associated risk varies with time. Using a fixed and symmetrical margin may

have more risk inducing bad results and may lack the ability to capture the

information of stock market promptly.

In order to improve the prediction accuracy and to consider reducing the

downside risk, we extend the standard SVR by varying the margin. By varying

the width of the margin, we can reflect the change of volatility in the financial

data; by controlling the symmetry of margins, we are able to reduce the down-

side risk. Therefore, we focus on the study of setting the width of the margin

and also the study of its symmetry property.
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For setting the width of margin, the Momentum (also including asymmetri-

cal margin control) and Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) models are considered. Experiments are performed on two

indices: Hang Seng Index (HSI) and Dow Jones Industrial Average (DJIA)

for the Momentum method and three indices: Nikkei225, DJIA and FTSE100,

for GARCH models, respectively. The experimental results indicate that these

methods improve the predictive performance comparing with the standard

SVR and benchmark model. On the study of the symmetry property, we give

a sufficient condition to prove that the predicted value is monotone decreas-

ing to the increase of the up margin. Therefore, we can reduce the predictive

downside risk, or keep it zero, by increasing the up margin. An algorithm is

also proposed to test the validity of this condition, such that we may know the

changing trend of predictive downside risk by only running this algorithm on

the training data set without performing actual prediction procedure. Exper-

imental results also validate our analysis.
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Chapter 1

Introduction

1.1 Time Series Prediction and Its Problems

Time series prediction, or time series forecasting, takes an existing series

of data xt−n, . . . , xt−2, xt−1, xt and forecasts any of the future data values

xt+1, xt+2, . . . . The goal is to observe or to model the existing data series in

order to forecast future unknown data values accurately. Examples of data se-

ries include financial data series (stocks, indices, foreign exchange rates, etc.),

physically observed data series (sunspots, weather, etc.), and mathematical

data series (Fibonacci sequence, integrals of differential equations, etc.). The

phrase time series generically refers to any data series, irrespective of whether

or not the data are dependent on a certain time increment.

Time series prediction has several important applications [11, 1, 10, 22].

For example, forecasting the network flow or identifying the network conges-

tion circumstance based on the previous flow of network [10]. A more useful

application is that people hope to profit by applying the time series prediction

techniques in the financial markets. Whether this is viable or not is most likely

a never-to-be-resolved question.

In this thesis, we focus on a recent model, Support Vector Machine (SVM),

which has captured researchers’ interest because of its mathematical tractabil-

ity, geometric interpretation and practical use. We apply the regression model

1



Chapter 1 Introduction 2

of this learning machine, Support Vector Regression (SVR), in the financial

time series prediction. Different to other traditional regression models, SVR

not only minimizes the empirical risk (training error), but also minimizes a

term which makes the objective function as flat as possible. Usually, the ε-

insensitive loss function is used to measure the empirical risk. This loss func-

tion contains a 2ε margin; this margin is fixed and symmetrical. Typically,

researchers have used methods such as cross-validation or random selection to

select a suitable ε for that particular data set. Financial time series are usually

embedded with noise and the associated risk varies with time. Using a fixed

and symmetrical margin may have more risk inducing bad results and may

lack the ability to capture the stock market information promptly.

In order to improve the prediction accuracy and to consider reducing the

downside risk, we extend the standard SVR by varying the margin. By varying

the width of the margin, we can reflect the change of volatility in the finan-

cial data; by controlling the symmetry of margins, we are able to reduce the

downside risk.

1.2 Major Contributions

The main contributions of our work are:

1. We have extended the standard Support Vector Regression (SVR) by

varying the margin and have applied it to financial prediction tasks [96,

98]. The original margin in SVR is fixed and symmetrical, which lacks the

ability to capture the information of stock market promptly. We extend

the margin setting by extending these two characteristics of margin, i. e.,

fixed margin vs. non-fixed margin, symmetrical margin vs. asymmetrical

margin. The resultant models are classified into four categories.
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2. Usually, the financial data are noisy and the associated risk is time-

varying. By varying the width of margin in SVR, we could reflect the

change in volatility of the financial data; by controlling the symmetry of

margins, we are able to reduce the downside risk. Standard deviation is

a statistical term that provides a good indication of volatility of stock

market; the momentum term is used to measure the up and down trend of

stock market. Therefore, we propose a novel approach, which combines

both characteristics of margins, i. e., by using standard deviation of input

x to set the width of margin and by using a momentum term to control

the symmetry of margin in predicting the prices of Hang Seng Index

and Dow Jones Industrial Average based on the prices time series. The

experimental results show that this actually improves the performance

of SVR model in the prediction [98].

3. We also apply Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) models, which can reflect the volatility of the financial time

series over time, to determine the margin over time for return time series

data. This also improves the performance of SVR model [97].

4. After studying the relation between downside risk and fixed margin set-

tings, we give a sufficient (but not necessary) condition to prove that the

predictive downside risk can be reduced or kept zero by increasing the

up margin. We also propose a detective algorithm to check the validity

of this sufficient condition, such that we may know the changing trend of

predictive downside risk without running the actual SVR algorithm [97].

1.3 Thesis Organization

This thesis is organized as followed. Chapter 2 presents a procedure of building

a time series analysis system and reviews various time series analysis models.
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These models are classified into linear models and non-linear models. For lin-

ear model, we detail ARIMA models; for nonlinear models, we concentrate

on SVMs and GARCH models. The recent model, Support Vector Regression

(SVR), for time series analysis is presented in Chapter 3, where our review be-

gins from the regression problem, to the loss function, to the kernel function,

which makes a linear SVR model to the non-linear case. Chapter 3 also states

the relation between SVR model and other models, Support Vector Classi-

fication (SVC) models, Ridge Regression models and Radial Basis Function

networks. Chapter 4 addresses the problem that occurs in SVR for the time

series prediction and provides a solution by using a general ε-insensitive loss

function; the corresponding accuracy metrics and risk measurements for the

experiments are also stated in this chapter. Chapter 5 considers the concrete

setting of margins in the non-fixed cases and presents the experimental results

for two kinds of margin settings by the Momentum method and GARCH mod-

els. Chapter 6 studies the downside risk and the asymmetrical margin settings,

where we state that if the sufficient condition is valid, we can prove that the

predictive downside risk will be reduced or kept zero when the up margin is

increased. A detective algorithm is also proposed to check the validity of the

condition. Finally, Chapter 7 briefly concludes this thesis and lists some future

works about our model.

1.4 Notation

In this thesis, bold typeface will indicate vector or matrix quantities; nor-

mal typeface will be used for vector and matrix component and for scalars.

The components of vectors and matrices are labeled with Greek indices. The

vectors and matrices themselves are labeled with Roman indices.



Chapter 2

Literature Review

A time series is a collection of observations that measures the status of some

activities over time [22, 23]. It is the historical record of some activities,

with a consistency in the activity and the method of measurement, where the

measurement is taken at equally spaced intervals, e. g. day, week, month, etc.

In practice, there are various time series and they are used in a wide range of

disciplines, from engineering to economics. For example, the air temperatures

of a certain city measured in successive days or weeks consists of a series, a

certain share prices occurred in successive days, months is another series.

Of all the different possible time series, the financial time series is unusual

since it contains several specific characteristics:

Noisy–The financial time series is usually embedded with noise which

may be so high that it has a relatively low signal-to-noise ratio. Although

this type of noise can be reduced or removed by some techniques, such

as smoothing methods or filters, it produces lag problem.

Non-stationary–The second characteristic is non-stationary, i. e., data

that do not have the same statistical properties (e. g. mean and variance)

at each point in time. This makes the forecasting very difficult. A

common technique used to make a series stationary is to difference it.

However, for financial time series, making training data set stationary

5



Chapter 2 Literature Review 6

does not guarantee the stationary of testing data.

Uncertainty–The third characteristic is that both financial theory and

its empirical time series contain an element of uncertainty [85], e. g. there

are various definitions of asset volatility and the volatility is not directly

observable.

An important task of analysis of time series is to predict the future values

of the series based on the given observed time series, such as

. . . , xt−3, xt−2, xt−1, ?, ?, . . .

Usually, the financial wellbeing of the whole organization operation depends

on the accuracy of the forecast since such information will likely be used to

make correlative budget and operative decisions, for example, investment, pur-

chasing, marketing and capital financing. Any significant over-or-under sales

forecast error may cause a firm to be overly burdened with excess inventory

carrying costs or else to create lost sales revenue through unanticipated item

stock. A more useful application is that people hope to profit by applying

the time series prediction techniques to the financial markets. Whether this is

viable or not is most likely a never-to-be-resolved question.

Before jumping to detail technical models for their own sakes, let’s give a

brief introduction of the framework of how to build a system to forecast the

time series.

2.1 Framework

Forecasting is a necessary input to planning, whether in business or govern-

ment. Usually, forecasts are generated subjectively and at great cost by group

discussion. Modeling a practical problem and doing forecasting can offer an
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objective information for future development. The flowchart in Fig 2.1 high-

lights different phases of such a modeling system. This system contains several

functions:

Model Estimation–understand the underlying mechanism generating

the time series; this includes describing and explaining any variation,

seasonality, trend, etc.

Forecasting Generation–predict the future based on the assumption

of “business as usual”.

Forecasting Updating–control the system, that is to perform the “what-

if” scenarios.

Forecast Generation 

Model Stable?

Forecast Updating

New Observation

No

Data Processing 

Model Specification

Model Estimation

Model Appropriate?No

Model Building

Forecasting Procedure

Figure 2.1: Model building and forecasting phases of a forecasting system.
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2.1.1 Data Processing

Finding good representation for the data is a crucial and labor intensive task.

Depending on different problems, it is necessary to perform some data pro-

cesses in order to satisfy the requirement of the special models. For instance,

we need preprocessing to remove seasonal effect, trend effect or cyclic oscil-

lation in the data. Without performing such preprocessing on the data, we

may, for example, incorrectly infer that recent increase patterns will continue

indefinitely when actually the increase is simply because it is that time of the

year. In the following, we will introduce two methods for data processing:

smoothing and differencing.

Smoothing

Inherited in the collection of data taken over time is the form of random

variation. There are some methods for reducing or canceling the effect of this

random variation. An often-used technique is “smoothing”. This technique,

when properly applied, reveals more clearly the underlying trend, seasonal and

cyclic components from the original data.

There are two distinct groups of smoothing methods:

1. Simple Moving Average (SMA) – a k-day SMA takes the average of

previous k days’ values as current day’s value.

2. Exponential Moving Average (EMA) – a k-day EMA begins from the

first day, EMA1 = x1, and set the i-day’s value as EMAi = EMAi−1 ×
(1− 2

k
) + xi × 2

k
.

For example, given a data series x1, x2, x3, x4, . . . , after taking SMA with

an interval of three, it becomes [(x1 + x2 + x3)/3], [(x2 + x3 + x4)/3], . . . .

While using 3-days’ EMA, the series becomes x1, 1
3
x1 + 2

3
x2, 1

9
x1 + 2

9
x2 + 2

3
x3,

1
27
x1 + 2

27
x2 + 2

9
x3 + 2

3
x4, . . . .
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Comparing SMA with EMA, we can conclude the following difference:

1. Taking k-days’ SMA will reduce the number of data points in the series

by k − 1, while EMA still retains the same number of original data.

2. EMA gives more weight to the latest data than SMA.

3. EMA reacts faster to recent value changes than SMA.

Figure. 2.2 also illustrates these differences.

0 100 200 300 400 500 600 700 800
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Time

P
ric

e

Original Prices
30 days’ SMA
30 days’ EMA

Figure 2.2: Experimental Data used in this thesis: daily closing prices of
Japanese Nikkei225 from Jan. 04, 2000 to Dec. 30, 2002 with a 30 days’ SMA
and with a 30 days’ EMA.
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Differencing

Differencing is another method for preprocessing when there is a substan-

tial trend in the data. Concretely, a data series x1, x2, x3, . . . becomes (x2 −
x1), (x3 − x2), . . . after taking a first-difference. Generally, the original time

series becomes ∇xt = xt+1−xt after first-difference. While this procedure usu-

ally makes a data series stationary in the mean. If not, a second-difference of

the series can be taken. This procedure may be done until the series becomes

stationary (the definition of stationary please see [22]. Other notes are that

taking a first-difference will reduce the number of data points in the series by

one, but the noise of data is cumulative. Figure 2.3 presents an original price

series and the result of a financial index after first-differencing.
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Figure 2.3: Experimental Data used in this thesis: daily closing prices of
Japanese Nikkei225 from Jan. 04, 2000 to Dec. 30, 2002 with first-differencing

2.1.2 Model Building

After processing the original data, we should turn to the main problem: what

does the model inhere in the given data; how to learn the model from the

given data, or how to build the model based on the given data. The gen-

eral techniques for time series analysis and prediction are classified into two
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categories:

1. Known Model Structure–If the structure of the underlying model

of a time series is revealed by a lot of information clearly, for example,

the structure is linear, quadratic or periodic, etc., the main task left is

then to estimate a few parameters of the model to fit the observation

data. Sufficient observations will help to make this kind of model quite

accurate and powerful. Unfortunately, for many practical problems, the

underlying models are often unknown or ill-specified.

2. Unknown Model Structure–When the data does not reveal much in-

formation, the only thing available is a set of observations. For such

problems, people often assume that the underlying model has some

state variables, which determine what the values of the time series should

be.

In [22], a general formulation for state space models is given to approximate

nonlinear models as follows:

Let . . . , xt−1, xt, xt+1, . . . be a time series, it is assumed

xt+1 = f(s1
t+1, . . . , s

i
t+1, . . . , s

d
t+1) + εt+1,

where εt+1 represents random noise at time t + 1 and s1
t+1, . . . , s

d
t+1 are state

variables, and

sit+1 = gi(s
1
t , . . . , s

k
t , . . . , s

d
t , xt, xt−1, . . . ), k = 1, 2, . . . , d,

where f and gis are some functions. Note that x and s can be scale quantities

for univariate model, but they could also be vector values for the more general

multivariate setting. The motivation of using state variables is that they often

correspond to certain features or properties of the time series and can help

to understand and characterize the series. They can also help to simplify the
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computations for analysis and prediction. Figure 2.4 gives a simple illustration:

complicated time series may be represented simply by other state variables. In

general, f is the objective function estimated by some models, and gs are some

functions used to process the original data, such as those methods introduced

in Subsection 2.1.1.
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Figure 2.4: A time plot (a) of the logistic function xt+1 = 3.97 ∗ xt ∗ (1− xt) is
difficult to figure out, but a state space plot (b) clearly shows the underlying
model. Using a state variable s1

t+1 = xt, this example can be rewritten as
xt = 3.97 ∗ s1

t ∗ (1− s1
t ).

2.1.3 Forecasting Procedure

Forecasting the future values of an observed time series is an important prob-

lem in many areas, e. g. economics, production planning, sales forecasting

and stock control [22]. In [22], Chatfield classified the types of forecasting

procedure into three categories:

Subjective Forecasts can be made subjectively based on judgement, intu-

ition, commercial knowledge and any other information.

Univariate Forecasts can be made on an entire basis of past observations in

a given time series, by fitting a model to the data and extrapolating. For
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instance, forecasts of future sales of a product would be based entirely

on past sales.

Multivariate Forecasts can be made by taking other observations or other

variables into account. For example, sales may depend on stocks. Re-

gression models are of these types of models, e. g. econometric models.

The using of a leading indicator also comes into this category.

[22] also stated that a forecasting procedure may involve a combination of

the above approaches practically. For instance, univariate forecasts are often

computed, and then adjusted subjectively.

Sometimes the model may not be stable or need to be more accurate, the

building model has to adjust to fit new observations. Therefore, other methods

are proposed to adjust the model based on new observations automatically. For

example, in [93], Wah and Qian presented new constraints on cross-validation

to adjust their previous constructed model. Another interesting note in [93] is

their assumption of stock price and their data preprocessing. They assumed

stock prices consist of low-frequency and high-frequency components, where

low-frequency components are predictive. Therefore, they applied low-pass

filtering to the price time series at first. However, usually lag problem occurs

when low-pass filtering is applied. Then they proposed methods to overcome

this problem.

2.2 Model Descriptions

There are many models for time-series analysis. Here we classify them into

linear and nonlinear models as in [23], see Figure 2.5.
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2.2.1 Linear Models

Linear models have the following characteristics: simplicity, usefulness and

easy application; and they work well for linear time series, but may fail other-

wise. Here we present three types of linear models:

1. ARIMA and Its Variations

Autoregressive integrated moving average (ARIMA) models have been

developed by Box and Jenkins [10]. There are many variations have been

produced over the last 30 years. The procedure of ARIMA model is to

differnece a non-stationary time series, as differencing in Subsection 2.1.1,

until stationary before applying (mixed) AutoRegressive Moving Average

(ARMA) models. This approach is widely used in econometrics [10]. We

will give a detailed description in Subsection 2.2.3

The setting of an ARIMA models consist of five stages [10]:

(a) Defferencing If the data is non-stationary, the data will be

differencing until it becomes stationary.

(b) Model Identification In this stage, the work is to examine

the data to identify the model, i. e., to determine which order p

and q will be most appropriate for the model. In general, there

is no optimal way to do it. Some useful tools are the sample au-

tocorrelation (ACF) and partial autocorrelation (PACF) functions.

ACF measures the correlation between different lags of a time series,

while PACF measures the residual correlation after the correlation

implied from earlier lags is subtracted out.

(c) Estimation In this stage, it is to estimate the parameters of

the chosen model. Least squares method is usually used to find the

parameters. Please see [10] for more details.
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(d) Diagnostic Checking To check whether the building model

is adequate, one method is to examine the residuals from the fitted

model.

(e) Alternative Models Considering If the fitted model appears

to be inadequate for some reasons, then other ARIMA models may

be tried until a satisfactory model is found.

A simple variant of ARIMA is that if the time series is seasonal, then a

seasonal ARIMA (SARIMA) model may be used to fit the series. How-

ever, although seasonal variation exists through the year, there is no

particular reason to set the model coefficientconstant throughout the

year. Therefore, periodic autoregressive (PAR) models provide a variant

to SARIMA models wherein the value of the autoregressive parameters

are allowed to vary through the seasonal cycle. More generally periodic

correlation arises when the size of autocorrelation coefficients depends,

not only on the lag, but also on the position in the seasonal cycle [23].

An interesting variant of ARIMA models is Fractional integrated ARMA

(ARFIMA) [23]. The difference of ARFIMA is that this models allow

the difference order to be non-integer instead of integer in ARIMA. But

these models contain several drawbacks: (a) they are difficult to give an

intuitive interpretation to a non-integer difference; (b) they are difficult

to compute the fractional difference since the difference is a binomial

expansion. The stationary ARFIMA models, with the difference order

within 0 and 0.5, are a class of models called long-memory models [40].

2. Exponential Smoothing

Exponential smoothing models are another type of linear models [11];

they work well for linear time series but fail to model complicated non-

linearity and trends in financial time series. One application of them



Chapter 2 Literature Review 17

may be applied in data processing, e. g. Subsection 2.1.1.

3. State Space Models

State space models [1] are a class of linear models that represent inputs

as a linear combination of a set of state vectors that evolve over time

according to some linear equations. Different state space formulations

cover a very range of models and include the so-called structural models

in [42] as well as the dynamic linear models in [95], where the latter uses

a bayesian formulation. Models called unobserved component models by

econometricians are also of state-space form. However, in practice, state

vectors and their dimensions of these models are hard to choose [23].

2.2.2 Non-linear Models

Although linear models have both mathematical and practical convenience,

there is no reason why real life time series should all be linear, and so the

use of non-linear models seems potential promising [23]. Here we consider the

non-linear models in the following three types:

1. Predefined Non-linear Models

In the 1980’s, non-linear models were investigated and were proposed

from the existing linear models, e.g. ARIMA models, [40, 65]. For exam-

ple, Bilinear autoregressive or Bilinear AR models [39], time-varying pa-

rameter models [67, 60] and threshold autoregressive (TAR) model [83].

These models are agreeable due to the scrutiny given in their develop-

ment for the standard statistical considerations of model specification,

estimation, and diagnosis, but their general parametric nature tends to

require significant a prior knowledge of the form of relationship being

modeled. Therefore, they are not effective for modeling financial time

series because the nonlinear functions are hard to choose.
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2. General Non-linear Models

Another class of nonlinear models are general non-linear models, also

called machine learning. These models can learn a model from a given

time series without non-linear assumptions. They include reinforcement

learning, e. g., Q-learning [94], unsupervised learning, e. g., clustering

methods [45], supervised learning, e. g., decision tree [66] and neural net-

work (NN) models [68, 24, 3, 43], and statistical learning, e. g., k-nearest-

neighbors(kNN) [30]. Support Vector Machines (SVMs) are new learning

machines that also can model non-linear relationship of the data. SVMs

are grounded on the statistical learning theory, or Vapnik-Chervonenkis

(VC) theory. They also are modeled by a training sample with targets,

and used to predict (classification/value) in a new testing sample. There-

fore, SVMs fall both in the statistical learning and supervised learning.

Detailed description will be given in Subsection 2.2.4.

3. Models for Change in Volatility

Models for changes in volatility are a completely different class of models

that modeling changes in variance. The objective of these models is

not to give better point forecasts of the observations in the given series

but rather to give better estimates of the (local) variance which in turn

allows more reliable prediction intervals to be computed, this can lead

to a better assessment of risk [23].

The estimation of local variance is especially important in financial appli-

cations, where observed time series often show clear evidence of changing

volatility, e. g. large absolute values tend to be followed by more large

(absolute) values, while small absolute values are often followed by more

small values, indicating high or low volatility, respectively.

To estimate the local variance, Engle in 1982 firstly provided a system-

atic framework for volatility modeling, the AutoRegressive Conditionally
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Heteroscedastic (ARCH) model [32, 31]. The basic ideas of ARCH mod-

els are [85]:

1. the mean-corrected asset return is serially uncorrelated, but depen-

dent, and

2. the dependence of asset return at time t can be described by a

simple quadratic function of its lagged values.

An ARCH model with order p, in short ARCH(p), assumes that the

variance at time t, σ2
t is linearly dependent on the last p squared values

of the time series, i. e.,

rt = σtεt, σ2
t = α0 + α1r

2
t−1 + . . .+ αmr

2
t−m,

where rt is a serial asset return, εt is a sequence of independent and

identically distributed ( i.i.d.) random variables with mean zero and

variance 1, and αi are coefficients must satisfy some regular conditions

to ensure that the unconditional variance of rt is finite with α0 > 0,

αi ≥ 0 for i > 0. In practice, εt is often assumed to follow the standard

normal or a standardized student-t distribution.

ARCH models were extended by Bollerslev in 1986, a generalized ARCH

(GARCH) model [8]. Similar to ARMA, a GARCH model can be used to

estimate a high order ARCH model with fewer parameters. A GARCH

model with order p and q, in short GARCH(p,q), assumes that the con-

ditional variance depends on the squares of the last p values of the series

and on the last q values of conditional variance, i. e.,

rt = σtεt, σ2
t = α0 +

p∑

i=1

αir
2
t−i +

q∑

j=1

βjσ
2
t−j ,

where again εt is a sequence of i.i.d. random variables with mean zero

and variance 1, and α0 > 0, αi ≥ 0, βj ≥ 0, and
p∑
i=1

αi +
q∑
j=1

βj < 1.



Chapter 2 Literature Review 20

The GARCH(1,1) model has become the ‘standard’ model for describing

changing variance for no reason other than relative simplicity. There

are also some extensions of the basic GARCH model, such as Quadratic

GARCH (QGARCH) and Exponential GARCH (EGARCH). The QGAR-

CH models allow for negative ‘shocks’ to have more effect on the condi-

tional variance than positive ‘shocks’. The EGARCH models allow an

asymmetric response by modeling log σ2
t , rather than σ2

t . Summaries of

this family of models can be seen in [31].

Although GARCH models are applied in a wide range of problems use-

fully, they do have limitations:

1. GARCH models are only part of a solution. Although GARCH

models are usually applied to return series, financial decisions are

rarely based solely on expected returns and volatilities.

2. GARCH models are parametric specifications that operate best un-

der relatively stable market conditions [38]. Although GARCH

is explicitly designed to model time-varying conditional variances,

GARCH models often fail to capture highly irregular phenomena,

including wild market fluctuations (e. g. crashes and subsequent

rebounds), and other highly unanticipated events that can lead to

significant structural change.

3. GARCH models often fail to fully capture the fat tails observed

in asset return series. Heteroskedasticity explains some of the fat

tail behavior, but typically not all of it. Fat tail distributions, e. g.

student-t, have been applied in GARCH modeling, but often the

choice of distribution is a matter of trial and error.
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2.2.3 ARMA Models

ARMA models are linear models to capture the linear correlation between any

specified lags of a univariate time series and the error term of the model from

previous time points. In general, an ARMA(p,q) model can be written as

xt = µ+ a1xt−1 + a2xt−2 + . . .+ apxt−p + εt + b1εt−1 + . . .+ bqεt−q,

where µ is the mean of the time series and a’s and b’s are constant coefficients.

Moving average (MA) models are special cases of ARMA models. In these

models, the observation in time t depends on the error term of the model from

previous time points, usually these errors are considered as random events [22].

Generally, an MA(q) model is

xt = µ+ εt + b1εt−1 + . . .+ bqεt−q.

From the above formula, we can see that this MA is total different to the

smoothing methods in Subsection 2.1.1, although they are with same names

in different situations.

Autoregressive (AR) models are another special cases of ARMA models.

In this model, the observation in time t is regressed not on other independent

variables but on one or more of the lagged values of the time series [22, 10]. A

general form of an AR(p) model is

xt = µ+ a1xt−1 + a2xt−2 + . . .+ apxt−p + εt,

where εt is a purely random process (also called white noise) with mean zero

and variance σ2
ε .

The simplest example of AR models is the first-order case, i. e., AR(1),

takes the following form

xt = µ+ axt−1 + εt.
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If µ = 0 and a = 1, it is the best-known case of AR models, random walk

model,

xt+1 = xt + εt+1.

This model is correlated to the Efficient Market Hypothesis (EMH). The

EMH was developed by Fama [33, 34] and found broad acceptance in the

financial community [54, 86].

The EMH, in its weak form, states that the past market prices and data

are fully reflected in the price of asset, i. e., the movement of the price is

unpredictable. The best prediction for a price is the current price and the

actual prices follow what is called a random walk. The EMH is based on the

assumption that all news is promptly incorporated in prices; since news is

unpredictable (by definition), prices are unpredictable. Much effort has been

expended trying to prove or disprove the EMH. Current opinion is that the

theory has been disproved [75, 49], and much evidence suggests that the capital

markets are not efficient [53].

If the EMH was true, then the best estimation of a financial time series is:

x̂t+1 = xt.

In other words, if the series is truly a random walk, then the best estimate for

the next time period is equal to the current estimate. However, in this thesis,

we assume that there is a predictable component of the series.

In summary, ARMA models are a combination of AR and MA models. An

advantage of ARMA models lies in the fact that a stationary time series may

often be described by an ARMA model involving fewer parameters than a MA

or an AR model by itself [22].
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2.2.4 Support Vector Machines

Support Vector Machines (SVMs) firstly appeared at COLT 1992 [9]. SVMs

are grounded on the Statistical Learning Theory, or VC theory, which was first

developed by Vapnik and his co-workers [87, 88, 89].

SVMs have the following advantages:

Theoretical Background

SVMs are based on the VC theory, which has been developed for the

past thirty years. This theory claims to guarantee generalization, i. e.,

the generalization error was bounded by the sum of the training error

(empirical risk) plus a term, the term depending on the VC dimension

of the learning machine [87, 89].

Geometric Interpretation

SVMs were firstly proposed to solve classification problems. When con-

structing a SVM, the objective is not only to minimize the empirical risk,

but also to maximize the margin [88, 6].

Global and Unique Solution

Training SVM leads to solve the Quadratic Programming (QP) problem.

For any convex programming problem, every local solution will be also

global. Therefore, SVM training always finds a global solution, and

usually unique [13]. This is superior to NN, where NN usually falls in

local minima [12].

Mathematical Tractability

Using a kernel function, SVMs can be thought as an alternative train-

ing technique for Polynomial, Radial Basis Function and Multi-Layer

Perceptron classifiers, in which the weights of the network are found by

solving a Quadratic Programming (QP) problem with linear inequality
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and equality constraints, rather than by solving a non-convex, uncon-

strained minimization problem, as in standard neural network training

techniques [62].

Due to the above advantages, SVMs have attracted researches’ interest

and have been applied in a wide range of applications with excellent per-

formances [25, 71]. These applications include pattern recognition, such as

handwritten digit recognition [9, 26], face detection in images [62], and text

classification [47].

The margin concept in SVM is also extended to the regression problem and

an analogue of the margin is constructed in the space of the target values by

using the ε-insensitive loss function in Support Vector Regression (SVR) to

solve the regression task [88, 77, 71]. Better results are obtained in time series

prediction [91, 58, 57], especially SVMs improved the best known result on the

benchmark by 29%. SVMs have also been successfully applied in the financial

related applications [81, 16, 17].

There are also some extensions of standard SVMs. For example, a weighted

SVM was proposed in [62]. This extension is used to handle two frequent cases

in classification and pattern recognition: (a) an unequal proportion of data

samples between the classes; (b) a need to tilt the balance or weight one class

versus the other, which is very frequent when a classification error of one type

is more expensive or undesirable than other [62]. This extension is separated

the cost of error C into C+ and C−, which will penalize with higher penalty

the most undesirable type of error. One advantage of this extension has no

real impact on the complexity of the problem of finding the optimal vector of

Lagrange multipliers. This extension could be changed even further to allow,

e. g. higher values of C for highly reliable or valuable data points and lower

values for data points of less confidence or value [62]. A similar extension

also appeared in the financial time series forecasting, e. g. [16]. In [16], the
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authors assumed that in the non-stationary financial time series, the recent

past data could provide more important information than the distant past

data. Concretely, the authors used a sigmoid-like function to decrease the

weight of C when the data is far from recent. Their experiments also confirmed

their assumption of financial time series.

An important issue of making SVMs practically useful is automatic model

selection. Most existing approaches use the leave-one-out (LOO) methods [20,

90, 50, 21]. This procedure of LOO consists of removing one element from

the training data, constructing the decision rule on the basis of the remaining

training data and then testing the removed data. This procedure can be done

until all of the training data are tested. The procedure of LOO is usually used

to estimate the probability of test error of a learning algorithm. Luntz and

Brailovsky have proved a lemma [90]: The leave-one-out procedure gives an

almost unbiased estimate of the probability of test error

EpN−1
error = E(

L(x1, y1, . . . ,xN , yN)

N
),

where pN−1
error is the probability of test error for the machine trained on a sample

of size N−1, L(x1, y1, . . . ,xN , yN) is the number of errors in the leave-one-out

procedure.

The theoretical bounds of LOO in [90] are also applied in [20] to select

the parameter (width) of RBF kernel. The relation between the LOO rate

and the stopping criteria of the decomposition method for SVM is also studied

in [50] and the authors found that using a very loose stopping criteria for

the decomposition method, the best model can still be obtained. Such an

observation leaded the authors to design a simple and practical automatic

model selection software. Other methods to estimate the parameters of SVMs,

e. g. C in [48].

Since the number of the dual variables in the QP problem is equal to the



Chapter 2 Literature Review 26

number of data points, when the data set is large, the optimization problem be-

comes very challenging, because the quadratic form is complete dense and the

memory requirements grow with the square of the number of data points [62].

To handle large data sets using SVM with non-linear kernels, the Reduced

Support Vector Machines (RSVM) have been proposed as an alternate of the

standard SVM by preselecting a subset of data as support vectors and solv-

ing a smaller optimization problem [51, 52]. In [51], the number of support

vectors was restricted by solving the Reduced SVM (RSVM). Especially the

kernel matrix is reduced from N × N to N ×M , where N is the number of

data points and M is the size of a randomly selected subset of training data

considered as candidates of support vectors. The performance (testing accu-

racy) is also as good as the regular SVM [51]. In [52], the authors showed that

the RSVM formulation is already in a form of linear SVM and discussed four

RSVM implementations. Their experiments indicated that generally the test

accuracy of RSVM is a little lower than that of the standard SVM. In addition,

for problems with up to tens of thousands of data, if the percentage of support

vectors is not high, existing implementations for SVM is quite competitive on

the training time. Therefore, RSVM will be mainly useful for either larger

problems or those with many support vectors.

After describing the above famous models, we will turn to introduce the

regression model, in particular the Support Vector Regression, in next chapter.
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Support Vector Regression

Now SVMs have been applied in the regression tasks [91, 29, 77, 69, 41, 70, 92,

37]. In this part, we will describe SVR beginning from the regression problem,

then to the procedure of how to solve this problem.

3.1 Regression Problem

A regression problem is to estimate (learn) a function

f(x,λ) : X(Rd)→ R,

where X denotes the space of the input patterns, e.g., Rd. It might be, for

instance, stock prices for a company at subsequent days together with corre-

sponding econometric indicators; λ ∈ Λ, Λ is a set of abstract parameters,

from a set of independent identically distributed ( i.i.d. ) samples with size N ,

(x1, y1), . . . , (xN , yN), xi ∈ X(Rd), yi ∈ R, (3.1)

where the above samples were drawn from an unknown distribution P (x, y).

Now the aim is to find a function f(x,λ∗) with the smallest possible value

for the expected risk (or test error) as

R[λ] =

∫
l(y, f(x,λ))P (x, y)dxdy, (3.2)

27
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where l is a loss function which can be defined as one needs.

Usually the probability of distribution P (x, y) is unknown. Hence we are

unable to compute, and to minimize, the expected risk R[λ] in Eq. (3.2). But

we may know some information of P (x, y) from the samples of (3.1). So we

compute a stochastic approximation of R[λ] by the so called empirical risk :

Remp[λ] =
1

N

N∑

i=1

l(yi, f(xi,λ)). (3.3)

It is because that the law of large numbers guarantees that the empirical risk

converges in probability to the expected risk. However, for practical problem,

the size of samples is small. Only minimizing the empirical risk may cause

problems, such as bad estimation or overfitting, and we cannot obtain good

result when new data come in.

To solve the small sample problem, the statistical theory, or VC theory,

has provided bounds on the deviation of the empirical risk from the expected

risk [87, 89]. A typical uniform Vapnik and Chervonenkis bound, which holds

with probability 1− η, has the following form:

R[λ] ≤ Remp[λ] +

√
h(ln 2N

h
+ 1)− lnη

4

N
, ∀λ ∈ Λ, (3.4)

where h is the VC-dimension of f(x,λ).

From this bound, it is clear that in order to achieve small expected risk,

i. e. good generalization performance, both the empirical risk and the ratio

between the VC-dimension and the number of data points has to be small.

Since the empirical risk is usually a decreasing function of h, it turns out that

for a given number of samples, there is an optimal value of the VC-dimension.

The choice of an appropriate value of h (which in most techniques is controlled

by the number of free parameters of the model) is very important in order to

get good performances, especially when the number of data points is small.
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Therefore, a technique, Structural Risk Minimization (SRM), was devel-

oped by Vapnik [87, 88, 89] in the attempt to overcome the problem of choos-

ing an appropriate VC-dimension. A different induction principle, Structural

Risk Minimization Principle, was proposed in [87].

Support Vector Machines (SVMs) were developed to implement the SRM

principle [88]. The SVMs were used in the classification at first; they were

also applied in solving regression problem. When SVMs were used to solve

the regression problem, they were usually called Support Vector Regression

(SVR) and the aim of SVR is to find a function f with parameters w and b

by minimizing the following regression risk:

Rreg(f) =
1

2
〈w,w〉+ C

N∑

i=1

l(f(xi), yi), (3.5)

where C is a tradeoff term, called the cost of error; 〈, 〉 denotes the inner prod-

uct, the first term can be seen as the margin in SVMs and therefore, can mea-

sure the VC-dimension [88]. A common interpretation is that the Euclidean

norm, 〈w,w〉, measures the flatness of the function f , minimizing 〈w,w〉 will

make the objective function as flat as possible [77].

The function f is defined as,

f(x,w, b) = 〈w,φ(x)〉+ b, (3.6)

where φ(x) : x → Ω, maps x ∈ X(Rd) into a high (possible infinite) dimen-

sional space Ω, and b ∈ R.

3.2 Loss Function

In order to measure the empirical risk, we should specify a loss function. There

are many loss functions, such as, squared loss function, Huber’s loss function,

ε-insensitive loss function. Table 3.1 lists some common loss functions and their
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Table 3.1: Loss functions and their corresponding density functions
loss function l(δ) density function p(δ)

Linear ε-insensitive |δ|ε 1
2(1+ε)

exp(−|δ|ε)

Laplacian |δ| 1
2

exp(−|δ|)

Gaussian 1
2
δ2 1√

2π
exp(− δ2

2
)

Quadratic ε-insensitive 1
2
δ2ε

1
s∗ exp(− 1

2
δ2ε )

s∗=eε
√

2π−
√

2π(e2ε−1)+2
√

2ε

Huber’s robust

{ 1
2σ
δ2, if |δ| ≤ σ

|δ| − σ
2
, otherwise

∝
{

exp(− 1
2σ
δ2), if |δ| ≤ σ

exp(σ
2
− |δ|), otherwise

Polynomial 1
d
|δ|d d

2Γ(1/d)
exp(−|δ|d)

Piecewise polynomial

{
1

dσd−1 δ
d, if |δ| ≤ σ

|δ| − σ d−1
d
, otherwise

∝
{

exp(− |δ|d
dσd−1 ), if |δ| ≤ σ

exp(σ d−1
d
− |δ|), otherwise
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Figure 3.1: Typical loss functions with their density functions.
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density functions, Quadratic ε-insensitive loss function is added comparing to

the functions listed in [73].

A statistical perspective is given in [73]. It assumes that the target values

y are generated by an underlying functional dependency f plus additive noise

δ with density pδ, i. e. f(xi) = ftrue+δi. Therefore, minimizing Remp coincides

to choose loss function equal minus log-density function, i. e. l(f(x), y) =

− log p(y|x, f).

Therefore, the most frequently used loss function, square loss function (see

Fig. 3.1(c)), corresponds to that the observation y is corrupted by normal

noise.

l2(y, f(x)) =
1

2
(y − f(x))2 or l2(δ) =

1

2
δ2, (3.7)

the squared loss corresponds to the assumption of Gaussian noise. However,

the squared loss is not always the best choice. There are still many loss func-

tions can be chosen for different problems.

In [88], the ε-insensitive loss function (Fig. 3.1(b)) is proposed,

lε(y, f(x)) =





0, if |y − f(x)| < ε

|y − f(x)| − ε, otherwise
. (3.8)

The difference between ε-insensitive loss function and Laplacian function (see

Fig. 3.1(a)) is that in ε-insensitive loss function, when the data points are in the

range of ±ε, they do not contribute to the output error. Therefore, increasing

the ε value, one reduces the number of support vectors, extremely one may

obtain a constant regression function. This indirectly affects the complexity

and generalization of models.

Due to the advantage of ε-insensitive loss function, we just consider it as loss

function here, the corresponding SVR is also called ε-SVR. The minimization

of Eq. (3.5) is equivalent to the following constrained minimization problem:
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min Υ(w, b, ξ(∗)) =
1

2
〈w,w〉+ C

N∑

i=1

(ξi + ξ∗i ), (3.9)

subject to yi − 〈w,φ(xi)〉+ b) ≤ ε+ ξi,

〈w,φ(xi)〉+ b)− yi ≤ ε+ ξ∗i , (3.10)

ξ(∗)
i ≥ 0.

Here and below, it is understood that i = 1, . . . , N and (∗) is a shorthand

implying both the variables with and without asterisks. ξi and ξ∗i measures

the up error and down error for sample (xi, yi) respectively, see Fig. 3.2(a).

A standard method to find the optimal solution of above minimization

problem Eq. (3.9), therefore find the function f as Eq. (3.6), is to construct

the dual problem of this optimization problem (primal problem) by Lagrange

Method and to translate the (primal) minimization problem to maximize its

dual function, basic results in Appendix. A. Therefore, a Quadratic Program-

ming (QP) problem is obtained [88]:

min Q(α(∗)) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j)〈φ(xi),φ(xj)〉

+
N∑

i=1

(ε− yi)αi +
N∑

i=1

(ε+ yi)α
∗
i , (3.11)

subject to

N∑

i=1

(αi − α∗i ) = 0, α
(∗)
i ∈ [0, C]. (3.12)

After solving this QP problem, we obtain the objective function

f(x) =
N∑

i=1

(αi − α∗i )〈φ(xi),φ(x)〉+ b,

where α, α∗ are the Lagrange multipliers used to pull and push f towards to

the observation y.
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Although the QP problem is solved, b is not calculated. The computation

of b is exploited by the Karush-Kuhn-Tucker (KKT) conditions. Here, they

are

αi(ε+ ξi − yi + 〈w,φ(xi)〉+ b) = 0,

α∗i (ε+ ξ∗i + yi − 〈w,φ(xi)〉 − b) = 0,

and

(C − αi)ξi = 0,

(C − α∗i )ξ∗i = 0.

Therefore, several useful conclusions are obtained. Firstly, α
(∗)
i = C means

that samples (xi, yi) lie outside of the ε margin. Secondly, αiα
∗
i = 0, this

means that any pair of dual variables αi, α
∗
i are not nonzero simultaneously,

otherwise, it will require nonzero slack in both directions. Finally α
(∗)
i ∈ (0, C)

corresponds to samples (xi, yi) lying on the ε margin and b can be computed

as follows:

b =





yi − 〈w,φ(xi)〉 − ε, for αi ∈ (0, C)

yi − 〈w,φ(xi)〉+ ε, for α∗i ∈ (0, C)
.

When no α
(∗)
i ∈ (0, C), such method as in [19] are used.

Usually, those sample points (xi, yi) with nonzero αi or α∗i are called support

vectors.

The parameter ε is usually difficult to control [58], as one does not know

beforehand how accurately one is able to fit the curve. A partial solution is

using the ν-SVR, which is a modification of the ε-SVR. In ν-SVR, it introduces

a new parameter ν (see Fig. 3.2(b)) to replace ε and this ν controls the fraction

of examples outside of the ε-tube and indirectly controls the size of the ε-

tube [69, 74, 70, 27, 63].
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Figure 3.2: Linear regression on the feature space by ε-SVR and ν-SVR.

3.3 Kernel Function

To solve the non-linear samples, SVR exploits the mapping function φ, this

function maps the input space X into a new space Ω = {φ(x) | x ∈ X}, x =

(x1, . . . ,xN) becomes to φ(x) = (φ1(x), . . . , φN(x)) and a linear regression

function is obtained in the feature space (Ω), see Fig. 3.2(a).

In Eq. (3.11), the maximizing objective function contains an inner product

of mapping function. Here we can see another advantage of SVR. By using

the trick of kernel function, one lets the kernel function be the inner product

of mapping function, K(x, z) = 〈φ(x),φ(z)〉. Therefore, one only needs to

specify a kernel function without considering the mapping function or the

feature space explicitly.

The name kernel is derived from integral operator theory, which supports

much of the theory of the relation between kernels and their corresponding

feature spaces. An important consequence of the dual representation is that

the dimension of the feature space need not affect the computation. As one

does not represent the feature vectors explicitly, the number of operations

required to compute the inner product by evaluating the kernel function is

not necessarily proportional to the number of features. The use of kernel

makes it possible to map the data implicitly into a feature space and to train

a linear machine in such a space, potentially side-stepping the computational



Chapter 3 Support Vector Regression 35

problems inherent in evaluating the feature map. The only information used

about the training examples is that Gram matrix, or kernel matrix, in the

feature space [28].

Kernel function should satisfy the Mercer’s Theorem. From this theorem,

a mapping function φ(x) for a kernel matrix K can be constructed as follows

[70, 28],

φ : xi 7−→ (
√
λtυti)

N
t=1 ∈ RN .

where λt is the eigenvalues of K, υt = (υti)
N
i=1 is the corresponding eigenvector.

〈φ(xk),φ(xl)〉 =
N∑

t=1

λtυtkυtl = (VTΛV)kl = Kkl = K(xk,xl),

However, for the same kernel function, the mapping function is not unique.

For example, we may choose a kernel function as K(xk,xl) = 〈xk,xl〉2, where

x ∈ R2. It is easy to see that φ1(x) = (x2
1,
√

2x1x2, x
2
2)′, φ2(x) = 1√

2
(x2

1 −
x2

2, 2x1x2, x
2
1 + x2

2)′, φ3(x) = (x2
1, x1x2, x1x2, x

2
2)′ all are can be the mapping

function of this kernel function K [12].

Four common kernel functions include:

Linear function: K(xk,xl) = 〈xk,xl〉;

Polynomial function with parameter d, K(xk,xl) = (〈xk,xl〉+ 1)d;

Radial Basis Function (RBF) with parameter β:

K(xk,xl) = exp(−β‖xk − xl‖2), (3.13)

a demonstration for separable classes by RBF kernel function is illus-

trated in Fig. 3.3(a), a mapping to feature space is depicted in Fig. 3.3(b).

Hyperbolic tangent: K(xk,xl) = tanh(2〈xk,xl〉+ 1).
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(a) Radial Basis Function (b) RBF mapping

Figure 3.3: Separable classification with Radial Basis kernel functions in dif-
ferent space. Left: original space. Right: feature space.

3.4 Relation to Other Models

3.4.1 Relation to Support Vector Classification

A SVM for (separable) classification (SVC) is to construct a hyperplane in the

same form of Eq. (3.6) from data

(x1, y1), . . . , (xN , yN), xi ∈ Rd, yi ∈ {±1}, (3.14)

by solving the following minimization problem [9]:

min 〈w,w〉 subject to yi · f(xi) ≥ 1, (3.15)

where 1
〈w,w〉 means the width of margin, minimizing 〈w,w〉 is equivalent to

maximizing the margin width between two classes (here the margin width is

defined by the distance of the hyperplane to the nearest of either class). After

that, the decision function takes the form

f(x) = sgn(〈w,φ(x)〉+ b).

At first, we can see that the regression problem, Eq. (3.9) with constraints

Eq. (3.10), is so different to the classification problem, Eq. (3.15). The first
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Figure 3.4: Demonstration for regression and classification on the feature
space. Sample points with circles are support vectors. (a) support vectors
lie on or out of the margin bound, sample points inside margin bound have
no contribution to the decision function; (b) support vectors lie on the mar-
gin bound, sample points outside margin bound have no contribution to the
decision function.

difference is their constraints: SVR is additive, SVC is multiplicative. The

second difference is the support vectors: in SVR, support vectors lie on or

out of the margin bound, see Fig. 3.4(a); in SVC, support vectors lie on the

margin bound (Fig. 3.4(b)). The third difference is that other points in SVR

are required to lie within a margin bound of radius ε, where in SVC, they

are required to lie outside of margin bound and on the correct side (Fig. 3.4).

These points (both for regression and classification) do not contribute to the

decision function.

Although the margin concept is different, a connection of margins in re-

gression and classification is given in [74] by the following ε-margin definition.

Definition 1 (ε-margin) Let (E, ‖ · ‖E),(F, ‖ · ‖F) be normed space, and X ⊂
E. The ε-margin of a function f : X 7−→ F is defined as

mε(f) := inf{‖x− y‖E | x,y ∈ X, ‖f(x)− f(y)‖F ≥ 2ε}.

Therefore, for a linear function f(x) = 〈w,x〉 + b, the ε-margin takes the

form mε(f) = 2ε
‖w‖ , detailed description see Example 9 in [74]. Hence, for

fixed ε, maximizing the margin amounts to minimizing ‖w‖ as done in the SV
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regression: in the simplest form, cf. Eq. (3.9) without slack variable ξi, the

training on data Eq. (3.1) consists of minimizing ‖w‖2 subject to

|f(xi)− yi| ≤ ε. (3.16)

Therefore, minimizing ‖w‖2 means to find a function f as flat as possible [77].

For classification, the margin can be set to m1(f) = 2
‖w‖ , which is equal

to the margin defined for Vapnik’s canonical hyperplane [88]. Given the data

set as Eq. (3.14), an oriented hyperplane in E can be uniquely expressed by a

linear function as Eq. (3.6) with

min {|f(x)| | x ∈ X} = 1. (3.17)

From Eq. (3.15), the parameter ε is superfluous. However, the decision

function, f(x) = sgn(〈w, φ(x)〉 + b), will not change if minimizing 〈w,w〉 =

‖w‖2, subject to yi ·f(xi) ≥ ε. For the points on the margin bound, Fig. 3.5,

there are 1 = yi · f(xi) = 1− |f(xi)− yi|.

x x

f

+ε

−ε

mε(f)

Figure 3.5: 1-D toy example: separate ’o’ from ’x’. The SV classification
algorithm constructs a linear function f(x) = 〈w,x〉+ b satisfying Eq. (3.17)
with ε = 1. To maximize the margin mε(f), one has to minimize ‖w‖.

3.4.2 Relation to Ridge Regression

Ridge regression is originated as a linear regression [44], it chooses a function

that minimizes a combination of square loss and norm of the w vector, which is
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analogous to the maximal margin hyperplane in the SVMs. The original moti-

vation of Ridge regression is based on statistical and numerical consideration.

A ridge regression algorithm minimizes the penalized loss function

S(w, b) = λ〈w,w〉+
N∑

i=1

(〈w,xi〉+ b− yi)2,

where the parameter λ controls the trade-off between low sum square loss and

low norm of the solution (analogous to C in SVMs).

Using matrix notation and adding b2 in the first term of above equation, S

can be represented as,

S(w̃) = λ(IN+1w̃)T (IN+1w̃) + (y − X̃w̃)T (y − X̃w̃),

where In is an n× n identity matrix, w̃ = (wT , b)T , X̃ = (X′, 1N), superscript

T denotes the transpose.

In order to get the optimal solution, we let ∂S
∂w̃

= 0, i. e.,

∂S

∂w̃
= 2λINw̃ + 2(X̃T X̃w̃ − X̃Ty) = 0,

hence

(X̃T X̃ + λIN+1)w̃ = X̃Ty,

w̃ = (X̃T X̃ + λIN+1)−1X̃Ty,

where (·)−1 is the inverse of matrix.

Similarly, using the trick of kernel function, X̃T X̃ is just a kernel matrix

with linear kernel function. Other kernel function with corresponding kernel

matrix can be constructed to replace the X̃T X̃ by K, and we can obtain the

corresponding optimal solution for nonlinear regression by this kernel K,

w̃ = (K + λIN+1)−1X̃Ty.

We can see that this is exactly the Least-Squares Support Vector Machines

(LS-SVMs). LS-SVMs are another class of learning machines using the name
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of SVM [79, 80]. However, these models are different to SVM formulations.

In these models, the quadratic loss function are considered. The inequality

constraints are replaced to be equality. The dual problem becomes to solve a

set of linear system.

3.4.3 Relation to Radial Basis Function

+

+

+

+

+

+

Figure 3.6: A demonstration of standard RBF network for regression, marked
’+’ denote the center of RBF nodes.

An SVR with RBF kernels (Eq. (3.13)) results an architecture of an RBF

network. However, there are some differences between SVR and RBF network.

In a standard RBF network, the number of nodes and their centers is deter-

mined by k-means clustering (Fig. 3.6). In contrast, an SVR with RBF kernels

uses RBF nodes centered on the support vectors. The number of nodes equals

to the number of support vectors and the centers of the RBF nodes identify

with the support vectors themselves (Fig. 3.4(a)). The RBF function in both

models provides same action, adjusting the distance of a point to the centers

of RBF nodes [14].

3.5 Implemented Algorithms

In practice, SVMs need to solve a QP problem. The SVM algorithm for solv-

ing this QP problem is complex, subtle, and difficult for an average engineer



Chapter 3 Support Vector Regression 41

to implement. Hence, in the beginning, researchers have to use QP optimal

packages, such as MINOS, LOQO. These packages are some quadratic program

subroutines provided in the Matlab optimization toolbox, but they are usually

commercial. In the sequel, there are a large number of SV algorithms have been

proposed over the years: the Newton method, gradient descent method [15],

primal dual interior-point method [77], subset selection algorithms such as

chunking (introduced by Vapnik, 1982 [87]), Sequential Minimal Optimization

(SMO), proposed by Platt [64], etc [61, 36, 78]. Now these are also some

packages implemented by the above algorithms available on the internet. For

example, the package SVM light of Joachims [46], the libSVM, which is pre-

pared by Chih-Jen Lin [19], the Matlab SVM Toolbox, by Steve Gunn [41].

Here, we will briefly review some of the most common algorithms.

Gradient Descent

Gradient descent is the simplest method for solving optimization problem, it

is also known as the steepest descent algorithm [5, 15, 7]. The algorithm

begins with an initial estimate for the solution, and then iteratively updates

the vector following the steepest descent path. At each iteration the direction

of the update is determined by the steepest descent strategy while the length

of the step may be fixed, which is also known as learning rate [28].

Therefore, there is another way to see the QP algorithm, i. e., the quantity

Q(α) in Eq. (3.11) is iteratively decreased by fixing all variables but one. Hence

a multi-dimensional problem is reduced to a sequence of one dimensional ones.

For QP problems there is a global maximum solution, and this global optimal

solution can be found only by choosing a suitable learning rate. From the point

of view of speed, such a strategy is not usually obtained an optimal solution,

but it is good for those data set with thousand of points and it is very easy to

implementation.

Using this algorithm, the i-th component of the gradient ofQ(α) in Eq. (3.11)
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is

∂Q(α)

∂αi
= Qα+ p,

where Q =


 K −K

−K K


, K is the kernel matrix. Thus, Q(α) can be mini-

mized simply by iterating the update rule,

αi ← αi − ri
∂Q(α)

∂αi

with a suitable different learning rate ri for different αi. After each iteration,

αi should still keep the constraints 0 ≤ αi ≤ C. This can be completed by

resetting αi to zero if αi becomes negative and forcing αi to C when αi > C.

The uniqueness of the global maximum guarantees that for suitable choices

of ri of algorithm will always find the solution. Such a strategy is usually not

optimal from the point of view of speed, but is surprisingly good for datasets

of up to a couple of thousand points and has the advantage that its imple-

mentation is very straightforward [28]. However, gradient method has lack to

solve high dimensional data, especially the dimension is up to 300.

Sequential Minimal Optimization (SMO)

The Sequential Minimal Optimization(SMO) algorithm is devised by Platt [64],

which is the simplest decomposition method and optimizes a minimal subset

of just two points at each iteration. The advantage of this technique lies in

the fact that the optimization problem for two data points admits an analyt-

ical solution, eliminating the need to use an iterative quadratic programme

optimizer as part of the algorithm.

The idea of SMO is to solve the smallest possible optimization problem at

each step for the standard SVM QP problem. To keep the constraint yTα = 0

always true, a subset with just two points at each iteration is needed, which is

the smallest possible optimization problem (Fig. 3.7). This also implies that
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when a Lagrange multiplier is updated, at least one other multiplier needs to

be adjusted in order to keep the constraint true.

The procedure of SMO is that at each iteration, SMO chooses two ele-

ments αi and αj with others are fixed, then updates αi, αj with analytical

expressions accordingly. The choice of these two points is determined by an

heuristic algorithm, while the optimization of the two multipliers is performed

analytically.

αi=0 αi=C

αj=C

αj=0

(a) Case I: yi 6= yj induces αi−αj = k

αi=0 αi=C

αj=C

αj=0

(b) Case II: yi = yj induces αi+αj = k

Figure 3.7: The selected Lagrange multipliers must satisfy all of the constraints
of the QP problem. To meet the inequality constraints, the Lagrange multipli-
ers must lie in the box; To satisfy the linear equality, the Lagrange multipliers
must lie on a diagonal line. Hence, one step of SMO must find an optimum of
the objective function on a diagonal line segment.

In libSVM [19], the authors have implemented the SVM using this algo-

rithm. They select the index i and j by the following criteria.

i ≡ argmax (−∇Q(α)l | yl = 1, αl < C,∇Q(α)l | yl = −1, αl > 0), (3.18)

j ≡ argmin (∇Q(α)l | yl = −1, αl < C,−∇Q(α)l | yl = 1, αl > 0),

where Q(α) is the same in Eq. (3.11). αi and αj are two elements that violate

the following KKT conditions the most,

Wα+ p + by = µ− ν,
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µiαi = 0, νi(C − α)i = 0, µi ≥ 0, νi ≥ 0.

After selecting these two multipliers, they begin to update the multipliers.

Since the constraints in Eq. (3.12), yTα = 0, can not be violated, the new

values of the multipliers must lie on a diagonal line Fig. 3.7(a) and Fig. 3.7(b),

αiyi + αjyj = constant = αoldi yi + αoldj yj.

Without considering the constraints, αj can be computed as,

αnewj =





αj + −Gi−Gj
Qij+Qjj+2Qij

, if yi 6= yj

αj +
Gi−Gj

Qij+Qjj−2Qij
, if yi = yj

, (3.19)

where Gi ≡ ∇W (α)i and Gj ≡ ∇W (α)j.

However, there is still a box constraint 0 ≤ αi, αj ≤ C need to satisfy. In

SMO, it is to force αj to satisfy a new constraint, L ≤ αnewj ≤ H, by a clipping

procedure,

αnew,clippedj =





H, if αnewj ≥ H

αnewj , if L < αnewj < H

L, if αnewj ≤ L

, (3.20)

where if yi 6= yj,

L = max(0, αoldj − αoldi ), H = min(C,C + αoldj − αoldi ),

and if yi = yj

L = max(0, αoldj + αoldi − C), H = min(C, αoldj + αoldi ),

and the value of αi is obtained from αnew,clippedj as follows,

αnewi = αoldi + yiyj(α
old
j − αnew,clippedj ). (3.21)

In summary, the procedure of SMO algorithm is to find the index i, j by

Eq. (3.18), then to update αj by Eq. (3.19) and to clip αj by Eq. (3.20) to

satisfy the box constraint, next is to update αi by Eq. (3.21), these procedure

are done until stop criteria is met.

Comparing SMO with other algorithms, SMO has following advantages:
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1. SMO breaks the QP problem into a series of smallest possible QP prob-

lems, which only includes two variables;

2. SMO can solve the small QP problem analytically, which avoids using a

time-consuming numerical QP optimization as an inner loop.

3. SMO reduces the needed memory largely; the amount of memory re-

quired for SMO is linear in the training set size.



Chapter 4

Margins in Support Vector

Regression

It is well known that a model can be constructed to fit a fixed data set (i. e. the

“in sample” or “training set” data) arbitrarily well, but that does not neces-

sarily imply that the model will describe new data (i. e. the “out of sample” or

“testing set” data) from that domain equally well. From Chapter 3, we know

the Statistical Learning (VC) theory provides a upper bound, Eq. (3.4), on

the test error. This upper bound depends on both the empirical risk and the

capacity of the function class. Minimization of this upper bound leads to the

principle of Structural Risk Minimization (SRM). SVMs are a kind of models

implementing the SRM principle.

Due to its theoretical ground, SVM has been applied successfully in many

applications, such as pattern recognition [26], text categorization [47], classi-

fication task as OCR [88], and time series prediction [58, 57]. Especially, it

succeeded in financial applications, e. g. bankruptcy prediction [35, 99], time

series forecasting [82, 16, 17].

When SVR is applied in time series forecasting, the ε-insensitive loss func-

tion is usually used to measure the empirical risk. In the following, we will

indicate why ε-insensitive loss function is used and what is the problem about

it. In addition, we will describe how to measure the experimental accuracy in

46
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the whole thesis.

4.1 Problem

In this thesis, we use ε-insensitive loss function as the loss function. The value

2ε is called as the width of margin here. This loss function not only measures

the training error (empirical risk), but also controls the sparsity of the solution

(the number of support vectors). When the ε-margin width is increased, it

may tend to reduce the number of support vectors [88]. Extremely, a too wide

margin may result in a constant objective function. The setting of ε-margin

width affects the complexity and the generalization of the objective function

indirectly.

Therefore, the setting of ε value is very important. Usually, there are four

methods to deal with it. Firstly, most practitioners set the value of ε as a

non-negative constant value just for convenience. For example, in [84], they

simply set the margin width to 0. This amounts to the least modulus loss func-

tion. In other instances the margin width has been set to a very small value

[91, 57, 19]. The second method is the cross-validation technique, e. g. [58, 16].

It is usually too expensive in terms of computation. A more efficient approach

is to use another variant called ν-SVR [69, 74, 70, 63], which determines ε by

using another parameter ν. It is stated that ν may be easier to specify than

ε. Another approach by Smola et al. [76] is to find the “optimal” choice of ε

based on maximizing the statistical efficiency of a location parameter estima-

tor. They showed that the asymptotically optimal ε should scale linearly with

the input noise of the training the data, and this was verified experimentally.

However, their predicted value of the optimal ε does not have a close match

with their experimental results. Due to the special characteristics of financial

time series, we will use different methods to set the ε value.
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4.2 General ε-insensitive Loss Function

At first, we note that the margin in ε-insensitive loss function contains two

characteristics: fixed and symmetrical. Based on these two characteristics, we

have proposed a general ε-insensitive loss function and classified the margin

into four case in [96]: Fixed and Symmetrical Margin (FASM), Fixed and

Asymmetrical Margin (FAAM), Non-fixed and Symmetrical Margin (NASM)

and Non-fixed and Asymmetrical Margin (NAAM). Table 4.1 gives a sim-

ple description of the classification. FASM is equivalent to the margin in

ε-insensitive loss function, see Fig. 4.1(a). FAAM is divided into up margin

and down margin, each margin is fixed but they are not equal (Fig. 4.1(b)).

While NASM is with equal up margin and down margin, but they are varied

with data (Fig. 4.1(c)). NAAM combines two characteristics of the margin

(Fig. 4.1(d)).

Table 4.1: Margin categories

Symmetrical Asymmetrical
Fixed FASM FAAM

Non-fixed NASM NAAM

In the following, we will derive the SV formula based on the general ε-

insensitive loss function.

The general ε-insensitive loss function splits the margin in the original ε-

insensitive loss function into two parts: up margin and down margin,

l′ε(f(xi)− yi) =





0, if − d(xi) < yi − f(xi) < u(xi)

yi − f(xi)− u(xi), if yi − f(xi) ≥ u(xi)

f(xi)− yi − d(xi), if f(xi)− yi ≥ d(xi)

,

(4.1)

where d(xi), u(xi) ≥ 0,, are two functions to determine the down margin and

up margin at point xi respectively. Again, here and below i = 1, . . . , N. When
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Figure 4.1: Four categories in general ε-insensitive loss function of SVR.

d(x) and u(x) are both constant functions and d(x) = u(x), Eq. (4.1) amounts

to the ε-insensitive loss function in Eq. (3.8) and we labeled it as FASM (Fixed

and Symmetrical Margin). When d(x) and u(x) are both constant functions

but d(x) 6= u(x), this case is labeled as FAAM (Fixed and Asymmetrical

Margin). In the case of NASM (Non-fixed and Symmetrical Margin), d(x) =

u(x) but are varied with the data. The last case is with a non-fixed and

asymmetrical margin(NAAM) where d(x) and u(x) are varied with the data

and d(x) 6= u(x).

In the same way, we use the standard method to find the solution of

Eq. (3.5) with the cost function of Eq. (4.1) as [88] and obtain

min
w,b,ξ(∗)

1

2
〈w,w〉+ C

N∑

i=1

(ξi + ξ∗i ), (4.2)
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subject to

yi − 〈w,φ(xi)〉 − b ≤ u(xi) + ξi,

〈w,φ(xi)〉+ b− yi ≤ d(xi) + ξ∗i ,

ξ
(∗)
i ≥ 0.

Here (∗) has the same meaning as before, i. e, they are two kinds of variables,

one with asterisks, another without asterisks.

Similar to the standard method in Appendix A.2, we construct the La-

grange function as

L(w, b, ξ, ξ∗) =
1

2
〈w,w〉+ C

N∑

i=1

(ξi + ξ∗i )−
N∑

i=1

(µiξi + µ∗i ξ
∗
i )

−
N∑

i=1

αi(u(xi) + ξi − yi + 〈w,φ(xi)〉+ b) (4.3)

−
N∑

i=1

α∗i (d(xi) + ξ∗i + yi − 〈w · φ(xi)〉 − b).

At the saddle point of this Lagrange function, we have

∂L
∂w

= w−
N∑
i=1

(αi − α∗i )φ(xi) = 0,

∂L
∂b

=
N∑
i=1

αi −
N∑
i=1

α∗i = 0,

∂L
∂ξi

= C − αi − µi = 0,

∂L
∂ξ∗i

= C − α∗i − µ∗i = 0.

i. e.,

w =
N∑

i=1

(αi − α∗i )φ(xi),
N∑

i=1

αi =
N∑

i=1

α∗i , (4.4)

α
(∗)
i ∈ [0, C].
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Substituting Eq. (4.4) into Eq. (4.4) and applying the Dual Theory (Ap-

pendix A.1), we also obtain a QP problem,

min Φ(α(∗)) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j )(φ〈xi),φ(xj)〉 (4.5)

+
N∑

i=1

(u(xi)− yi)αi +
N∑

i=1

(d(xi) + yi)α
∗
i ,

subject to

N∑

i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C].

The above QP problem is very similar to the original QP problem in [88],

therefore, it is easy to modify the previous algorithm to implement this QP

problem. Practically, we implement our QP problem by modifying the libSVM

from [19] with adding a new data structure to store both margins: up margin,

u(x), and down margin, d(x). Obviously, this will not impact the time com-

plexity of the SVR algorithm; we just need more space, linear to the size of

data points, to store the corresponding margins.

After solving this QP problem, we also obtain the objective function

f(x) =
N∑

i=1

(αi − α∗i )〈φ(xi),φ(x)〉+ b, (4.6)

where α, α∗ are corresponding Lagrange multipliers also used to pull and push

f towards to the observation y

The computation of b is similar as in Section 3.2. The computation of b is

also exploited by the Karush-Kuhn-Tucker (KKT) conditions. Here, they are

αi(u(xi) + ξi − yi + 〈w,φ(xi)〉+ b) = 0,

α∗i (d(xi) + ξ∗i + yi − 〈w,φ(xi)〉 − b) = 0,

and

(C − αi)ξi = 0,

(C − α∗i )ξ∗i = 0.
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Therefore, when there exists i, such that αi ∈ (0, C) or α∗i ∈ (0, C), b can

be computed as follows:

b =





yi − 〈w,φ(xi)〉 − u(xi), for αi ∈ (0, C)

yi − 〈w,φ(xi)〉+ d(xi), for α∗i ∈ (0, C)
.

When no α
(∗)
i ∈ (0, C), methods e. g. [19] are used.

4.3 Accuracy Metrics and Risk Measures

In order to measure the prediction performance of our model, we define the

Mean Absolute Error (MAE) first. Usually, Mean Squared Error (MSE) is used

to measure the predictive performance. Here considering the particularity of

the loss function, we use L1 norm to measure the predictive errors.

Let at and pt be the actual values and predicted values at day t, let m be

the number of testing data.

Definition 2 Mean Absolute Error (MAE) measures the discrepancy be-

tween the actual and predicted values; the smaller the value of MAE, the closer

are the predicted values to the actual values. MAE is calculated by

MAE =
1

m

m∑

t=1

|at − pt|. (4.7)

We also consider the risk of using this model in the prediction. Actu-

ally, risk is a term frequently encountered in strategic management and finan-

cial literature. However, risk has a variety of different meanings and rarely

is the meaning used in a particular project clarified [4]. In financial litera-

ture, Markowitz first formulated the portfolio selection into a mathematical

model [56]. In his model, the “return” of a portfolio is measured by the ex-

pected value of the random portfolio return and the associated “risk” is quan-

tified by the variance of the portfolio return. However, the use of variance to

measure risk makes no distinction between gains and losses. Markowitz also
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proposed to use semi-variance to measure the risk of loss. That is the sum of

the squares of negative deviations from the mean, divided by the total number

of observations:

1

m

m∑

t=1

[min(rt − µ, 0)]2.

The great advantage of the use of semi-variance over variance is that it does

not include positive gains, so what is considered as risk takes into account only

negative deviations. However, minimizing downside does not mean minimizing

only negative deviations. For example, if the distribution, like the normal

curve, is symmetric, minimizing variance and semi-variance will lead to the

same problem. The only case that justifies the use of semi-variance is when

the presence of skewness is observed [2]. A generalization of semi-variance is

given in [2],

downside risk⇒ 1

m

m∑

t=1

[min(rt − µ, 0)]k, (4.8)

where k is any power that one chooses; when k=1, it should be considered the

absolute value of the term in the brackets and µ is a chosen benchmark (not

necessarily the mean).

Based on Eq. (4.8), we choose k=1 and define the following risk measure-

ments.

Definition 3 Up side Mean Absolute Error (UMAE) measures up side

risk; the smaller the value of UMAE, the smaller the up side risk. UMAE is

defined as

UMAE =
1

m

m∑

t=1
at≥pt

|at − pt|. (4.9)

Definition 4 Down side Mean Absolute Error (DMAE) measures the

down side risk; the smaller the value of DMAE, the smaller the down side risk.
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DMAE is defined as

DMAE =
1

m

m∑

t=1
at<pt

|at − pt|. (4.10)



Chapter 5

Margin Variation

We now have all the necessary tools to try our hand at predicting financial

time series. Chapter 2 introduced the basic concept of time series analysis

with different models descriptions; Chapter 3 and Chapter 4 detailed the SVR

algorithm and ideas that we need to modify the models. The performance

measures also are given in Chapter 4. In this chapter we will present the

results of SVR by varying the width of margins with controlling the symmetry

of margins; we will provide an answer to the question of whether or not these

modifications offer any improvement over the original (fixed and symmetrical)

margin setting; what is the performance of SVR model for the financial time

series prediction. Ultimately, our answer to the first question will be ‘yes’;

however, we cannot provide a satisfiable answer to the second question. We

cannot give out how confidence of our model, how better/worse the SVR model

comparing with other models, and we cannot answer the most interesting

problem, how can we profit by using this model.

5.1 Non-fixed Margin Cases

5.1.1 Momentum

In [98], we have focused on the case of NAAM. More specifically, we have added

a momentum term in the margin setting. The margin is a linear combination
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of the standard deviation and the momentum. The motivation here is that we

would want to use the standard deviation to set the width of the margin, which

could reflect the volatility of stock market; while we use the momentum term

to detect the up(down) trend of stock market, such that we could reduce the

downside risk. Hence, the up margin and down margin are set in the following

forms:

u(xi) = λ1 · σ(xi) + µ ·∆(xi), i = 1, . . . , N,

d(xi) = λ2 · σ(xi)− µ ·∆(xi), i = 1, . . . , N, (5.1)

where σ(xi) is the standard deviation of input xi, ∆(xi) is the momentum at

point xi, λ1, λ2 are both positive constants and µ is a non-negative constant.

Therefore, the width of margin at point xi is

W (xi) = (λ1 + λ2) · σ(xi).

It is determined by σ(xi) and the sum of λ1 and λ2. Here, we call λ1, λ2 as the

coefficients of the margin width. We also call µ as the coefficient of momentum

and we know that the margin setting of Eq. (5.1) includes the case of NASM

(when µ = 0).

From our previous experience [96], when µ 6= 0 and ∆(x) > 0, the up

margin is larger than the down margin and we can under-predict the stock

price. While µ 6= 0 and ∆(x) < 0, the up margin is smaller than the down

margin and we can over-predict the stock price. A simple illustration is shown

in 5.1. Based on these observations, in our prediction, we assume that we are

risk aversion, or downside risk aversion. When we find the stock price reveals

an up trend, we know that it will not be always up, so we tend to under-predict

the stock prices in this case. On the contrary, when the stock price goes down,

we tend to over-predict it. We add this information in the margin setting by

controlling the momentum term.

Actually, there are many ways to calculate the momentum. For example,

the simplest way may be set it as a constant. In this paper, we will concentrate
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Figure 5.1: Margin settings: dashed lines are the bounds of margins; dashed-
dotted lines are actual data series; solid-bold lines are the new objective func-
tion, fnew, by new margin settings. The upper shadow area is the case of new
objective function under-predicted to the actual function; the lower shadow
parts are the case of over-predicted.

on using the EMA, which has been introduced in subsection 2.1.1. The reason

of using EMA is that it is time-varying and can reflect the up trend and down

tendency of the financial data, although it exists the lag problem. An n-day’s

EMA sequence begins from the first day, i. e. EMA1 = y1 and the following is

calculated by

EMAi = EMAi−1 × (1− r) + yi × r,

where r = 2/(1+n). Here, the current day’s momentum is set as the difference

between the current day’s EMA and the EMA in the previous k day, i. e.

∆(xi) = EMAi − EMAi−k.

5.1.2 GARCH

In the above methods, the data sets we used in the experiments are the price

of the share [96, 98]. We use the standard deviation of input xt, which can

reflect the volatility of the financial time series over time, to determine the

width of margin at time t in our prediction. Actually, GARCH model is a
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more common used model to reflect the volatility of the financial time series,

see Chapter 2.

We apply the Matlab toolbox to calculate the GARCH model. In the

Matlab toolbox, the standard GARCH(p, q) model with Gaussian shocks takes

the following form,

yt = c0 + xTt b + εt, εt|Ψt−1 = N(0, σ2
t ),

where

σ2
t = κ0 +

p∑

i=1

λiσ
2
t−i +

q∑

j=1

µjε
2
t−j.

This GARCH toolbox is applied on the return series. So we use the con-

tinuous compounded return as the data series and use the σt calculated by

GARCH(1,1) as the width of margin at time t.

5.2 Experiments

In this section, we will perform the experiments by using the momentum and

GARCH models to set the margins.

The original experiments [96, 98] are conducted on a Pentium 4, with 1.4

GHZ, 512M RAM and Windows2000. Now they are conducted on Sun Blade

1000, RAM 2GB, 100Mbps network speed and Solaris 8.

5.2.1 Momentum

Two data sets are used in this experiment:

HSI: daily closing prices of Hong Kong’s Hang Seng Index (HSI) from January

2nd, 1998 to December 29, 2000.

DJIA: daily closing prices of Dow Jones Industrial Average (DJIA) from Jan-

uary 2nd, 1998 to December 29, 2000.
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The ratio of the number of training data and the number of testing data is set

to 5:1. Therefore, the corresponding training time periods are obtained and

listed as in Table 5.1.

SVR Algorithm

We model the system as pt = f(xt), where f is learned by the SVR algorithm

from the training data, xt = (at−4, at−3, at−2, at−1), at is the daily closing index

in day t.

Before generating the model, we do a cross-validation on the training data

to determine the parameters that are needed in SVR. They are C, the cost of

error and β, the parameter of kernel function. The corresponding parameters

are also listed in Table 5.1. With these parameters, we begin to build the

model by SVR from the initial training data. After obtaining the predictive

value, we shift the input window to the next time-step and train the model

again to obtain the next day’s price. This one-step ahead prediction is done

as the window shifted for the remaining data.

Table 5.1: Indices, time periods and parameters for momentum experiments
Indices Training time periods C β
HSI 02/01/1998 - 04/07/00 16000 2−27

DJIA 02/01/1998 - 29/06/00 8000 2−22

Non-fixed Cases: The margins setting is followed as Eq. (5.1). In the case

of NASM, we set λ1 = λ2 = 1
2

and µ = 0, thus the overall margin width

at day t is equal to the standard deviation of input xt, σ(xt).

In the case of NAAM, we also fix λ1 = λ2 = 1
2
, hence we have a fair

comparison of NASM case. In addition, we have to determine three

parameters, i.e., n, the length of EMA; k, the lag of EMA; µ, the coef-

ficient of momentum. We have performed the following experiments to

test their effects:
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(a) At first, we set k = 1, µ = 1 and use 10, 30, 50, 100 as the length

of EMA respectively. From the result of Table 5.2 we can see that

the DMAE values in all cases of NAAM are smaller than that in

NASM case, thus we have a smaller downside risk in NAAM case;

this exactly meets our assumption. We also see that the MAE

gradually decreases with the length of EMA increases and when the

length equals to 100, the MAE and the DMAE are the smallest in

all case of NAAM for data set HSI. For data set DJIA, when the

length equals to 30, the MAE and the DMAE are also the smallest

in all cases of NAAM.

Table 5.2: Effect of the length of EMA on HSI with parameters (k, µ)=(1,1)
HSI DJIA

type n MAE UMAE DMAE MAE UMAE DMAE

NASM 216.78 104.58 112.20 85.33 40.29 45.04
10 222.43 115.64 106.79 85.68 43.13 42.55

NAAM 30 218.18 114.04 104.14 84.12 41.82 42.30
50 217.93 113.38 104.55 84.57 42.12 42.45
100 216.50 113.04 103.46 84.80 42.41 42.39

In the following, we will use the best length of EMA from the above

experiments for the corresponding data sets, i. e., n = 100 for data

set HSI and n = 30 for data set DJIA.

(b) When testing the effect of lag, k, we let µ = 1 and set k to to 1, 2, 4,

8 respectively for both data sets. The results are listed in Table 5.3.

They show that the MAE increases with the lag of EMA increases.

These indicate that the results when the lag of EMA equals to 1

are superior to the other cases.

(c) Here, we set k = 1 and µ = 1, 1
2
, 1

4
, 1

8
respectively for both data

set to see the effect of the µ. From the Table 5.4, we see that the

DMAE increases gradually with the coefficient of EMA decreases
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and the MAE is smaller than the value in the NASM case. The

change of the MAE for data set HSI in (2–4 columns of) Table 5.4

is fluctuating and the MAE in (5–7 columns of) Table 5.4 increases

gradually with the decrease of the coefficient of EMA.

Table 5.3: Effect of the distance of EMA on HSI and DJIA
HSI with (n, µ) = (100, 1) DJIA with (n, µ) = (30, 1)

k MAE UMAE DMAE MAE UMAE DMAE

1 216.50 113.04 103.46 84.12 41.82 42.30
2 219.02 125.30 93.72 85.42 43.91 41.51
4 228.25 149.36 78.88 90.99 49.16 41.83
8 260.73 200.74 59.99 103.77 58.03 45.74

Table 5.4: Effect of the coefficient of Momentum on HSI and DJIA
HSI with (n, k) = (100, 1) DJIA with (n, k) = (30, 1)

µ MAE UMAE DMAE MAE UMAE DMAE

1 216.50 113.04 103.46 84.12 41.82 42.30
1
2

216.55 108.97 107.58 84.88 41.32 43.56
1
4

216.19 106.36 109.83 85.02 41.14 43.88
1
8

216.41 105.32 111.08 85.22 40.86 44.36

We also plot the daily closing prices of HSI with 100-days’ EMA and

the prices of DJIA with 30-days’ EMA in Figure 5.2 and Figure 5.3

respectively and list the Average Standard Deviations (ASD) of input x

of the training data sets, HSI and DJIA, respectively in Table 5.5, the

Average of Absolute Momentums (AAM) of input x for the best length

of both training data sets respectively in Table 5.5. We can observe that

the ASD of HSI is higher than that of DJIA and the ratio of AAM to

ASD is smaller for HSI than that for DJIA.

Now, we will make a summary for the above experiments. At first, we

can know the effects of n, k and µ from the above experiments results.

Following these results, we can say that a suitable setting for k = 1 and

µ = 1 will both be 1, they can be applied when a new data set comes.
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Figure 5.2: HSI with 100 days’ EMA.

Table 5.5: ASD and AAM
AAM

data set ASD
n ∆

ratio

HSI 182.28 100 20.80 0.114
DJIA 79.95 30 15.64 0.196

The only parameter needs to determine is the length of EMA, n, this

may refer to the ASD of the training data set. When the ASD is larger,

we may use a longer length of EMA. On the contrary, when the ASD is

smaller, we may use a shorter length of EMA.

Fixed Cases: After considering the non-fixed margin cases, we also test the

predictive results of fixed margins. Actually, for data set HSI, we let

the width of margin equal to 200 (approximate to the ASD of HSI), i. e.,

u(x) + d(x) = 200. The up margin u(x) ranges from 0 to 200, each

increment is one-tenth of 200, i. e., 20. The results are listed in the (1–5

columns of) Table 5.6. Similarly, for data set DJIA, we let the width of
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Figure 5.3: DJIA with 30 days’ EMA.

margin equal to 90 (approximate to ASD of DJIA), i. e., u(x)+d(x) = 90.

The up margin u(x) ranges from 0 to 90, each increment is also one-tenth

of 90, i. e., 9. The results are listed in the (6–10 columns of) Table 5.6.

We can see that for both data sets, as the up margin increases, the

DMAE tends to decrease.

Comparing the results in Table 5.2 with the results in Table 5.6 (the

results comparison graphs are plotted in Fig. 5.4(b) and Fig. 5.5(b) re-

spectively), we can see that NASM and NAAM are both superior to

FASM and FAAM in both data sets.

In the following, we will perform other models, such as AR models and RBF

network, on the above two data sets. The best results comparison graphs of all

the models are illustrated in Fig. 5.4(a) for HSI and Fig. 5.5(a) respectively.
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Table 5.6: Results of FASM and FAAM for HSI and DJIA
HSI (u(x)+d(x) = 200) DJIA (u(x)+d(x) = 90)

u(x) d(x) MAE UMAE DMAE u(x) d(x) MAE UMAE DMAE

0 200 236.04 62.24 173.80 0 90 91.63 20.45 71.18
20 180 230.85 69.65 161.20 9 81 89.14 23.70 65.44
40 160 226.29 77.37 148.92 18 72 87.35 27.31 60.04
60 140 222.24 85.34 136.90 27 63 86.09 31.18 54.91
80 120 219.35 93.90 125.45 36 54 85.30 35.28 50.02
100 100 217.83 103.14 114.69 45 45 85.45 39.86 45.59
120 80 217.35 112.90 104.45 54 36 86.33 44.80 41.53
140 60 217.88 123.16 94.72 63 27 87.40 49.83 37.57
160 40 219.49 133.97 85.52 72 18 88.64 54.95 33.69
180 20 221.66 145.05 76.61 81 9 90.80 60.53 30.27
200 0 224.83 156.64 68.19 90 0 93.75 66.51 27.24

Table 5.7: Results on AR(4)
data set MAE UMAE DMAE

HSI 217.75 105.96 111.79
DJIA 88.74 46.36 42.38

AR Models

For AR models, we use the AR model with order 4 to predict the prices of HSI

and DJIA, hence we can compare the AR model with NASM, NAAM in SVR

with the same order in the input patterns, X. The results are listed in the

Table 5.7. From these results, we can see that NASM and NAAM are superior

to AR model with same order.

RBF Network

For the RBF network, we use the RBF network which was implemented in

NETLAB [59] and perform the one-step ahead prediction to predict the prices

of HSI and DJIA. Concretely, we let other parameters as default and set the

number of hidden units to 3, 5, 7, 9 to learn f by training the RBF network

on the training samples and we get the results in Table 5.8 for both data sets.

Comparing the results in Table 5.2 with the results in Table 5.8, we can see
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that NASM and NAAM are also better than RBF network.

Table 5.8: Effect of number of hidden units on HSI and DJIA
HSI DJIA

# hidden MAE UMAE DMAE MAE UMAE DMAE

3 386.65 165.08 221.57 88.31 44.60 43.71
5 277.83 128.92 148.91 98.44 48.46 49.98
7 219.32 104.15 115.17 90.53 46.22 44.31
9 221.81 109.46 112.35 87.23 44.09 43.14
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Figure 5.4: Experimental results comparison graphs of HSI.

5.2.2 GARCH

In this experiment, the experimental data are 3 years’ daily closing indices

(2000-2002) from stock markets in different countries:

Nikkei225: Nikkei225 Stock Average from Japan, the daily closing prices are

plotted in Fig. 5.9(a);

DJIA00-02: Dow Jones Industrial Average (DJIA) from U.S.A., the daily

closing prices are plotted in Fig. 5.11(a)

FTSE100: FTSE100 index from U.K., the daily closing prices are plotted

Fig. 5.13(a).
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Figure 5.5: Experimental results comparison graphs of DJIA.

In the data processing step, the daily closing prices of these indices are

converted to continuously compounded returns and the ratio of the number of

training data to the number of testing data is set to 5:1. Therefore, we obtain

and list the corresponding training and testing period in Table 5.9.

Table 5.9: GARCH experimental data description
Indices Training Period Testing Period

Nikkei225 4-Jan.-2000 ∼ 2-Jul.-2002 4-Jul.-2002 ∼ 30-Dec.-2002
DJIA00-02 3-Jan.-2000 ∼ 3-Jul.-2002 5-Jul.-2002 ∼ 31-Dec.-2002
FTSE100 4-Jan.-2000 ∼ 3-Jul.-2002 4-Jul.-2002 ∼ 31-Dec.-2002

GARCH(1,1)

Before running the SVR algorithm, we run the GARCH(1,1) model to deter-

mine the width of margin in SVR. For Nikkei225, we obtain the parameter es-

timates and their standard errors in Table 5.10, i. e., the best fits for Nikkei225

by GARCH(1,1) is

yt = 0.49468 + εt,

σ2
t = 0.00073917 + 0.8682σ2

t−1 + 0.077218ε2
t−1.
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We also show the log-likelihood contours of GARCH(1,1) model fit to the

returns of data set, Nikkei225. The log-likelihood contours are plotted in a

GARCH Coefficient-ARCH Coefficient (G1−A1) plane, holding the parameters

c0 and κ0 fixed at their maximum likelihood estimates 0.49468 and 0.00073917,

respectively. The contours confirm the results in Table 5.10. The maximum

log-likelihood value occurs at the coordinates G1 = GARCH(1) = 0.8682 and

A1 = ARCH(1) = 0.077218. This figure also reveals a highly negative correla-

tion between the estimates of the G1 and A1 parameters of the GARCH(1,1)

model. It implies that a small change in the estimate of the G1 parameter

is nearly compensated for a corresponding change of opposite sign in the A1

parameter. The innovations, standard deviations (σt) and returns of Nikkei225

are shown in Fig. 5.6(b). For data set DJIA00-02, GARCH(1,1) parameter esti-

mates are listed in Table 5.11, i.e., the best fits for DJIA00-02 by GARCH(1,1)

is

yt = 0.60363 + εt,

σ2
t = 0.00056832 + 0.85971σ2

t−1 + 0.092295ε2
t−1.

The corresponding log-likelihood contours of DJIA00-02 are plotted in Fig. 5.7(a),

the maximum log-likelihood value occurs at the coordinatesG1 = GARCH(1) =

0.85971 and A1 = ARCH(1) = 0.09229. The corresponding innovations, stan-

dard deviation and returns of DJIA00-02 are shown in Fig. 5.7(b). For data

set FTSE100, GARCH(1,1) parameter estimates are listed in Table 5.12, i.e.,

the best fits for FTSE100 by GARCH(1,1) is

yt = 0.50444 + εt,

σ2
t = 0.0011599 + 0.82253σ2

t−1 + 0.12693ε2
t−1.

The corresponding log-likelihood contours of FTSE100 are plotted in Fig. 5.8(a),

the maximum log-likelihood value occurs at the coordinatesG1 = GARCH(1) =

0.82253 and A1 = ARCH(1) = 0.12693. The corresponding innovations, stan-

dard deviation and returns of FTSE100 are shown in Fig. 5.8(b).
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Table 5.10: GARCH parameter for Nikkei225
Standard T

Parameter Value Error Statistic
c0 0.49468 0.0045008 109.9083
κ0 0.00073917 0.00034866 2.1200

GARCH(1) 0.8682 0.048144 18.0334
ARCH(1) 0.077218 0.027279 2.8306

458

460

462

464

466

468

470

472

474

0.85 0.855 0.86 0.865 0.87 0.875 0.88 0.885 0.89
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

GARCH Coefficient

A
R

C
H

 C
oe

ffi
ci

en
t

(a) GARCH(1,1) log-likelihood con-
tours of Nikkei225

0 100 200 300 400 500 600 700
−0.5

0

0.5

1
Innovations

In
no

va
tio

n

0 100 200 300 400 500 600 700
0.05

0.1

0.15

0.2

0.25
Conditional Standard Deviations

S
ta

nd
ar

d 
D

ev
ia

tio
n

0 100 200 300 400 500 600 700
0

0.5

1
Returns

R
et

ur
n

(b) Innovations, conditional standard
deviations and returns of Nikkei225

Figure 5.6: GARCH(1,1) of Nikkei225. The color-coded bar at the right of (a)
indicates the height of the log-likelihood surface of the GARCH(1,1) plane.

Table 5.11: GARCH parameter for DJIA00-02
Standard T

Parameter Value Error Statistic
c0 0.60363 0.0041185 146.5631
κ0 0.00056832 0.00023491 2.4193

GARCH(1) 0.85971 0.031773 27.0580
ARCH(1) 0.092295 0.020352 4.5350

Table 5.12: GARCH parameter for FTSE100
Standard T

Parameter Value Error Statistic
c0 0.50444 0.0053313 94.6180
κ0 0.0011599 0.00049206 2.3573

GARCH(1) 0.82253 0.04906 16.7658
ARCH(1) 0.12693 0.034698 3.6582
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Figure 5.7: GARCH(1,1) of DJIA00-02. The color-coded bar at the right of
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SVR Algorithm

For SVR algorithm, the experimental procedure consists of three steps: at

first, we normalize the return value by ti = ri−rlow
rhigh−rlow , where ri is the actual

return of the stock at day i, rlow and rhigh are the correspondingly minimum

and maximum return in the training data respectively. Then, we train the

normalized training data once and then obtain the normalized predicted return

value pni = f(xi), where xi = (ti−4, ti−3, ti−2, ti−1). Finally, we unnormalize

pni, convert the result to price and obtain the corresponding predicted price

pi.

Before running the SVR algorithm, we have to choose two parameters: C,

the cost of error; β, the parameter of kernel function. Here the parameters

we choose are the same respectively for different indices. They are listed in

Table 5.13.

Here, we just consider the case of NASM; the margin setting is as Eq. (5.1).

Concretely, we set the margin width to σ calculated by GARCH(1,1) from

return series y, therefore λ1 = λ2 = 1
2

and µ = 0. For fixed margin cases, we

set the margin width as 0.1, i. e., u(x)+d(x) = 0.1, and each increment is 0.02.

The corresponding predictive results are shown in the Table 5.15, Table 5.16

and Table 5.17, respectively. The corresponding training error results are

shown in Table 5.14. We also plot the training and testing data results of

NAAM in Fig. 5.10(a) and Fig. 5.10(b) for index Nikkei225, in Fig. 5.12(a)

and Fig. 5.12(b) for index DJIA00-02, in Fig. 5.14(a) and Fig. 5.14(b) for index

FTSE100, respectively. From these results, we can see that for FTSE100 index,

NASM outperforms in the prediction than fixed margin cases. For Nikkei225,

when u(x) = 0.06, d(x) = 0.04 and u(x) = 0.08, d(x) = 0.02, the predicted

results are better than NASM. For DJIA00-02, when u(x) = 0.06, d(x) = 0.04,

the predicted result is slightly better than NASM.
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AR Models

We also use AR model with different orders (1-6) to predict the prices of the

above three indices. The experimental procedure is to apply the AR model

on training return series and to obtain the predicted return value from testing

data. Then we convert the predicted return values to price values. We obtain

the experimental results and show them in Table 5.18. After comparing the

results in Table 5.15, Table 5.17 with the results in 2–4 and 8–10 columns

of Table 5.18, we can see that for Nikkei225 and FTSE100 index, the NASM

method is better than AR model. For DJIA, we can see that NASM method

is slight worse than AR(1), but better than other order of AR model.

For index Nikkei225, the graphs of the predictive error and risks compar-

ison results are shown in Fig. 5.9(b), the corresponding bar values are from

Table 5.15 and (2–4 columns of) Table 5.18. The predictive error and risks

of DJIA00-02 are shown in Fig. 5.11(b), where the corresponding bar values

are from Table 5.16 and (5–7 columns of) Table 5.18. The predictive error

and risks of FTSE100 are shown in Fig. 5.13(b), where the corresponding bar

values are from Table 5.17 and (8–10 columns of) Table 5.18.

RBF Network

For the RBF network, we use the RBF network implemented in NETLAB [59]

and perform the one-step ahead prediction to predict the returns of the above

three dataset, then we convert the predictive return to price and compare their

values with actual price values. Concretely, we let other parameters as default

and set the number of hidden units to 3, 5, 7, 9 to learn f by training the

RBF network on the training samples and we get the results in Table 5.19.

We can see that NASM is better than RBF network for dataset Nikkei225 and

FTSE100, other than DJIA00-02.
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5.3 Discussions

Having described the experiments and their results, we know that NASM is

superior to FASM and FAAM generally. One reason is that NASM catches

the stock market information and adds the information into the setting of the

margin. This provides helpful information for the prediction. Another reason

is that by using NASM, the margin width is determined by a meaningful

value. This value changes with the stock market. Obviously, this method is

more flexible than fixed margin cases and avoids risk of getting bad predictive

results partially when the margin values are determined by random selection

in the fixed margin cases.

Furthermore, we know that NAAM may be better than NASM. For ex-

ample, by adding a momentum, we may not only improve the accuracy of

prediction, but also reduce the predictive downside risk.

Another notice is that by cautiously selecting parameters, SVR algorithm

has similar predictive performance to other models, from Fig. 5.4(a) and

Fig. 5.5(a). However, for a novice, the SVR libraries are easy to run. Since

every local optimum is the global optimum, it guarantees the user to find an

optimal solution easily and stably. This advantage is very useful for a novice to

learn a new model, or library, and strengthen their confidence of learning new

things comparing with learning other non-linear model, e. g. RBF networks.

In general, our methods can be considered as a model selection, determining

the parameter, ε,. We do not consider the setting of other parameters, such

as C and β. We just use the cross-validation technique to find suitable values

for them. However, this procedure is time-consuming. We may add some

market information to set these parameters, e. g. [16]. In addition, the margin

width set by GARCH model is too wide; we may need to add more useful term

to shrink it. This can be one of our future works. A valuable experience is

that the normalized procedure will be helpful for selecting suitable parameters
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easily and stably.

Finally, we turn to a key weakness of our model; the predictive model

does not lead to direct profit making in real life and we do not provide the

confidence of these predictive models. However, we may find some useful

information through using our model to predict the stock market prices; the

predictive results may provide some helpful suggestions.
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Figure 5.9: Nikkei225 data plot and experimental results graphs.
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Figure 5.10: Experimental results graphs using GARCH method for Nikkei225.
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Figure 5.11: DJIA00-02 data plot and experimental results graphs.
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Figure 5.12: Experimental results graphs using GARCH method for DJIA00-
02.

Table 5.13: Parameters in GARCH experiments for NASM
Indices C β Indices C β Indices C β
Nikkei225 2 2−4 DJIA 2 2−4 FTSE100 2 2−4

Table 5.14: SVR training results
Nikkei225 DJIA00-02 FTSE100

MAE UMAE DMAE MAE UMAE DMAE MAE UMAE DMAE

166.51 81.68 84.83 99.30 48.78 50.52 52.74 26.08 26.66
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Figure 5.13: FTSE100 data plot and experimental results graphs.
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Figure 5.14: Experimental results graphs using GARCH method for FTSE100.

Table 5.15: SVR results for Nikkei225
Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 124.37 55.97 68.40

0 0.1 141.6 30.7 110.9
0.02 0.08 131.25 39.02 92.23

FAAM 0.04 0.06 125.63 49.66 75.97
0.06 0.04 123.11 61.81 61.3
0.08 0.02 124 75.63 48.37
0.10 0 129.19 91.56 37.63
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Table 5.16: SVR results for DJIA00-02
Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 129.56 62.74 66.83

0 0.1 139.82 41.56 98.26
0.02 0.08 134.33 49.16 85.17

FAAM 0.04 0.06 130.49 57.56 72.93
0.06 0.04 128.51 66.87 61.64
0.08 0.02 129.65 77.72 51.94
0.10 0 133.76 90.02 43.74

Table 5.17: SVR results for FTSE100
Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 69.61 33.42 36.19

0 0.1 73.46 25.93 47.53
0.02 0.08 71.98 28.52 43.46

FAAM 0.04 0.06 70.83 31.27 39.56
0.06 0.04 70.1 34.22 35.88
0.08 0.02 69.86 37.42 32.45
0.10 0 70.26 40.92 29.34

Table 5.18: AR results
Nikkei225 DJIA00-02 FTSE100

Order MAE UMAE DMAE MAE UMAE DMAE MAE UMAE DMAE

1 125.31 53.40 71.91 128.58 61.67 66.91 71.44 33.9 37.53
2 125.68 53.31 72.36 130.00 62.08 67.92 71.40 33.46 37.94
3 125.67 53.37 72.30 130.56 62.50 68.06 70.41 32.76 37.65
4 125.22 52.91 72.31 131.20 62.93 68.27 69.96 32.76 37.20
5 125.32 53.08 72.24 131.27 62.90 68.38 70.12 32.89 37.23
6 125.40 52.72 72.68 131.32 62.89 68.43 69.99 32.78 37.21

Table 5.19: RBF results
Nikkei225 DJIA00-02 FTSE100

#hidden MAE UMAE DMAE MAE UMAE DMAE MAE UMAE DMAE

3 125.33 57.04 68.28 128.89 60.43 68.50 71.24 35.10 36.14
5 124.76 56.85 67.91 128.71 60.28 68.44 71.20 33.32 37.90
7 124.55 56.94 67.61 127.50 58.92 68.57 70.92 31.25 39.67
9 125.14 57.46 67.69 127.94 69.82 68.13 71.85 32.20 39.65



Chapter 6

Relation between Downside

Risk and Asymmetrical Margin

Settings

From our previous work [96], it is interesting to note that when the up margin

is increased, the predicted value will become smaller. In this chapter, we

formalize this phenomenon and find out the condition to keep this result valid.

The result also leads to control the predictive downside risk. Practically, we

also propose an algorithm to check the validity of the condition, such that

we may know the changing trend of predictive downside risk only by running

this algorithm on the training data set without doing practical SVR training

procedure.

6.1 Mathematical Derivation

Let the symmetrical kernel matrix be K = (kij) and the kernel function be

RBF, Eq. (3.13), i. e., kij = exp(−β‖xi − xj‖2), and suppose

K−1




1
...

1


 =




d1

...

dN


 . (6.1)
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We will note that when the above di are greater than 0, if we increase the

up margin, we will obtain a smaller predictive value. So we state the result as

follows:

Theorem 5 Let a condition be defined as,

di > 0, ∀i = 1, 2, . . . , N, (6.2)

If the condition in Eq. (6.2) is valid and the margin setting is FASM or FAAM,

the decision function of SVR using RBF kernel function will be a monotone

decreasing function to the up margin, u(x).

Proof: Here we just consider the kernel function, RBF. From Eq. (4.6),

the decision function of SVR for a testing data xt is

f(xt) =
N∑

i=1

(αi − α∗i )κ(xt,xi) + b

= γ(xt)
T α̃+ b,

where κ(xt,xi) = exp(−β‖xt − xi‖2) > 0, (6.3)

γ(xt) = [κ(xt,x1), . . . , κ(xt,xN)]T ,

α̃ = [α1 − α∗1, . . . , αN − α∗N ]T ,

and α,α∗ are generated from QP problem in Eq. (4.5), which is rewritten in

a matrix notation as,

min Q(ᾱ) =
1

2
ᾱTQᾱ+ pT ᾱ, (6.4)

subject to

1TN ÎNᾱ = 0, 0 ≤ α(∗) ≤ C12N ,
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where

ᾱ = [α1, . . . , αN , α
∗
1, . . . , α

∗
N ]T ,

1N = [1, . . . , 1]T , an N × 1 vector,

Q =


 K −K

−K K


 ,K = [γ(x1), . . . ,γ(xN )], an N ×N matrix,

ÎN = [IN ,−IN ] , IN is an N ×N identity matrix,

p = [u(x1)− y1, . . . , u(xN)− yN , d(x1) + y1, . . . , d(xN) + yN ]T .

The optimal solution of Eq. (6.4) is equivalent to finding an ᾱ, such that

minimize the following Lagrange function,

L(ᾱ) =
1

2
ᾱTQᾱ+ pT ᾱ− λ1TN ÎNᾱ− µT (C12N − ᾱ)− νT ᾱ, (6.5)

where λ, µi, νi, i = 1, . . . , 2N are corresponding Lagrange multipliers.

Therefore, ᾱ satisfies the following equation,

Qᾱ+ p− λ(1TN ÎN)T + µ− ν = 0,

i. e.,

Kα̃+ p1..N − λIN + µ1..N − ν1..N = 0,

−Kα̃+ pN+1..2N + λIN + µN+1..2N − νN+1..2N = 0,

where l1..N = [l1, . . . , lN ], lN+1..2N = [lN+1, . . . , l2N ], l = p,µ or ν.

Subtracting the above two equations and multiplying both side of the equa-

tion by 1
2
K−1, we obtain

α̃ = −1

2
K−1[p1..N − pN+1..2N − 2λIN + (µ1..N − µN+1..2N)− (ν1..N − νN+1..2N)],

Hence,

f(xt) = γ(xt)
T α̃+ b = −1

2
γ(xt)

TK−1[p1..N − pN+1..2N − 2λIN

+ (µ1..N − µN+1..2N)− (ν1..N − νN+1..2N)] + b.
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In the fixed margin cases, all up margin are the same, while all down margin

are the same, and the sum of up margin and down margin equals a constant

value, say c. That is we have u(xi) = u(xt) and d(xi) = c−u(xt), i = 1, . . . , N .

Therefore,

f(xt) = −1

2
γ(xt)

TK−1[p̃− 2λIN + (µ1..N − µN+1..2N)− (ν1..N − νN+1..2N)] + b,

where p̃i = 2u(xt)− 2yi − c. So

∂f(xt)

∂u(xt)
= −2

2
γ(xt)

TK−11N , (6.6)

< 0. (by Eq. (6.3) and Eq. (6.2))

Therefore, in the fixed margin setting cases, given condition of Eq. (6.2),

the decision function is a monotone decreasing function to the up margin.

From above theorem, increasing the up margin, u(x), will produce a smaller

predicted value. By using the DMAE as in Eq. (4.10) to measure the downside

risk, we obtain the following corollary:

Corollary 6 If the condition in Eq. (6.2) is valid and the margin setting is

FASM or FAAM, increasing the up margin, u(x), will reduce the predictive

downside risk or keep it to vanish.

Proof: Suppose that there are two margin settings in the fixed margin

cases, FASM or FAAM. u1(x) and d1(x) are the up margin and down margin

to the first fixed margin setting respectively. u2(x) and d2(x) are the up

margin and down margin to the other fixed margin setting respectively. Here

we assume u1(x) + d1(x) = u2(x) + d2(x) and u1(x) < u2(x).

Using these margin settings, we can obtain the corresponding predicted

values p1
j , p

2
j , j = 1, . . . , m, where m is the number of testing data. We can

calculate the corresponding DMAE as DMAE1 and DMAE2 respectively.

Since u1(x) < u2(x), from Theorem 5, we know that p1
j > p2

j , j = 1, . . . , m.

The respective relations of p1
j , p

2
j and aj consist of three cases.
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Case 1: If ∀j, j ∈ {1, . . . , m}, such that p2
j < p1

j < aj. From Definition 4,

DMAE1 = DMAE2 = 0.

Case 2: If there is j0, j0 ∈ {1, . . . , m}, such that p2
j0 < aj0 < p1

j0 . From

Definition 4, we know that DMAE1 has at least one more term than

DMAE2, so we have DMAE1 > DMAE2.

Case 3: If ∀j, j ∈ {1, . . . , m}, such that aj < p2
j < p1

j . From Definition 4,

DMAE1 > DMAE2.

Therefore, all the cases make our conclusions.

6.2 Algorithm

In the following, we propose an algorithm to test the validity of the condition

of Eq. (6.2),

Algorithm 1: Detective Algorithm

Construct the kernel function matrix K;

Calculate the determinant of K, |K|;
valid = true;

for i = 1 to N do

Substitute the values of ith row of K to 1, form a new matrix K′i;

Calculate the determinant of K′i, |K′i|;
if |K| × |K′i| < 0, valid = false;

return valid;

In order to state that the above algorithm can check the validity of the

condition of Eq. (6.2), we propose the following theorem.

Theorem 7

∀i = 1, . . . , N, sgn(di) = sgn(|K| × |K′i|),

where sgn(·) denotes the sign of the value.
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Proof: Let K = (kij), then the adjoint of K is adjK = (Kij)
T , where

Kij is the cofactor of kij.

If the determinant of K is not equal to 0, i. e. |K| 6= 0, then K is non-

singular and

K−1 =
1

|K| adjK.

From Eq. (6.1),

(d1, . . . , dN)T = K−1 (1, . . . , 1)T

=
1

|K| adjK (1, . . . , 1)T

=
1

|K|




K11 K21 . . . KN1

K12 K22 . . . KN2

...
...

. . .
...

K1N K2N . . . KNN







1

1
...

1



.

While the determinant of K′i is

|K′i| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




k11 k12 . . . k1N

...
...

. . .
...

1 1 . . . 1
...

...
. . .

...

kN1 kN2 . . . kNN




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

← ith row

=
N∑

j=1

Kij · 1.

So,

(d1, . . . , dN)T =
1

|K| (|K′1|, |K′2|, . . . , |K′N|)T

|K|2 × (d1, . . . , dN)T = |K| × (|K′1|, |K′2|, . . . , |K′N|)T

|K|2 × di = |K| × |K′i|, i = 1, . . . , N.

Therefore, we have

sgn(di) = sgn(|K|2 × di) = sgn(|K| × |K′i|).
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6.3 Experiments

We also do the following experiments to test our theoretical results. The

experimental data are all the data sets used in [96, 98]:

HSI01: the daily closing prices of Hong Kong’s HSI from January 15, 2001 to

June 19, 2001, a total of 104 days’ data;

HSI98-00: the daily closing prices of HSI from January 2, 1998 to December,

29, 2000, a total of three years’ data;

DJIA98-00: the closing daily prices of DJIA from January 2, 1998 to De-

cember, 29, 2000, totally three years’ data.

The corresponding training and testing periods are the same in [96, 98] and

we list it again in Table 6.1.

Table 6.1: Experimental data description
Indices Training Period Testing Period

HSI01 15-Jan.-2001 ∼ 22-May-2001 23-May-2001 ∼ 19-Jun.-2001
HSI98-00 02-Jan.-1998 ∼ 04-Jul.-2000 05-Jul.-2000 ∼ 29-Dec.-2000
DJIA98-00 02-Jan.-1998 ∼ 29-Jun.-2000 30-Jun.-2000 ∼ 29-Dec.-2000

This experimental procedure consists of three main parts: at first, we nor-

malize the prices by ti = ai−alow
ahigh−alow , where ti is the normalized price at day

i, ai is the actual price of the stock at day i, alow and ahigh are the corre-

spondingly minimum and maximum prices in the training data respectively.

Then, we use the training data to run the detective algorithm, Algorithm 1.

Finally, we apply the SVR algorithm, which is modeled as pn i = f(xi), where

xi = (ti−4, ti−3, ti−2, ti−1), to train the training data and then, we use the test-

ing data to obtain the normalized predicted values. After unnormalizing these

values pn i, we obtain the corresponding predicted prices pi.
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Detective Algorithm

When running Algorithm 1, we use different β = 2τ , τ=-15, . . . , 15, to con-

struct the kernel matrix K and test the validity of the condition in Eq. (6.2).

We show the results in Table 6.2, 6.3, 6.4 for data sets HSI01, HSI98-00 and

DJIA98-00 respectively. From Table 6.2, we find that there are three kinds

of results for data set HSI01: when τ ranges from -15 to 3, ∀i = 1, . . . , N ,

|K| × |K′i| = 0; when τ is in 4 and 9, non of |K| × |K′i| equals 0, but there are

some i, such that |K|× |K′i| < 0, i. e. some di is less than 0; when τ is from 10

to 15, ∀i = 1, . . . , N, |K| × |K′i| > 0, i. e. all di are greater than 0 and satisfy

the condition in Eq. (6.2); N here is equal to the size of training set in HSI01.

For data HSI98-00 and DJIA98-00, they also have similar results: when τ is

from -15 to 9, ∀i = 1, . . . , N , all |K| × |K′i| = 0; when τ is within 10 and 13,

no |K| × |K′i| = 0, but there are some i, such that |K| × |K′i| < 0, i. e. some

di < 0; when τ is 14 or 15, all di > 0, here N refers to the size of training set

in HSI98-00, DJIA98-00 respectively.

Table 6.2: Validated results for HSI01
case I II III
τ -15 ∼ 3 4 ∼ 9 10 ∼ 15
β 2−15 ∼ 23 24 ∼ 29 210 ∼ 215

valid true false true

Table 6.3: Validated results for HSI98-00
case I II III
τ -15 ∼ 9 10 ∼ 13 14 ∼ 15
β 2−15 ∼ 29 210 ∼ 213 214 ∼ 215

valid true false true
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Table 6.4: Validated results for DJIA98-00
case I II III
τ -15 ∼ 9 10 ∼ 13 14 ∼ 15
β 2−15 ∼ 29 210 ∼ 213 214 ∼ 215

valid true false true

SVR Algorithm

We perform experiments using SVR algorithm with β = 2τ , τ=-15, . . . , 15,

C = 1 and the width of margin being 0.01, i. e., u(x) + d(x) = 0.01, each

increment is 0.0025. From the experimental results, we find that all DMAE

decrease with the increase of up margin for these three datasets. We just

list partial results in the following Table 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 and Ta-

ble 6.11, 6.12, 6.13.

For data set HSI01, we only list the results of β = 2−2, 1, 24, 29 and β =

210, 212 in Table 6.5, Table 6.6 and Table 6.7 respectively. These tables con-

sist of two tables with the results on the left and two figures corresponding

to the relation of up margin and DMAE on the right. The βs selected in Ta-

ble 6.5, Table 6.6 and Table 6.7 to represent the results in Table 6.2 of case

I, case II and case III respectively. From these results we can see that as the

up margin increases, DMAE decreases gradually (all figures clearly show this

phenomenon). We also note that condition in Eq. (6.2) is only a sufficient

condition. When there are some di < 0, from Eq. (6.6), we know that it is

possible that γ(xt)
TK−1 > 0 and ∂f(xt)

∂u(xt)
< 0, this also can derive the result of

Theorem 5. When |K| × |K′i| = 0, it may |K| equal to 0. In this case, K is

singular and we do not prove this case in Theorem 5.

For data set HSI98-00 and data set DJIA98-00, we select β = 2−2, 1, 210,

213, 214, 215 to represent the corresponding results in Table 6.3 and Table 6.4

respectively. The corresponding results are shown in Table 6.8, Table 6.9,
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Table 6.10 for HSI98-00 and in Table 6.11, Table 6.12, Table 6.13 for DJIA98-

00 respectively. All of these results meet our results in Theorem 5. We also

note that when β = 213, 214, or 215, since all of the predicted values are under-

predicted, i. e. less than the actual values, we have all DMAE=0.

6.4 Discussions

From the experimental results, we can see that as the up margin increases, the

predictive values tend to smaller. This actually meets our theoretical results.

The proposed algorithm also can be applied to the training data set to see

the changing trend of predictive value before prediction. That is to say, if we

use FASM or FAAM as the method to predict the stock price, we can use the

above algorithm to check the validity of the condition. And then, we know

the changing trend of predictive values when we adjust the up (down) margin.

Therefore, we can reduce/increase the predictive downside risk.

However, there are some lacks in our theoretical results. First, we do not

consider the case when K is singular. The experimental results also indicated in

this case, the phenomenon, the increase of up margin leads to smaller predictive

value, is also true. Second, in the proof of Theorem. 5, we just prove the cases

of FASM and FAAM. We do not consider the cases of NASM and NAAM. But

in our opinions, from the results of setting momentum term in the margin,

for non-fixed margin settings, this phenomenon may be also true. Third, the

experimental results indicated that although the condition 6.2 is not met, e. g.

case I and case II, the phenomenon is still true. This means that we still can

loose the condition to get the same theorem.
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β u(x) d(x) DMAE
0 0.01 86.01

0.0025 0.0075 80.18
2−2 0.005 0.005 74.54

0.0075 0.0025 68.71
0.01 0 64.48 0 0.0025 0.005 0.0075 0.01

60

65

70

75

80

85

90

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 89.76

0.0025 0.0075 83.20
1 0.005 0.005 77.56

0.0075 0.0025 71.93
0.01 0 66.41 0 0.0025 0.005 0.0075 0.01

65

70

75

80

85

90

u(x)

D
M

AE

Table 6.5: DMAE for HSI01 of case I

β u(x) d(x) DMAE
0 0.01 75.91

0.0025 0.0075 69.24
24 0.005 0.005 62.58

0.0075 0.0025 56.41
0.01 0 50.70 0 0.0025 0.005 0.0075 0.01

50

55

60

65

70

75

80

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 359.64

0.0025 0.0075 350.41
29 0.005 0.005 341.19

0.0075 0.0025 331.96
0.01 0 322.73 0 0.0025 0.005 0.0075 0.01

320

325

330

335

340

345

350

355

360

u(x)

D
M

AE

Table 6.6: DMAE for HSI01 of case II
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β u(x) d(x) DMAE
0 0.01 532.67

0.0025 0.0075 522.42
2−2 0.005 0.005 512.17

0.0075 0.0025 501.92
0.01 0 491.67 0 0.0025 0.005 0.0075 0.01

490

495

500

505

510

515

520

525

530

535

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 627.41

0.0025 0.0075 617.16
1 0.005 0.005 606.91

0.0075 0.0025 596.66
0.01 0 586.41 0 0.0025 0.005 0.0075 0.01

490

495

500

505

510

515

520

525

530

535

u(x)

D
M

AE

Table 6.7: DMAE for HSI01 of case III

β u(x) d(x) DMAE
0 0.01 142.48

0.0025 0.0075 126.76
2−2 0.005 0.005 111.44

0.0075 0.0025 97.06
0.01 0 83.30 0 0.0025 0.005 0.0075 0.01

80

90

100

110

120

130

140

150

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 139.82

0.0025 0.0075 120.74
1 0.005 0.005 108.20

0.0075 0.0025 92.66
0.01 0 82.60 0 0.0025 0.005 0.0075 0.01

80

90

100

110

120

130

140

u(x)

D
M

AE

Table 6.8: DMAE for HSI98-00 of case I
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β u(x) d(x) DMAE
0 0.01 79.30

0.0025 0.0075 76.26
210 0.005 0.005 65.76

0.0075 0.0025 59.70
0.01 0 54.24 0 0.0025 0.005 0.0075 0.01

50

55

60

65

70

75

80

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
213 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)

D
M

AE

Table 6.9: DMAE for HSI98-00 of case II

β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
214 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
215 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)

D
M

AE

Table 6.10: DMAE for HSI98-00 of case III
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β u(x) d(x) DMAE
0 0.01 56.56

0.0025 0.0075 50.82
2−2 0.005 0.005 45.66

0.0075 0.0025 40.99
0.01 0 36.69 0 0.0025 0.005 0.0075 0.01

35

40

45

50

55

60

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 56.09

0.0025 0.0075 50.42
1 0.005 0.005 45.08

0.0075 0.0025 40.34
0.01 0 36.00 0 0.0025 0.005 0.0075 0.01

35

40

45

50

55

60

u(x)

D
M

AE

Table 6.11: DMAE for DJIA98-00 of case I

β u(x) d(x) DMAE
0 0.01 53.80

0.0025 0.0075 49.84
210 0.005 0.005 46.05

0.0075 0.0025 42.37
0.01 0 38.84 0 0.0025 0.005 0.0075 0.01

38

40

42

44

46

48

50

52

54

u(x)

D
M

AE

β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
213 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)

D
M

AE

Table 6.12: DMAE for DJIA98-00 of case II
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β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
214 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)
D

M
AE

β u(x) d(x) DMAE
0 0.01 0

0.0025 0.0075 0
215 0.005 0.005 0

0.0075 0.0025 0
0.01 0 0 0 0.0025 0.005 0.0075 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(x)

D
M

AE

Table 6.13: DMAE for DJIA98-00 of case III



Chapter 7

Conclusion

In this thesis, we propose to vary the margin in the ε insensitive loss function,

and then we extend it to a general ε loss function. After applying it to financial

prediction tasks, we obtain the following results: (a) By varying the width of

margin and with a momentum, we can reflect the volatility of the stock market

and capture the up/down trend of the stock market. Adding these information

into the margin setting is helpful for the prediction of stock market prices. (b)

GARCH method can also be applied in the setting of margin. (c) In the fixed

margin cases, if the sufficient condition, i.e. Eq. (6.2), is true, the predictive

value is monotone to the up margin and hence, we may reduce the predictive

downside risk or keep it zero by increasing the up margin.

A reliable prediction algorithm to predict the stock market implies a better

system which can help us make more money than other investment strategies.

However, it is hard to fulfil this objective. Although the general mechanisms

underlying the evolution of stock market prices elude us, we believe there is still

room for cautious optimism about the use of exploratory statistical modeling

the financial markets. At the very least, these statistical models may provide a

systematic way to monitor the stock market from huge amount of information

on the stock market.

Apart from the financial applications, our idea of asymmetrical margin

settings as in Chapter 6 may also be applied in other applications, e. g. biased
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classification. It may be similar to the weighted SVM in [62], which used larger

value of C (cost of the error) to penalize highly reliable class data points and

smaller value of C for less confidence class. Our idea of asymmetrical margins

in SVC is to find out the classification hyperplane by standard SVC first, and

to push the hyperplane away from the highly confidence class simply.

Further improvements can be made in our model. First, we should find

ways to optimize the values of some parameters, such as the cost of error, C;

the RBF kernel parameter, β. Second, our model assumes that the information

of the whole stock market is captured in the price values and there is a non-

linear relation between current stock price and the previous four days’ stock

prices. However, the actual stock market is very complicated; there are still

many useful information for the prediction of stock markets other than prices.

Other information, e. g. volumes, may also be added in the input vector x. It

may improve the predictive performance.



Appendix A

Basic Results for Solving SVR

A.1 Dual Theory

Let X0 be a nonempty open set in Rn, and let f be a numerical function

defined on X0, i.e., f : X0 7−→ R, g be respectively a p-dimensional vector

function defined on X0, i.e., g : X0 7−→ Rp.

The primal (minimization) problem is defined as follows,

Definition 8 The (primal) Minimization Problem (MP) [55, 5],

Find an x̄, if it exists, such that

f(x̄) = min
x∈X

f(x), x̄ ∈ X = {x | x ∈ X0, g(x) ≤ 0} (A.1)

The corresponding dual (maximization) problem is,

Definition 9 The Dual (maximization) Problem (DP) [55, 5],

Let f and g be differentiable on X0. Find an x̂ and a û ∈ Rp, if they exist,

such that

L(x̂, û) = max
(x,u)∈Y

L(x,u),

(x̂, û) ∈ Y = {(x,u) |x ∈ X0,u ∈ Rp,∇xL(x,u) = 0,u ≥ 0}, (A.2)

L(x,u) = f(x) + uTg(x).

The function L is usually called Lagrange function or Dual function.
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Theorem 10 Wolfe’s duality theorem [55]

Let X0 be an open set in R, let f and g be differentiable and convex on X 0,

let x̄ be the solution of Eq. (A.1), and let g satisfy the Kuhn-Tucker conditions.

Then there exists a ū ∈ Rp such that (x̄, ū) be the solution of Eq. (A.2) and

f(x̄) = L(x̄, ū).

Proof: Since g satisfy the Kuhn-Tucker conditions, there exist a ū ∈ Rp,
such that (x̄, ū) satisfies the Kuhn-Tucker conditions

∇f(x̄) + ūT∇g(x̄) = 0,

ūTg(x̄) = 0,

g(x̄) ≤ 0,

ū ≥ 0.

Hence

(x̄, ū) ∈ Y = {(x,u)|x ∈ X0,u ∈ Rp,∇f(x) + uT∇g(x) = 0,u ≥ 0}.

Now let (x,u) be an arbitrary element of the set Y . Then

L(x̄, ū)− L(x,u) = f(x̄) − f(x) + ūTg(x̄) − uTg(x)

≥∇f(x)(x̄− x)− uTg(x)

(∵ f is convex and ūTg(x̄) = 0)

≥∇f(x)(x̄− x) + uT [−g (x̄) +∇g(x)(x̄− x)]

(∵ g are convex and u ≥ 0)

= [∇f(x) + uT∇g(x)](x̄− x) − uTg(x̄)

= −uTg(x̄) (∵∇f(x) + uT∇g(x) = 0)

≥ 0 (∵ u ≥ 0 and g(x̄) ≤ 0)

Hence

L(x̄, ū) = max
(x,u)∈Y

L(x,u) (x̄, ū) ∈ Y.
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Since ūTg(x̄) = 0

L(x̄, ū) = f(x̄) + ūTg(x̄) = f(x̄) concludes the proof.

A.2 Standard Method to Solve SVR

In the following, i indicates 1, . . . , N . (∗) indicates the variable with and

without asterisk.

Definition 11 (Primal Optimization Problem of SVR)

min
w,b,ξ(

� )

1

2
〈w,w〉+ C

N∑

i=1

(ξi + ξ∗i ), (A.3)

subject to

yi − 〈w,φ(xi)〉 − b ≤ ε+ ξi,

〈w,φ(xi)〉+ b− yi ≤ ε+ ξ∗i ,

ξ
(∗)
i ≥ 0.

Solution 12 At first, we construct the Lagrange function as,

L(w, b, ξ(∗)) =
1

2
〈w,w〉+ C

N∑

i=1

(ξi + ξ∗i )−
N∑

i=1

αi(ε+ ξi − yi + 〈w,φ(xi)〉+ b)

−
N∑

i=1

α∗i (ε+ ξ∗i + yi − 〈w,φ(xi)〉 − b)−
N∑

i=1

(µiξi + µ∗i ξ
∗
i ), (A.4)

where α,α∗,µ,µ∗ ≥ 0, are the corresponding Lagrange multipliers.

At the saddle point, the differentiation of L with respect to w, b, ξ, ξ∗ is

equal to zero. Therefore, we have,
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∂L
∂w

= w−
N∑
i=1

(αi − α∗i )φ(xi) = 0,

∂L
∂b

=
N∑
i=1

αi −
N∑
i=1

α∗i = 0,

∂L
∂ξi

= C − αi − µi = 0,

∂L
∂ξ∗i

= C − α∗i − µ∗i = 0.

We can rewrite the above equations as,

w =
N∑

i=1

(αi − α∗i )φ(xi),
N∑

i=1

αi =
N∑

i=1

α∗i , (A.5)

α
(∗)
i ∈ [0, C].

Substituting Eq. (A.5) into Eq. (A.4) and applying the Dual Theory in

Appendix A.1, we change the original primal optimization problem of SVR in

Eq. (A.3) to the following QP problem,

min Φ(α(∗)) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j )〈φ(xi),φ(xj)〉 (A.6)

+
N∑

i=1

(ε− yi)αi +
N∑

i=1

(ε+ yi)α
∗
i ,

subject to

N∑

i=1

(α∗i − αi) = 0, α
(∗)
i ∈ [0, C].
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