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Abstract

Clustering technique is used in database and information retrieval system for

organizing data and improving retrieval efficiency. We surmise such functional-

ity is valuable in a Peer-to-Peer (P2P) distributed environment. In this thesis,

we introduce the concept of Peer Clustering at the level of overlaying net-

work topology, thus, data inside the P2P network are organized in a fashion

similar to a Yellow Pages. Moreover, the usability of these systems depends

on effective techniques to retrieve information; however, the current strategies

used in existing P2P systems are inefficient. To avoid query messages flooding

and saving resources in handling irrelevant queries, we propose a content-based

query routing strategy, the Firework Query Model, to improve existing retrieval

methods. In contrast to broadcasting the query message, our query message is

routed intelligently according to its content. Once it reaches the target cluster,

the query message is broadcasted to all peers inside the cluster much like an

exploding firework. We design and implement a DIStributed COntent-based

Visual Information Retrieval (DISCOVIR) system with content-based query

functionality and improved query efficiency. We demonstrate its scalability

and efficiency through simulation.
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Chapter 1

Introduction

The appearance of Peer-to-Peer (P2P) applications such as Gnutella [14], Nap-

ster [34], Morpheus [32] and Freenet [13], have demonstrated the significance of

distributed information sharing systems. These applications offer advantages

of decentralization by distributing the storage, information and computation

cost among the peers. For example, by distributing data storage over net-

worked computers, one can have a virtual data storage that is possibly many

magnitudes larger than what can be stored in a local computer. In addition,

such distributed file system with data redundancy would provide zero down

time and a powerful fault tolerance mechanism [38, 5]. One may also envision

data security by distributing pieces of an encrypted file over many computers.

By doing so, one imposes a difficult barrier for intruder to overcome because

one needs to break into several computers before getting the file [47]. With a

suitable data segmentation technique, we are able to deliver high-bandwidth

data, e.g., streaming video, using a collection of computers with slower con-

nection speed [26]. Likewise, one may also distribute the computation among

different computers to achieve a high throughput. Because of these desirable

qualities, many research projects have been focused on designing different P2P

systems and improving their performance. Regarding to current content-based

image retrieval (CBIR) systems, we envisage the potential use of P2P network

in both scattering data storage and distributing workload of feature extraction

1



Chapter 1 Introduction 2

and indexing.

In this thesis, we propose a strategy for clustering peers that share simi-

lar properties together, thus, data inside the P2P network will be organized

in a fashion similar to that of the Yellow Pages. In order to make use of

our clustered P2P network efficiently, we also propose a new content-based

query routing strategy, the Firework Query Model (FQM) [36, 37], which aims

to route the query intelligently according to the content of query to reduce

the network traffic of query passing in the network. Our proposed routing

and searching algorithm makes use of deliberately formed connection between

peers and routing of queries intelligently to increase query performance with-

out strict requirements on network topology and location of data placement,

while adaptable to current P2P networks. Multimedia features are taken into

consideration when building the network and routing queries.

To demonstrate our algorithm and show the desirabilities of P2P applica-

tion, we design and implement the DIStributed COntent-based Visual Infor-

mation Retrieval (DISCOVIR) [9] and DISCOVIR Everywhere [10] system,

which are compatible to Gnutella1 network, for users to share and retrieve

images [50]. The motivation of proposing DISCOVIR is to migrate tradi-

tional CBIR to a P2P network as a step to introduce content-based search

in P2P. Peer Clustering and Firework Query Model is also implemented on

DISCOVIR. With the advantages of P2P networks, we utilize not only the

distributed data storage, but also the computation power of each peer for the

preprocessing and indexing of images. In order to improve the accessibility

of P2P network, we further elaborate on current web-based P2P services and

propose DISCOVIR Everywhere to provide web interface for users to carry out

1Gnutella is a famous protocol designed for sharing files in a distributed network. A
protocol is a standard format that allows two pieces of software to communicate, like a
language that two people both know. The Gnutella protocol was designed by AOL’s Nullsoft
division to surpass the file sharing capabilities of Napster, but was soon released to the public
domain. It allows a user to share any type of file from his computer and make it available
to anyone using Gnutella clients.
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CBIR in P2P network with the following characteristics:

1. DISCOVIR increases the query efficiency by routing the queries intelli-

gently according to the content of queries by using our proposed Peer

Clustering and Firework Query Model. We reduce the network traf-

fic generated, avoid irrelevant peers to handle the query to reduce the

workload of computers and increase the performance of information re-

trieval.

2. DISCOVIR extends current centralized content-based retrieval systems

into P2P fashion and achieve the utilization of both data storage and

computation resource at the same time.

3. Queries in DISCOVIR are no longer based on simple texts but on the

content of images. The need for annotating shared files is waived, thus,

query accuracy does not depend on subjective perception of keywords by

users.

4. DISCOVIR Everywhere provides an interface for web and mobile users

to access the DISCOVIR network. This architecture gets rid of problems

existing in current web-based P2P service by tightly integrating the web

and P2P.

1.1 Main Contributions

Compared with other researchers’ previous works, our main contributions to

P2P are:

1. Efficient Data Location–efficiently locate the data under an environ-

ment with no index storage in centralized server. We formulate a query

model that improves query efficiency under the content-based search ar-

chitecture and reveal the research need for improving query efficiency.
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2. Rich Query in Multimedia Files–perform query based on content of

information rather than simple filename or meta data in P2P networks.

The queries in current P2P applications are mostly based on text, en-

tered by users to describe shared files. The accuracy of retrieval depends

mainly on whether users can come up with a common description on a

file. CBIR raise another aspect of content-based search in P2P other

than filename-based search.

3. DISCOVIR and DICOVIR Everywhere systems Implementa-

tion– extend current CBIR system into P2P fashion and achieve the

utilization of both data storage and computation resource. We also im-

plemented clustering algorithm and content based routing strategy on

DISCOVIR to demonstrate Peer Clustering and Firework Query Model

on P2P applications. Current P2P applications require installing spe-

cial purpose software and proprietary protocols for information retrieval,

which limit the number of audience. To make use of the WWW to in-

crease popularity of P2P, we propose DISCOVIR Everywhere to act as an

interface to for web and mobile users to access the DISCOVIR network.

1.2 Report Organization

In the following, we first review current issues of P2P and CBIR in Chapter 2.

We present the algorithm of Peer Clustering and Firework Query Model in

Chapter 3. In Chapter 4, we introduce the architecture of DISCOVIR and the

functionality of its components. Then, we proceed to report and analyze our

experimental results in Chapter 5. We give our final remarks and conclusion

in Chapter 6.



Chapter 2

Background

2.1 Background of Peer-to-Peer

Both Napster and Gnutella have demonstrated the possibility of distributing

storage over computers in the Internet. Such kind of P2P networks offer the

following advantages:

1. Resource Utilization–The storage, information and computational cost

can be distributed among the peers, allowing many individual computers

to achieve a higher throughput [48].

2. Increased Reliability–The P2P network increases reliability by elim-

inating reliance on centralized coordinators that are potential critical

points of failure [7, 6].

3. Comprehensiveness of Information–The P2P network has the po-

tential to reach every computers on the Internet, while even the most

comprehensive search engine can only cover 20% of web-site available as

stated in some statistics [28].

Figure 2.1 shows an example of a P2P network that different information is

shared by different peers. When a peer initiates a search, it broadcasts a query

request to its connecting peers. Its peers then propagate the request to their

5
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own peers and this process continues. Unlike the client-server architecture of

the web, the P2P network aims at allowing individual computer, which joins

and leaves the network frequently, to share information directly with each

other without the help of dedicated servers. Each peer acts as a server and

as a client simultaneously. In these networks, a peer can become a member of

the network by establishing a connection with one or more peers in the current

network. Messages are sent over multiple hops from one peer to another while

each peer responds to queries for information it shares locally.

Figure 2.1: Illustration of information retrieval in a P2P network.

Current strategy still needs a lot of improvement to solve the scalability

problems:

1. The bottle-neck occurs at the centralized server storing the index, like

Napster.

2. The flooding of query messages occurs when data location process is

decentralized, like Gnutella.

To address the data location problem, Chord [54], CAN [42], Pastry [44]

and Tapestry [61] tackle it by distributing the index storage into different

peers, thus sharing the workload of a centralized index server. Distributed
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infrastructure of both CAN and Chord use Distributed Hash Table (DHT) to

map the filename to a key, and each peer is responsible for storing a certain

range of pairs (key, value). When a peer looks for a file, it hashes the filename to

a key and asks the peers responsible for this key for the actual storage location

of that file. Chord models the key as an m-bits identifier and arranges the

peers into a logical ring topology to determine which peer is responsible for

storing which pair (key, value). CAN models the key as point on a d-dimension

Cartesian coordinate space, while each peer is responsible for pairs (key, value)

inside its specific region. They speed up and reduce message passing for the

process of key lookup (data location). Some extensions of DHTs to perform

content-based retrieval and textual similarity matches are proposed in [55, 19].

Although DHTs are elegant and scalable, their performance under the dynamic

conditions for P2P systems is unknown[43]. Moreover, such kind of schemes

rely on the trustworthiness of peers participating in the network. The malicious

peers are supposed to be responsible for answering queries but the problem

become serious when they deny to respond under the condition of no duplicate

index storage in other peers. As DHTs mandate a specific network structure

and queries are based on document identifiers, researchers proposed methods

that operate under the prevalent P2P environment, like Gnutella, and queries

are based on content of documents. Crepso [8] proposed a routing indices

approach for retrieving text documents in P2P systems. Under this scheme,

each peer maintains a routing index to assist in forwarding queries to peers that

contains more documents of the same category. This method requires all peers

to agree a set of document categories. Sripanidkulchai et. al. [53] proposed the

use of short-cuts to connect a peer to another one which it has downloaded

documents from. Evaluations are done based on text document retrieval and

promising results are shown. Our proposed method targets on content-based

retrieval in P2P network and aims at reducing the network traffic and workload

of computers. Similar problems of Content-Based Image Retrieval (CBIR) in
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distributed databases have been described in [4]; in essence, more studies are

needed of the P2P systems.

2.2 Background of Content-Based Image Re-

trieval System

In early image retrieval system, it requires human annotation and classifica-

tion on the image collection, the query is thus performed using text-based

information retrieval method. However, there are several limitations for such

implementation, they are:

1. Human Intervention - Human intervention is required to describe and

annotate the content of images, which is tedious and potentially error-

prone.

2. Non-Standard Description - As the size of image database grows,

limited keywords results in inadequacy for describing the image content.

Moreover, the keywords used are subjective and not unique. Different

users may use different keywords to annotate the same image.

3. Linguistic Barriers - If the image database is to be shared globally

around the world, the retrieval of images will be ineffective when different

languages are used in the description. It is difficult to map semantically

equivalent words across different languages.

In order to solve these problems, Content-Based Image Retrieval (CBIR)

is proposed to pass such tedious task to computer. Since the mid 1990’s,

many CBIR systems have been proposed and developed, some of them are

QBIC [12], WebSEEK [52], SIMPLIcity [57], WBIIS [56], MARS [31], Pho-

tobook [39], NeTra [30], AMORE [33], Virage [18] WALRUS [35] and other
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systems for domain specific applications [25, 23]. These systems are not de-

signed to be distributed across different computers in a network. One of the

shortcomings is that the feature extraction, indexing, clustering and also the

query processing are all done in a centralized fashion which is computationally

intensive, and it is difficult to scale up. As indicated by several researchers

[45, 51], one of the promising future trends in CBIR includes the distribution

of data collection, data processing and information retrieval. By extending the

centralized system model, we not only can increase the size of image collections

easily, but we also overcome the scalability bottleneck problem by distributing

the computationally intensive processes among peers.

2.3 Literature Review of Peer-to-Peer Appli-

cation

The application of Peer-to-Peer can be divided into three categories, namely,

distributed file sharing, person-to-person messaging systems and distributed

computing systems [22].

1. Distributed File Sharing

Distributed File Sharing deals with the strategies and technologies for

effective ways to retrieve contents existence, its location, and to get it

delivered. It involved the information and knowledge management. The

power of direct exchanges and discovery searches between peers can be

used to enhance the effectiveness management. Distributed file shar-

ing applications, include Napster [34], Gnutella [14], Freenet [13], eDon-

key [11] and Morpheua [32], allow peers to share files with every other

peer in an application-based network. P2P file sharing extends tradi-

tional LAN-based file sharing to the Internet. This is powerful technology

for enabling cooperation across organizations and between companies.
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(a) Napster is an excellent application for distributed MP3 search

engine. Its architecture describes the server-mediated file-sharing

model popularized by this client and discuss some of the reasoning

behind this compromise away from ”pure” P2P. Since the infor-

mation in traditional web search engine can get easily out of date,

existing MP3 search engines are really difficult to maintain listings,

because many of the sites posting MP3 files may not exist for long,

especially if they post illegally copied songs. In contrast, Napster

gets its listings from those running its software. If you are running

Napster, it will tell the server what information you have. That

allows someone to search your listings and be connected to where

the song can be downloaded. Due to violations of the copyright

laws, Napster is forced to shutdown servers. Besides the copyright

infringements, centralized character of server is another problem of

Napster. Under this structure, Napster fails to provide quality-of-

service because the services are easily interrupted if the centralized

servers crash. In order to overcome the problem, decentralized peer-

to-peer model are proposed. Gnutella, Freenet and Morpheus are

some examples of such model.

(b) Gnutella is one of the well-known protocols for file sharing and

searching in a decentralized peer-to-peer environment. In the re-

lease of beta version, almost everyone saw a competitor to Napster

designed to overcome its restrictions and limitations for swapping

data files. Under the Gnutella network, users can find informa-

tion from peers based on the filename and some simple Meta data.

Gnutella application that builds on its protocol is a peer-to-peer

system with client software that also acts as a server, called ser-

vent. Gnutella servant provide client-side interfaces through which

users can issue queries and view search results, while at the same
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time they also accept queries from other servents, check for matches

against their local data set, and respond with applicable results.

(c) Freenet is decentralized and automatically adapts when hosts leave

and join. It is a peer-to-peer network application that permits

the publication, replication, and retrieval of data while protecting

the anonymity of both authors and readers. Unlike Napster and

Gnutella, no brute force search or centralized location index is em-

ployed. Files are referred to in location-independent manner, and

are dynamically replicated in locations near requesters and delete

form locations where is no interest. Freenet uses an interesting ap-

proach to indexing. Each node builds an index with the location

of recently requested documents, so if they are requested again, the

document can be retrieved at a low cost.

(d) Morpheus is a decentralized peer-to-peer file sharing application

that allows users connect directly and share information. Under

Morphues, users are able to search for all types of digital media by

providing Meta data such as media type, performer and product

name, and not only limit to filename.

2. Person-to-Person Messaging

Instant messaging systems such as Jabber [20] or Yahoo! Messenger [59]

allow peers to exchange text as well as white-board type of messages.

Jabber is an XML -based peer architecture, not any specific application.

Current Jabber clients focus on instant messaging and allows P2P file

transfer between users, however, its protocol and architecture is open

to any number of other uses. The stated focus of Jabber is not only

for person to person communication, but also person to application and

especially application to application.
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3. Distributed Computing

In a peer-to-peer distributed computing system, a node gathers results

from computations on raw information that was scattered across sev-

eral tightly or loosely coupled processors. Companies and organizations

can utilize available computational cycles to solve complex scientific and

engineering problems.

2.4 Literature Review of Discovery Mechanisms

for Peer-to-Peer Applications

Peer-to-peer applications allow peers to connect or disconnect from a network

at any time and are based on a loosely coupled resource distribution model.

Therefore, robust and efficient discovery mechanisms are central to the efficient

functioning of distributed file sharing applications. Under a pure peer-to-peer

network, searches are spread among many nodes because there is no central-

ized database. Different distributed file sharing model represents a trade-off

between the open-ended approach on one hand and constraint issues on the

other, such as requirements on efficient search, good content availability, se-

cure, redundant storage and possibly anonymity of source.

2.4.1 Centralized Search

Napster

Figure 2.2 shows the server-mediated architecture of Napster. Under the Nap-

ster network, clients connect automatically to a connection manager. This

connection manager assigns an available and lightly connected server to the

incoming client. This client then registers with the assigned server, providing

its shared information to the server side database. Once this process is fin-

ished, other clients is possible to request his registered shared information. In
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turn, the client can also receive information from other connected users, and

exchange files directly.

Figure 2.2: Napster Architecture

Under this model, users are almost anonymous to each other because the

users are never queried directly. When the client search for a file, the query

will be sent to the centralized user database to search for the requested content

and determine a neighbor which to download. The centralized user database

therefore serves as a background translation services, from the host identity

associated with particular content, to the currently registered IP needed for a

download connection to this client.

The network performance of Napster is excellent comparing to other P2P

discovery mechanisms. The query is only sent to connecting centralized server.

It is not necessary to broadcast the query to ask everyone in the network. The

response time of searching is also good in Napster because query is not neces-

sary to past several peers in the network, however, its performance is limited

to the performance of server which is affected by the number of connecting

clients, number of query per client and the number of shared files of each

client.

Besides the copyright infringements, centralized character of server is an-

other problem of Napster. Under this structure, Napster fails to provide
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quality-of-service because the services are easily interrupted if the centralized

servers crash. Too much connections to a single server will also degrade the

services greatly. In order to overcome the problems, decentralized peer-to-peer

model are proposed. Gnutella, Freenet and Morpheus are some examples of

such model which aim to solve the limitations of Napster.

2.4.2 Distributed Search - Flooding

Gnutella

Gnutella is a file sharing and exchange protocol that support arbitrary types.

Under Gnutella network, there are no central servers, thus, no central shutdown

point. Since central servers do not exist, therefore, queries are required to

broadcast to all his neighbors within a certain range. This kind of searching

is called Brute Force Search(BFS).

In Gnutella, when the user initializes a query, he needs to broadcast the

query to his direct connecting neighbors. His neighbor will look up his shared

collection and answer the query. Then, he will help to propagate the query to

his connecting neighbors. Likewise, his neighbors continue to answer and prop-

agate the query. In practice, flooding is limited to peers’ neighborhoods by lim-

iting query propagation to a fixed number of hops, called Time-To-Live(TTL).

Typically, the TTL is set between 5 to 7, and the value is decremented by each

neighbors as it relays the message.

Figure 2.3: Pure P2P Topology
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Although this protocol eliminates the problems of central server failure and

gives optimal results in a network with a small number of peers, however, it

does not scale well. Since every query is broadcasted to every peer in the net-

work, each peer has to waste resources in handling irrelevant query. Moreover,

broadcasting query messages across the network also increases network traffic.

Portmann et. al. [40] investigated the problem of scalability in P2P network

due to network traffic cost. Furthermore, accurate discovery of peers is not

guaranteed and the response time is usually slow because queries are required

to propagate from peer to peer.

Gnutella Varieties

Following strategies try to improve the limitation and weakness of Gnutella

network by routing the query intelligently, reducing network traffic and solving

the scalability problems.

1. Gnutella Supernode Model

The current network of Gnutella makes query messages fly everywhere.

In the Gnutella supernodes model proposed by Limewire [28] as shown

in Figure 2.4, each node comes to the system as a super node, and es-

tablishes the configured number of supernode connection. The nodes

remains as supernode on probation during the probation time, if it re-

ceives required number of Client connection requests so as to achieve at

least min clients, it continues to remain as Supernodes. At any instant

if the number of client connections fall below min clients, it again goes

on probation. In the probation time, if it never achieved min clients

connection, it becomes a client node and establishes a client connection

to a supernode. When the client node wants to query an item, he sends

the message to his supernode and his supernode broadcast the query

message to other supernodes. Each supernode maintains the index of
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his client nodes. Therefore, the client nodes only receive the queries if

they actually have the request files. Otherwise, the supernode does not

forward the search to them. In their preliminary results, client nodes

receive almost no traffic over their single, supernode connection, while

supernodes are not adversely affected by the increase in connections. The

supernodes and clients also use query routing. They allow the network to

function for more efficiently, with far less messaging required across the

network to search for files and to connect. With this technology, Gnutella

may significantly increase the number and quality of search results, and

increase the scalability of Gnutella network.

Figure 2.4: Supernode Model

In my opinon, supernode can be elected by a set of nodes. Several nodes

are divided into a cluster and each node inside the cluster elects a repre-

sentative to be the supernode of this cluster. The cluster may be formed

based on the shared content or geographical location. The electing cri-

teria of the supernode may depend on their bandwidth, client alive time

or other possible factors.

This model forms a more reliable and persistent backbone. This also

gives the option of some permanent nodelist server to make it easier for

new users to connect to the network for the first time. This approach

makes the network far less sensitive to the transient connectivity and
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limited bandwidth caused by the large number of dail-up users. However,

this architecture is more sensitive to the failure of the supernodes and

faces the same problems of central servers as Napster.

2. Prinkey Scheme

In Prinkey’s Scheme [41], the metadata keywords are indexed by a hash

function. Therefore, this information , called bitmask signature, can be

used to determine if a node possibly contains information relevant to our

query. Then, this signature is passed up to their host node. The node

remembers each of the bitmask signature for its hosted nodes. Then it

takes the bitmasks from its own index and logically ORs them with all

of the bitmasks from its hosted nodes. This aggregate bitmask provides

a signature of all of the information in the entire branch. Likewise, this

aggregate bitmask is passed up its host continuously until it reaches the

root host.

Under this model, queries are only need to be routed to the nodes that

possibly contain information relevant to the queries. It guarantees that

the query will always sent to the hosts possibly contains information

relevant to our query. However, it does not guarantee that the hosts re-

ceived the query must contain information relevant to our query because

different keywords may map to the same value in a hash function.

Moreover, this scheme has another limitations. First of all, all leaves

nodes are needed to propagate their bitmask to their root nodes; there-

fore, the network is needed to be a tree topology with a designated root.

Another limitation is that if the leave node wants to query the network,

it must send the query up to the root. This causes the root nodes which

handles extremely high amount of traffic and very slow response time

because queries are required to propagate from leave node to root node.
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3. Iterative Deepening Approach

Over the iterations of the iterative deepening technique [60], multiple

breadth-first searches are initiated with successively larger depth limits,

until either the query is satisfied, or the maximum depth limit D has been

reached. Because the number of nodes at each depth grows exponentially

, the cost of processing the query multiple times at small depths is small,

compared to processing query once at a large depth. In addition, if it

can satisfy the query at a depth less than D, then it can use much fewer

resources than a single BFS of depth D.

The iterative deepening technique is implemented as follows: first, a

system-wide policy is needed, that specifies at which depths the iterations

are to occur. For example, say it want to have three iterations: the

first iteration searches to a depth a, the second to depth b, and the

third at depth c. Its policy is therefore P = {a; b; c}. Note that in

order for iterative deepening to have the same performance as a BFS

of depth D, in terms of satisfaction, the last depth in the policy must

be set to D. In addition to a policy, a waiting period W must also be

specified. W is the time between successive iterations in the policy. After

waiting for a period W , if the requester finds that the query already has

been satisfied, then it does nothing. Otherwise, the requester will start

the next iteration, continue to repeat the procedures until the query is

satisfied or the maximum depth limit D has been reached.

This approach tries to reduce unnecessary traffic if the query can be

satisfied in a small deep. However, the response time of this algorithm

is even more slowly than the basic Gnutella network because the time

taken by multiple iterations is always long. If minimizing response time

is important to a particular application, then the iterative deepening

technique may not be applicable.
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4. Directed Brute Force Search

The Directed BFS technique [60] implements this strategy by having

a query source which sends the query messages to just a subset of its

neighbors, but selecting neighbors through which nodes with many qual-

ity results may be reached. For example, one may select a neighbor

that has produced or forwarded many quality results in the past, on

the premise that past performance is a good indication of future perfor-

mance. The neighbors that receive the query then continue forwarding

the message to all neighbors as with BFS.

In order to intelligently select neighbors, a node will maintain statistics

on its neighbors. These statistics can be very simple, such as the number

of results that were received through the neighbor for past queries, or

the latency of the connection with that neighbor. From these statistics,

it helps to select the best neighbor to send the query. Similar idea is also

proposed in [21].

Under this model, the number of nodes that receives the query is greatly

decrease. The query will only be forwarded intelligently to the selected

neighbors who are believed to produce many results.

Conclusion of Distributed Search - Flooding

Gnutella and its varieties are described as loose systems. They do not

tightly control the data placement and topology within the network.

They do not guarantee location of content if it exists. These kinds of

network are suitable to be used in a wide range of non-cooperating and

non-trusted organizations. However, broadcasting query messages across

the network makes peer-to-peer network impossible to scale up. There-

fore, many varieties of Gnutella tried to improve the Gnutella network

by routing queries intelligently.
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Some systems with strong guarantees on availability include Chord [54],

CAN [42], Pastry [44], and Tapestry [61]. These four techniques are quite

similar in concept, but differ slightly in algorithmic and implementation

details. In Chord, Pastry and Tapestry, nodes are assigned a numerical

identifier, while in CAN, nodes are assigned regions in a d-dimensional

identifier space. A node is then responsible for owning objects, or point-

ers to objects, whose identifiers map to the node’s identifier or region.

Nodes also form connections based on the properties. More details of

these system will be discussed in the following section.

2.4.3 Distributed Search - Distributed Hash Table

Chord

The Chord project is the part of an ongoing large distributed secure file system

project that looks at the key location and routing in a overlay network rep-

resented as a one dimensional circular identifier space as shown in Figure 2.5.

They guarantee location of content if it exists.

Figure 2.5: Illustration of Chord

In the Chord network, keys are assigned to peers using consistent hashing

algorithm, enabling a node to locate a key in O(logN) hops when N is the

total number of peers in the system. For each peer, it maintain a finger table

pointing to the successor of logN identifier peers along the ring. Therefore,
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each peer only stores information about only a small number of other peers,

and knows more about peers closely following it on identifier circle than about

peers farther away.

Pastry

The concept of Pastry is similar to Chord, but differ slightly in algorithm

and implementation. In Pastry, peers are also assigned a numerical identifier.

Pastry is a peer-to-peer routing substrate that is efficient, scalable, resilient

and self-organizing. Given a field ID, Pastry routes an associated message

towards the peer whose node ID is numerically closest to the 128 bits circular

index space among all live peers. Each peers maintains a routing table of

O(logN), where N is the number of active Pastry peers. Pastry attempts to

minimize the distance traveled by the message by taking network locality into

account.

Content-Addressable Network(CAN)

The concept of CAN is a little bit different to Chord and Pastry. In Chord

and Pastry, peers are assigned a numerical identifier, while in CAN, peers are

assigned regions in a d-dimensional identifier or region.

Figure 2.6: Illustration of CAN

A Content-Addressable Network(CAN) is a mesh of n peers in a virtual

d-dimensional coordinate space. This virtual coordinate space is dynamically
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partitioned among all the peers such that every node owns its distinct zone

within this space. The coordinate space is used to store (key, value) pairs such

that every key k is deterministically mapped onto a point P in the coordinate

space using a uniform hash function. The corresponding key-value pair is

stored at the node in whose zone point P lies. To retrieve a value corresponding

to key k, any node can apply the same deterministic hash function to map k

onto point P and then retrieve the value from point P either directly or via

neighboring peers.

Conclusion of Distributed Search - Distributed Hash Table

Chord, CAN and Pastry are systems with strong guarantees on availability.

Their techniques are quite similar in concept, but differ slightly in algorith-

mic and implementation details. In Chord, Pastry and Tapestry, nodes are

assigned a numerical identifier, while in CAN, nodes are assigned regions in a

d-dimensional identifier space. A node is then responsible for owning objects,

or pointers to objects, whose identifiers map to the node’s identifier or region.

Nodes also form connections based on the properties.

In these systems, they guarantee location of content if it exists. How-

ever, the topology of these networks are needed to be fixed. Some of them

tightly control the data placement. In order to lookup information correctly

and quickly, they need top-reserve invariants. For example, each peer’s iden-

tifier is needed to correctly maintain, the network topology is fixed, it is also

desirable for the routing tables to be correct in every peers. These kinds of net-

work are only suitable to be used in some cooperating computers and trusted

organizations.
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Table 2.1: Summary of Discovery Mechanisms for Peer-to-Peer Applications
Centralized Search

Applications Napster

Characteristics File indexing, searching are all done in the centralized server.

Strength 1) Less netowrk traffic, boardcasting is not needed.
2) Fast reponse time if the server is not overloaded.

Weakness 1) Single logical point of failure.
2) Potential for congestion.
3) Fail to provide quality-of-service as too much connections to the
server will degrade the services greatly.
4) Easy interrupted if the centralized servers crash.

Distributed Search - Flooding
Applications Gnutella,

Kazaa

Characteristics 1) No centralized servers.
2) Query is needed to boardcast within a certain range.

Strength 1) No fix network topology.
2) No fix data and index placement.

Weakness 1) Boadcasting query generated heavey netowrk traffic.
2) Irrelevant computers are force to handle the query.
3) The network is not scalable.
4) Slow in reponse time because of query propagation.

Distributed Search - DHT
Applications CAN,

Chord,
Pastry

Characteristics 1) Use Distributed Hash Table(DHT).
2) Map and lookup the file by hash key.
3) Speed up and reduce message passing for the process of key lookup.

Strength 1) Efficient at locating information.
2) Scalable.

Weakness 1) Impossible to perform a fuzzy search.
2) Suseptible to malicious activity.
3) Performance under dynamic conditions is unknown.
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Peer Clustering and Firework

Query Model

The design goal of our strategy, Peer Clustering and Firework Query Model, is

to improve data lookup efficiency in a completely distributed P2P network. We

aim to maximize the retrieval performance, minimize the number of message

passing through the network, and retain the simple, robust and completely

decentralized nature of Gnutella network.

We purpose Peer Clustering at the level of overlaying network topology to

make the network organized in a systematic way like the Yellow Pages. In our

proposed network, there are two types of connections, namely random and

attractive as shown in Fig. 3.1. Random links are the original connections

used in Gnutella network. Attractive links are the newly introduced connec-

tions made by our algorithm. On top of the original Gnutella network, our

strategy makes use of an extra layer of connections, attractive links, to group

similar peers together based on two peers’ similarity within their neighborhood

as shown in Fig. 3.2. With these added network topology constraints, we pro-

pose a content-based query routing strategy, the Firework Query Model, which

can perform searching efficiently by directing queries to their target cluster ac-

cording to the query content. Therefore, our algorithm manages to be scalable

when network grows.

24
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We have implemented a prototype version of Distributed Content-based

Visual Information Retrieval System (DISCOVIR), built on top of LimeWire

open source project [28] with content-based image searching capability, to

demonstrate how Peer Clustering and Firework Query Model work.

Figure 3.1: Illustration of two types of connections in DISCOVIR.

Figure 3.2: Illustration of Peer Clustering

3.1 Peer Clustering

In this section, we introduce four versions of Peer Clustering algorithms from

the simplest version to the most complicated and practical version. Four ver-

sions are: Simplified Version, Single Cluster Version, Single Cluster-Multiple
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Layers of Connection Version and Multiple Clusters Version.

3.1.1 Peer Clustering - Simplified Version

We start by describing a more restricted version of our proposed algorithm

to illustrate the simplest idea of peer clustering. Consider a P2P network

consisting of peers sharing data of different interests as shown in Fig. 3.3. In

this network, shared data are classified into 3 different categories, which are

(C)omputer, (H)istory, and (S)cience respectively. Each peer is represented

by one of the three letters above to indicate the majority of documents one

shares, and we call this the signature value.

Figure 3.3: Basic Peer Clustering.

As shown in the Fig. 3.3, a peer named as C1 means the majority of doc-

uments it shares is related to Computer. The existing clustered P2P network

in the figure is formed by the joining sequence: C1, H1, S1, H2, C2, S2, S4,

C3, H3, S3. When a new peer C4 joins the network, by connecting a random

connection to a randomly selected peer S3 (chose by the peer or assigned by
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the bootstrap server 1 ), it sends out a signature query 2 to learn the location

and signature value of other peers. The signature query is first sent to S3 and

then propagates to S1 and H2 in the first hop, then, to C1, C2, H1, S2 and S4 in

the second hop and onwards. After collecting the signature replies from other

peers, peer C4 knows that C1, C2 and C3 share the same type of documents

(Computer) with it, thus, peer C4 makes an attractive connection to either

one of them, in this example C3. As peers continue to join the network using

this algorithm, a clustered P2P network is formed.

Referring to Fig. 3.3, all peers with the same signature value are inter-

connected by attractive connections to form several clusters. For example,

C1, C2, C3 and C4 are interconnected by attractive connections to form the

(C)omputer cluster. C1 and S1 are also interconnected by attractive connec-

tion because when S1 joins the network, there are only 2 peers (C1 and H1)

in the existing clustered network. It cannot find any peer share the same type

of documents (Science) with it, thus peer S1 makes an attractive connection

to either one of them randomly. This problem is only happened when the

network size is small. When the network continues to grow, the new peer has

more chances to find peers which share the same type of documents with it.

After a clustered P2P network is formed, a selective query routing scheme thus

can be applied which makes information retrieval much more systematic and

efficient.

Let assume the new user, peer C4, wants to find some (H)istory documents.

It initiates a query and checks against its own signature value. It finds that the

query and its signature value are mis-matched (not belonged to same category),

thus the query is forwarded through random connection to S3. S3 receives

the query and performs the same checking. It finds that the query and its

1Gnutella host cache server that provides a high-availability network bootstrap point for
Gnutella servents

2Similar to that of ping-pong messages in Gnutella, to ask for signature value of peers
within its neighborhood
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signature value are still mis-matched, it continues to forward the query through

random connection to H2. Once H2 receives this query, it checks against its

signature value and finds the query reached the target cluster (belonged to

same category). Therefore, it broadcasts the query inside the cluster through

attractive connection toH1. Likewise, when H1 receives the query, it broadcasts

the query to H3, and so on. Under this selective query routing scheme, we

avoid the query to pass through some unrelated peers. The number of query

messages used is reduced while query is still able to reach peers containing the

answer.

The detailed description and analysis of this algorithm was proposed in

[36], which shows promising result against the conventional Gnutella query

mechanism. As this version of Peer Clustering requires users to assign signature

value to a peer and compromises a set of categories in the distributed P2P

environment, which is not practical enough in an open environment, we propose

two enhanced versions based on this foundation to address these problems in

the next two sections.

3.1.2 Peer Clustering - Single Cluster Version

Since clustering based on the category of shared documents stated by the user

explicitly is not practical enough as aforementioned, we move on to clustering

based on content feature of shared documents. In the information retrieval

literature, text documents,images and multimedia data are processed to use

vectors as their representation, while similarity between two documents are

distance measure in the vector space. Clustering in the vector space had

been vastly studied to improve retrieval performance by serving as an indexing

structure in the centralized approach.

With the inherent nature of DISCOVIR network, we apply notation in

graph theory to model it (see Table. 3.1). For the sake of generality, we try
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to keep this in high level of abstraction. In this version of peer clustering

algorithm, we choose the mean and standard deviation of cluster as signature

value of peers, while Euclidean distance is used for similarity measure. In

the actual realization, we choose image feature vector as the underlying data

structure for representing images, which give birth to the name of our system

DISCOVIR (DIStributed COntent-based Visual Information Retrieval). Here

are some definitions:

Table 3.1: Definition of Terms using in Peer Clustering
G{V,E} The P2P network, with V denoting the

set of peers and E denoting the set of
connection

E = {Er , Ea} The set of connections, composed of
random connections, Er and attractive
connections, Ea.

ea = (v, w, sigv , sigw), The attractive connection between
v, w ∈ V, ea ∈ Ea peers v, w based on sigv and sigw

|V | Total number of peers.

|E| Total number of connections.

Horizon(v, t) ⊆ V Set of peers reachable from v within
t hops

SIGv , v ∈ V Set of signature values characterizing
the data shared by peer v

D(sigv , sigv), Distance measure between specific
v, w ∈ V signature values of two peers v

and w.

Dq(sigv, q) Distance measure between a query q
sigv ∈ SIGv and peer v based on sigv.
C = {Cv : v ∈ V } The collection of data shared in the

DISCOVIR network.

Cv The collection of data shared by peer
v, which is a subset of C.

REL(cv , q), A function determining relevance of
cv ∈ Cv data cv to a query q. 1-relevant,

0-non-relevant

Definition 1 We consider each data shared by a peer can be represented in

a multi-dimension vector based on its content, and the similarity among files

is based on the distance measure between vectors. Consider
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f : cv → ~cv, (3.1)

f : q → ~q, (3.2)

f is the mapping function from data cv to a vector ~cv. In the notion of

image processing, cv is the raw image data, f is a specific feature extraction

method (e.g. color histogram, co-occurance matrix), ~cv is the extracted feature

vector characterizing the image. Likewise, f is also used to map a query q to

a query vector ~q, to be sent out when user makes a query.

Definition 2 sigv is the signature values used to represent the characteristic

of data shared by peer v. We define

sigv = (~µ,~δ), (3.3)

where ~µ and ~δ are the statistical mean and standard deviation of the collection

of shared data, in the corresponding vector space, belonging to peer v. From

now on, sigv characterizes the data shared by peer p.

Definition 3 D(sigv, sigw) is defined as any distance measure between 2 sig-

nature values, sigv and sigw, in other sense, the similarity between two different

peers v and w. One of the possible and simplest definition is,

D(sigv, sigw) = || ~µv − ~µw||, (3.4)

where || ~µv − ~µw|| is the Euclidean distance between two centroids symbolized

by sigv, sigw. Although this definition is simple and easy to calculate, it may

not be accurate enough. A more complicated definition is,

D(sigv, sigw) = || ~µv − ~µw||2 × (
d∑

i=1

δpi × δqi)1/2. (3.5)

This definition aims to connect peers with similar ~µ and small ~δ. In (3.5),

the more similar two peers p and q are, the smaller the value D(sigv, sigw) is.
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D(sigv, sigw) measure is small when ~µp and ~µq are close and both ~δp and ~δq are

small. When the means ~µ are close, it means that the two sub-clusters are close

in the high dimensional space. If both variances ~δ measure are small, it means

the feature vectors in the two sub-cluster are closely clustered, that is, the

shared data are highly related to the same area. We define the data similarity

of two peers by this formula and use it to help organizing the network.

Based on the above definitions, we introduce a peer clustering algorithm,

to be used in the network setup stage, in order to help building the DISCOVIR

as a self-organized network oriented in content similarity. It consists of three

steps as follows:

1. Signature Value Calculation–Every peer preprocesses its data collec-

tion and calculates signature values sigv to characterize its data prop-

erties by assuming all feature vectors as a single cluster. Whenever the

shared data collection, Cv, of a peer changes, the signature value is up-

dated accordingly.

2. Neighborhood Discovery–After a peer joins the DISCOVIR network

by connecting to a random peer in the network, it broadcasts a signa-

ture query message, similar to that of ping-pong messages in Gnutella,

to ask for signature value of peers within its neighborhood, sigw, w ∈
Horizon(v, t), as shown in Fig. 3.4. This task is not only done when a

peer first joins the network, it repeats every certain interval in order to

maintain the latest information of other peers.

3. Attractive Connection Establishment–After acquiring the signature

values of other peers, one can reveal the peer with signature value closest

to its according to definition 3, and make an attractive connection to link

them up, as shown in Fig. 3.5. This attractive connection is reestablished

to the second closest one in the host cache whenever current connection

breaks.
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Figure 3.4: Illustration of Peer Clustering Step 2

Figure 3.5: Illustration of Peer Clustering Step 3

Fig 3.6 illustrate the revised peer clustering model. The signature value is

the mean and the standard deviation of all feature vectors of documents shared

by a peer, while the attractive connection is established based on distance of

Equation 3.4.

For example, when a new peer C4 joins the network, by connecting to a

randomly selected peer S3, it sends out a signature query to learn the location

and signature value of other peers. The signature query is first sent to S3 and

then propagates to S1 and H2 in the first hop, then, to C1, C2, H1, S2 and S4

in the second hop and onwards. After collecting the replies from other peers,

peer C4 knows that C3 is the most similar peer (smallest value in distance

measure with other peers) as shown in Table 3.2. Thus, peer C4 makes an

attractive connection C3. Having all peers joining the DISCOVIR network

perform the three tasks described above, you can envision a P2P network with
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Table 3.2: Distance measure between peers in Fig. 3.6
Sim C1 H1 S1 H2 C2 S2 S3 C3 H3 S4 C4

C1 0.0 1.1 2.6 1.0 0.2 2.1 2.4 0.1 1.3 3.0 0.3

H1 0.0 3.7 0.1 0.9 3.2 3.5 1.2 0.2 4.1 1.4

S1 0.0 3.6 2.8 0.5 0.2 2.5 3.9 0.4 2.3

H2 0.0 0.8 3.1 3.4 1.1 0.3 4.0 1.3

C2 0.0 2.3 2.6 0.3 1.1 3.2 0.5

S2 0.0 0.3 2.0 3.4 0.9 1.8

S3 0.0 2.3 3.7 0.6 1.1

C3 0.0 1.4 2.9 0.2
H3 0.0 4.3 1.6

S4 0.0 2.7

C4 0.0

self-organizing ability to be constructed. Peers sharing similar content will

be grouped together like a Yellow Pages. The detail steps of peer cluster is

illustrated in Algorithm 1.

Figure 3.6: Peer Clustering - Single Cluster Version
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Algorithm 1 Algorithm for peer clustering

Peer-Clustering(peer v, integer ttl)
for all w ∈ Horizon(v, t) do

Compute D(sigv, sigw)
end for
Ea = Ea ∪ (v, w, sigv, sigw) having min(D(sigv, sigw))

3.1.3 Peer Clustering - Single Cluster, Multiple Layers

of Connection Version

The previous version of peer clustering just uses one feature extraction func-

tion (one layer of attractive links) to map the data to feature vectors. However,

users may have different interests in information retrieval. Using image pro-

cessing as the example, some user may be interested to find images based on

color, some user may be interested based on shape or texture. Using a single

feature extraction function to represent the data is not enough.

We propose to use multiple layers of attractive links to cluster peers using

different extraction functions. As shown in Fig. 3.7, two layers of attractive

links are make. The first layer of attractive links are make according to the

signature value, sig1, which is extracted by color extraction function f1. The

second layer of attractive links are make according to the signature value,

sig2, which is extracted by color extraction function f2. If user wants to find

images based on color, the query will be forwarded through the first layer of

attractive links. If user wants to find images based on shape, the query will be

forwarded through the second layer of connections. A set of signature values

are kept in each peer. More details of multiple feature extraction modules will

be discussed in Chapter 4.

3.1.4 Peer Clustering - Multiple Clusters Version

The previous version of peer clustering assumes most of the data shared by a

peer fall in the same category, e. g. , a peer shares collection of sunset images
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Figure 3.7: Peer Clustering - Single Cluster, Multiple Layers of Connection
Version

or collection of computer science paper, thus the extracted feature vectors will

clustered together and signature value is able to describe the data characteristic

reasonably. However, most users share documents of various topics in real-

world situation, as shown in Fig. 3.8, there should be an attractive connection

between sub-cluster A2 of peer A and sub-cluster B3 of peer B although their

cluster centroid are far apart.

Figure 3.8: Multiple clusters in a peer.

We propose to use multiple signature values sigv, sigv ∈ SIGv to represent

a peer because the document collection is likely to fall in several categories

and their extracted feature vectors form several clusters as well. With these
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changes, peers may form several attractive connections depending on the num-

ber of local sub-clusters. The revised algorithm is illustrated in Algorithm 2

and two changes in the main steps are updated as follows:

1. Signature Value Acquisition–In the preprocessing stage, a set of sig-

nature values SIGv is calculated, which are the statistical mean and

standard deviation of sub-clusters found using some clustering algorithm

like k-means [1], competitive learning [46], and expectation maximiza-

tion [23]. The number of signature values is variable and is a trade-off

between resolution of cluster and computational cost. In the DISCOVIR,

we choose competitive learning and 3 as the number of signature values

in a peer for the sake of low computation cost.

2. Attractive Connection Establishment–This process is the same as

that in previous section except we make attractive connection for ev-

ery signature values a peer possess, as shown in Fig. 3.9. The standard

deviation of a signature value is reserved to control the quality of attrac-

tive connections, the smaller the standard deviation, the better to make

attractive connection because it implies a dense cluster.

We have introduced the final and most practical version of peer clustering

algorithm in DISCOVIR, having all peers follow this procedure to build the

network, a self-organizing network is formed, we delineate a selective query

routing strategy in the next section to improve retrieval performance.

3.2 Firework Query Model Over Clustered Net-

work

To make use of our clustered P2P network, we propose a content-based query

routing strategy called Firework Query Model. In this model, a query message
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Figure 3.9: Illustration of Peer Clustering - Multiple Clusters Version, Step 2
and 3

Algorithm 2 Algorithm for peer clustering - multiple clusters

Peer-Clustering(peer v, integer ttl)
for all sigv ∈ SIGv do

for all w ∈ Horizon(v, t) do
for all sigw ∈ SIGw do

Compute D(sigv, sigw)
end for

end for
Ea = Ea ∪ (v, w, sigv, sigw) having min(D(sigv, sigw))

end for
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is routed selectively according to the content of the query. The query message

first walks around the network through random connections. Once it reaches

its designated cluster, the query message is broadcasted through the attractive

connections inside the cluster much like an exploding firework as shown in

Fig. 3.10. Our strategy aims to:

1. minimize the number of messages passing through the network,

2. avoid irrelevant computers to handle the query and reduce the workload

of each computer,

3. maximize the ability of retrieving relevant data from the peer-to-peer

network.

Figure 3.10: Illustration of Firework query.

Here, we introduce the algorithm to determine when and how a query

message is propagated like a firework in Algorithm 3. When a peer receives

the query, it needs to carry out two steps:

1. Shared File Look Up–The peer looks up its shared information for

those matched with the query. Let q be the query, and ~q be its vector

representation, REL(cv, q) is the relevance measure between the query
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and the information cv shared by peer v, it depends on a L2 norm defined

as,

REL(cv, q) =





1 ||~cv − ~q|| ≤ T

0 ||~cv − ~q|| > T,

where T is a threshold defining the degree of result similarity a user

wants. If any shared information matches the criteria of query3 , the

peer will reply the requester. In addition, we can reduce the number of

REL(cv, q) computations inside the peer by building an index of shared

data using local clustering algorithm, thus speeding up the process of

query response.

2. Route Selection–The peer calculates the distance between the query

and each signature value of its local clusters, sigv , which is represented

as,

Dq(sigv, q) =
∏

i

1√
2πδi

e
− (xi−µi)2

2δ2
i . (3.6)

If none of the distance measure between its local clusters’ signature value

and the query, Dq(sigv, q), is larger than a preset threshold, θ, the peer will

propagate the query to its neighbors through random connections. Otherwise,

if one or more Dq(sigv, q) is larger the threshold, it implies the query has

reached its target cluster. Therefore, the query will be propagated through

corresponding attractive connections much like an exploding firework. Figure

3.11 shows an example of route selection using in Firework Query Model. The

query message is first propagated through random connections. Once it reaches

its target cluster(peer of purple polygon), the message is broadcasted through

attractive connections.

In our Firework Query Model, we retain two existing mechanisms in Gnutella

network for preventing query messages from looping forever in the distributed

3The threshold value set by user to determine the degree of result which a user wants.
If the threshold is set to a large value, less results but more relevant results are expected to
be received.
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Figure 3.11: Illustration of Firework Query Model, Step 2

network:

1. Gnutella replicated message checking rule,

2. Time-To-Live (TTL) value of messages.

When a new query appears to a peer, it is checked against a local cache for

duplication. If it is found that the same message has passed through before,

the message will be dropped and not be propagated. The second mechanism

is to use the Time-To-Live value to indicate how long a message can survive.

Similar to IP packets, every Gnutella message is associated with a TTL. Each

time when the message passes through a peer, the TTL value is decreased by

one. Once the TTL value reaches zero, the message will be dropped and no

longer forwarded.

There is a modification on DISCOVIR query messages from the original

Gnutella messages. In our model, the TTL value is decremented by one with

a different probability when the message is forwarded through different types

of connection. For random connections, the probability of decreasing TTL

value is 1. For attractive connections, the probability of decreasing TTL value

is an arbitrary value in [0, 1] called Chance-To-Survive (CTS). This strategy

can reduce the number of messages passing outside the target cluster, while
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more relevant information can be retrieved inside the target cluster because

the query message has a greater chance to survive inside the cluster depending

on the CTS value.

Algorithm 3 Algorithm for the Firework Query Model

Firework-query-routing (peer v, query q)
for all sigv ∈ SIGv do

if Dq(sigv, q) > θ (threshold) then
if rand() > CTS then
qttl = qttl − 1

end if
if qttl > 0 then

propagate q to all ea(a, b, c, d) where a = v, c = sigv or b = v, d = sigv
(attractive link)

end if
end if

end for
if Not forwarding to attractive link then
qttl = qttl − 1
if qTTL > 0 then

forward q to all er(a, b) where a = v or b = v (random link)
end if

end if



Chapter 4

DIStributed COntent-based

Visual Information Retrieval

(DISCOVIR)

DIStributed COntent-based Visual Information Retrieval (DISCOVIR) is a

software package implemented by us which enables individuals to search for

and share multimedia files based on their contents with anyone on the Internet.

A product of DISCOVIR is built on top of the Limewire open source project

which is compatible with the current Gnutella file-sharing protocol and can

connect with anyone else running Gnutella-compatible software. DISCOVIR

is written in Java, and can run on Windows, Macintosh, Linux, Sun, and other

computing platforms.

The motivation of building DISCOVIR is to migrate traditional Content

Based Image Retrieval (CBIR) to a P2P network as a step to introduce content-

based search in P2P. With the advantages of P2P network, we utilize not only

the distributed data storage, but also the computation power of each peer for

the preprocessing and indexing of multimedia data. Queries in DISCOVIR

are no longer based on simple texts but on the content of multimedia data.

The need for annotating shared files is waived, thus, query accuracy does not

depend on subjective perception of keywords. Peer Clustering and Firework

42
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Query Model are also implemented on DISCOVIR to demonstrate how our

algorithm works on the P2P network. We reduce the network traffic generated,

avoid irrelevant peers to handle the query to reduce the workload of computers

and increase the information retrieval performance as well. Figure 4.1 shows

a screen capture of the DISCOVIR client program, which can be downloaded

from http://www.cse.cuhk.edu.hk/∼miplab/discovir.

Figure 4.1: Screen Capture of DISCOVIR

4.1 Architecture of DISCOVIR and Function-

ality of DISCOVIR Components

In this section, we will describe the architecture of a DISCOVIR client, func-

tionality of DISCOVIR Components and the communication protocol in order

to perform clustering, content-based query routing and CBIR over the P2P

network. Through the DISCOVIR program, users can share images among

peers around the world. Each peer is responsible for extracting and indexing

the feature of the shared images, by doing so, every peers can search for similar
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images based on image content, like color, texture and shape among images

shared by other DISCOVIR peers in the network.

Figure 4.2: Architecture of DISCOVIR

Figure 4.3: Interaction between DISCOVIR components

Figure 4.2 and 4.3 depicts the key components and their interaction in the

architecture of a DISCOVIR client. As DISCOVIR is derived from LimeWire

[28] open source project, the operations of Connection Manager, Packet Router

and HTTP Agent remain more or less the same with additional functionality to

improve the query mechanism used in original Gnutella network. Connection
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manager is modified to be able to handle different types of connections (Ran-

dom connections and Attractive connections). Packet Router is modified to be

able to co-operate with other modules to perform content-based query rout-

ing. Plug-in Manager, Feature Extractor and Image Indexer are introduced

to support the CBIR tasks. Clustering Manager is introduced to support peer

clustering and shared data clustering tasks. The User Interface is modified to

incorporate the image search panel.

In the following, we describe the functionality of DISCOVIR Components:

• Connection Manager - It is responsible for setting up and manag-

ing the TCP connection between DISCOVIR clients. In the design of

DISCOVIR, there are 2 types on connection:

1. Random connections - Connected at startup or chosen by user

2. Attractive connections - Automatically chosen and connected by

our algorithm, used to enhance the searching performance

By default, the Connection Manager will connect to the bootstrap server

automatically. Figure 4.4 shows the screen capture of connection man-

ager.

Figure 4.4: Screen Capture of Connection Manager

• Packet Router - It controls the routing of message in DISCOVIR

network between components and peers. It is modified to be able to

co-operate with Connection Manager, Clustering Manager and Plug-

in Manager to perform content-based query routing (Firework Query
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Model).

• HTTP Agent - It is a tiny web-server that handles file download request

from other DISCOVIR peers using HTTP protocol.

• Feature Extractor - It collaborates with the Plug-in Manager to per-

form various feature extraction and thumbnail generation of the shared

image collection.

• Image Indexer - It indexes the image collection by content feature and

carry out clustering to speed up the retrieval of images.

Figure 4.5: Screen Capture of Image Indexer

• Clustering Manager - It clusters the extracted feature vectors from

Image Indexer to form local sub-clusters used for Peer Clustering algo-

rithm. (used in Peer Clustering - Multiple Clusters Version)

• Plug-in Manager - It coordinates the storage of different feature ex-

traction modules and their interaction with Feature Extractor and Image

Indexer. DISCOVIR uses a plug-in architecture to support different fea-

ture extraction method, as shown in Figure 4.6. User may select to

download a plug-in in the format of compiled Java bytecode if they want

to perform CBIR based on that particular feature extraction method.
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It also helps the Connection Manager to monitor different feature ex-

traction modules used in formation of different layers of attractive con-

nection. (used in Peer Clustering - Single Cluster, Multiple Layers of

Connection Version).

Figure 4.6: Screen Capture of Plug-in Manager

4.2 Flow of Operations

The following is a scenario walk-through to demonstrate the interaction be-

tween components in Fig.4.3.

When a user wants to share his data in DISCOVIR network, some pre-

processing works are needed to be done. Unlike other text-based P2P sharing

applications, content-based P2P sharing application requires the program to

extract the feature vectors of shared data first because feature extraction is

a time consuming procedure. Real time processing will seriously downgrade

the retrieval performance. The Feature Extractor collaborates with Plug-in

Manager to extract content features and generate thumbnail from data in the

Shared Collection. The extracted features are then passed to Image Indexer
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and Clustering Manager for indexing and clustering purposes, to build the

Feature Vector Index (1).

In case when a new DISCOVIR client wants to join the P2P network,

the Connection Manager asks the dedicated Bootstrap Server for a list of

currently available DISCOVIR clients in order to hook up to the network.

Bootstrap Server is a host cache server that provides a high-availability network

bootstrap point for DISCOVIR clients. Then, the Connection Manager will

broadcast a signature query to learn the location and signature value of other

peers. After collecting the signature replies, the Connection Manager will

make and handle the attraction connections according to the Peer Clustering

algorithm (2).

Once a user initiates a content-based query, the Feature Extractor extracts

the feature vector from the provided sample image or drawn pictures instantly

(3), Packet Router is responsible for assembling an ImageQuery message and

sending out to the DISCOVIR network (4). For instance, when an ImageQuery

message is received from other peers, the Packet Router checks for any duplica-

tion and propagates to other peers through DISCOVIR network. Meanwhile,

it passes the message to Image Indexer for searching similar images (5). Upon

similar images are found, an ImageQueryHit message is assembled and passed

to Packet Router for replying the initiating peer. When ImageQueryHit mes-

sages return to the initiating peer (6), its HTTP Agent downloads thumbnail

or full size images from other peers upon receiving user request from the user

interface (7). We will talk about each detailed steps in the next section.

4.2.1 Preprocessing (1)

Plug-in Manager is responsible for contacting web-site of DISCOVIR to in-

quire the list of available feature extraction modules. It will download and

install selected modules upon user’s request. Currently, DISCOVIR supports
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various feature extraction methods in color and texture categories such as Av-

erageRGB, GlobalColorHistogram, ColorMoment, Co-occurrence matrix, etc

[17]. All feature extraction modules strictly follow a predefined interface in or-

der to realize the polymorphic properties of switching between different plug-

ins dynamically, see Fig. 4.6.

Figure 4.7: Screen Capture of Preprocess Procedure

Feature Extractor will extract feature and generate thumbnail for all images

in the shared collection by using a particular feature extraction module when

the button is pressed, as shown in Fig. 4.7. A progress bar is used to show the

percentage of files which has been preprocessed. Let I represent a raw image

data, f be the feature extraction method, the Feature Extractor performs the

task illustrated in Eq. 4.1,

f : I × θ → ~I (4.1)

where θ is the feature extraction parameter and ~I is the extracted feature

vector. Image Indexer will then index the image collection using the multi-

dimensional feature vectors ~I in order to answer an incoming query. Feature

Extractor will keep checking on the time stamp of shared files and file-size.

If new files are found or the old files are modified, the processing procedure

will only re-do on the new files and modified files. Then, Clustering Manager

clusters the set of feature vector for the sake of improving query efficiency by

acquiring statistical distribution information of the local image collection.

Compared with the centralized web-based CBIR approach, sharing the

workload of this computational costly task among peers by allowing them

to store and index their own image collection helps to solve the bottle-neck

problem by utilizing distributed computing resources.
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4.2.2 Connection Establishment (2)

For a peer to join the DISCOVIR network, it connects to the bootstrap server

using the Connection Manager. The bootstrap server is responsible for storing

a finite list of IP address of peers currently in the DISCOVIR network and

randomly picks an IP address to return to the peer. Once the IP address is

received, the peer is able to hook up to the DISCOVIR network by connecting

to the selected peer. Then, the Connection Manager broadcasts a signature

query to the P2P network to learn the location and signature value of other

peers. It stores and sorts the signature replies in a signature cache. After a

certain period (10 second is set in DISCOVIR), the Connection Manager picks

the most similar peer and make an attractive connection to it. This signature

broadcasting task is not only done when a peer first joins the network, it

repeats every certain interval (10 minutes is set in DISCOVIR) in order to

maintain the latest information in signature cache. If the current attractive

connection is broken, the Connection Manager will try re-connect or pick the

second most similar peer and make an new attractive connection to it.

Figure 4.8: Illustration of Attractive Connection Re-Establishment
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4.2.3 Query Message Routing (3,4,5)

After a peer joins the DISCOVIR network, it may initiate a content-based

query by providing a sample image or drawn pictures. The Feature Extrac-

tor extracts the feature vector from the provided sample image or the drawn

pictures from the DISCOVIR draw-pad (see Figure 4.10). The Packet Router

is responsible for assembling an ImageQuery message, checking its signature

values and determine how to send the query out to the DISCOVIR network

(by attractive connections or random connections). For instance, when an

ImageQuery message is received from other peers, they need to perform two

operations, Local Index Look Up and Query Message Propagation.

Figure 4.9: Screen Capture of DISCOVIR draw-pad

• Local Index Look Up - The Image Indexer looks up local index of

shared files for similar images. Once similar images are found, the Image

Indexer assembles and delivers an ImageQueryHit message back to the

requester through Packet Router. Since images indexing and clustering

are performed on the peer in preprocessing stage, the retrieval time can

be speeded up.

• Query Message Propagation - In order to prevent query messages
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from looping forever in the DISCOVIR network, two mechanisms are

inherited from Gnutella, namely, the Gnutella replicated message check-

ing rule and Time-To-Live (TTL) value of messages. After these two

checkings, the Packet Router co-operates with Clustering Manager to

calculate the distance between the query and each signature value of its

local clusters. If none of the distance measure between its local clusters’

signature value and the query is larger than the preset threshold, the

Packet Router will propagate the query to its neighbors through random

connections. Otherwise, the query will be propagated to corresponding

attractive connections through Connection Manager.

Figure 4.10: Screen Capture of DISCOVIR Image Query

4.2.4 Query Result Display (6,7)

When an ImageQueryHit message returns to the requester, user will obtain

a list detailing the location and size of matched images. In order to retrieve

the query result, the HTTP Agent will download thumbnail or full size image

from the peer using HTTP protocol. On the other hand, HTTP Agent in other

peers will serve as a web server to deliver the requested images. This HTTP
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Agent is essential for integration to WWW which will be described later in

detail.

Figure 4.11: Screen Capture of DISCOVIR Query Result Display

Figure 4.12: Screen Capture of DISCOVIR Query Result Display 2

4.3 Gnutella Message Modification

The DISCOVIR system is compatible to the Gnutella (v0.4) protocol [15].

In order to support the image query functionalities mentioned, two types of

messages are added. They are:
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• ImageQuery - Special type of the Query message. It is to carry name

of feature extraction method and feature vector of query image, see

Fig. 4.13.

• ImageQueryHit - Special type of the QueryHit message. It is to re-

spond to the ImageQuery message, it contains the location, filename and

size of similar images retrieved, and their similarity measure to the query.

Besides, the location information of corresponding thumbnail are added

for the purpose of previewing result set in a faster speed, see Fig. 4.14.

Figure 4.13: ImageQuery message format

Table 4.1: ImageQuery Payload
Minimum Speed The minimum speed (in kb/second) of servents that should

respond to this message. A servent receiving a Query descriptor
with a Minimum Speed field of n kb/s should only respond with a
QueryHit if it is able to communicate at a speed larger than n kb/s

Feature Name The feature extraction module used to extract the query

Feature Vector The extracted vector used to represent the query

Matching Criteria The threshold value set by user to determine the degree of result which
a user wants. If the threshold is set to a large value, less results but
more relevant results are expected to be received.

Figure 4.14: ImageQueryHit message format
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Table 4.2: ImageQueryHit Payload
Number of Hits The number of query hits in the result set

Port The port number on which the responding host can accept
incoming connections

IP Address The IP address of the responding host

Speed The speed (in kb/second) of the responding host

Result Set A set of responses to the corresponding Query

Servant Identifier A 16-byte string uniquely identifying the responding servent
on the network. This is typically some function of the
servents network address. The Servent Identifier is instrumental
in the operation of the Push Descriptor

File Index A number, assigned by the responding host, which is used to
uniquely identify the file matching the corresponding query.

File Size The size (in bytes) of the file whose index is File Index

File Name The double-nul (i.e. 0x0000) terminated name of the file whose
index is File Index

Thumbnail Information The thumbnail of the file

Similarity The distance measure between the query and the file

4.4 DISCOVIR EVERYWHERE

Although migrating CBIR on P2P network has many advantages as aforemen-

tioned, this system still encounters limitations like the requirement of installing

client software and the low accessibility compared to WWW. These limitations

always introduce inconveniences for the users when they are not using their

own computers. For example, when the users are in libraries or cyber-cafes,

installing personal software is usually prohibited, therefore, they cannot use

the services. For this reason, some web-based P2P applications have been de-

veloped. With these services, user can access the P2P network through a web

browser while the web server serves as one of the peer in the P2P network.

Some examples of web-based P2P applications are AsiaYeah [2], Gnutellait

[16], LinkGrinder [29] and AudioFind [3].

When users submit queries through the web page, the server helps dis-

tributing the query and collecting the results from the P2P network. Such
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kind of search engine for file retrieval through P2P network provides an alter-

native source of files in addition to the documents on WWW. This provides a

more comprehensive and larger file database when the number of users in the

P2P network is large enough. However, there are drawbacks concerning these

models:

1. Centralization - The web server is public to everyone who is able to

access the web page. When many users use this service, the server has

to handle huge amount of queries and collection of results. The problem

remains the same as prevalent search engine. Moreover, the web server

will generate lots of traffic to its neighboring peers, which skews the

workload in P2P network.

2. CBIR functionality - All the web-based P2P applications mentioned

above are based on text search. When adapting to CBIR approach, it

will incur lots of penalty when feature extraction of images is done by

the server.

Figure 4.15: Screen Capture of DISCOVIR Everywhere
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4.4.1 Design Goal of DISCOVIR Everywhere

To account for the two problems raised above, DISCOVIR Everywhere is de-

signed and implemented. DISCOVIR Everywhere is a group project among

several people. Part of the system is designed by me and the system is mainly

implemented by a FYP group. DISCOVIR Everywhere aims to overcome the

two problems by distributing the heavy workload to peers evenly while keep-

ing its accessibility through web. Unlike other web-based P2P applications,

the web server does not act like a peer in the P2P network. Instead, it acts

as the match-maker to coordinate the forwarding of queries and returning of

result between web clients and peers. Preprocessing of query image, initiation

of query and collection of result are all done in a DISCOVIR peer assigned

by the web server. Even there are huge number of users, this architecture is

scalable because the web server is only responsible for distributing workload to

DISCOVIR client. It allows users to perform CBIR in P2P network through

a web browser or other mobile devices, like J2ME phone.

4.4.2 Architecture and System Components of DISCOVIR

Everywhere

Referring to Fig. 4.16, we identify the four main components in the DISCOVIR

Everywhere design. They are:

• Web Browsers and Mobile Devices - It is a device running a web

browser with network access to the WWW. The mobile devices can be

J2ME phone or PDAs with wireless access to the DISCOVIR Everywhere

Gateway, they can access the web page either by WML or XML.

• DISCOVIR Peers - They are interconnected computers running the
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DISCOVIR client program in the Internet. In addition to P2P query ser-

vice, the HTTP Agent of each peer will accept GET and POST HTTP re-

quests to provide seamless integration with the WWW. Moreover, every

DISCOVIR peer is required to send ’heart-beat’ message to the Bootstrap

Server periodically to indicate their availability in DISCOVIR network.

• DISCOVIR Everywhere Bootstrap Server - It is originally the

bootstrap server of DISCOVIR. In DISCOVIR Everywhere, the boot-

strap server is responsible for maintaining an updated list of accessible

DISCOVIR peers and their availability for providing HTTP access, if it

cannot receive the ’heart-beat’ message from a peer for a certain period

of time, its record will be removed and considered off-line.

• DISCOVIR Everywhere Gateway - It is a server program provid-

ing users with web-based searching interface. It contacts the Bootstrap

Server for the list of IP address of available DISCOVIR Peers and coor-

dinates the redirection of users’ query request to different peers.

Figure 4.16: Architecture of DISCOVIR Everywhere
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4.4.3 Flow of Operations

Referring to Fig. 4.17, the process of query in DISCOVIR Everywhere consists

of six steps. Details of each step are shown in the following:

1. A user initiates a query request through the web interface provided by

DISCOVIR Everywhere Gateway. If the user access the web interface by

a mobile phone, he should access it through the mobile Gateway and the

medium of communication is WML instead of HTML.

2. The DISCOVIR Everywhere Gateway receives the request and inquire

the bootstrap server about the IP address and port number of a avaiable

DISCOVIR peer capable of handling this query.

3. Upon receiving the inquiry from DISCOVIR Everywhere Gateway, the

DISCOVIR Bootstrap Server picks one of the available peers from the list

in a round robin manner in order to distribute the workload evenly. This

is similar to the techniques used by DNS servers to distribute workload

among web servers.

4. Once knowing the IP address of DISCOVIR peer capable of handling the

query, the gateway generates a HTML page instantly for users to upload

his query image and intended feature extraction method to the selected

peer using HTML form submission procedure.

5. User uploads the query image to selected DISCOVIR peer through a

HTTP POST request. Meanwhile, the HTTP Agent of that selected

peer stores the image and requests its Feature Extractor to extract fea-

ture and assemble an ImageQuery message to be sent out through Packet

Router, which is analogous to the processing of initiating query using the

DISCOVIR client program. The web browser keeps this HTTP connec-

tion open until results return from the DISCOVIR peer.
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6. Once the selected DISCOVIR peer accumulates up to a certain number

of results or reaches a time limit, it packages the result in HTML format

and sends back to user through HTTP Agent. With the inherent support

of HTTP defined in Gnutella protocol, web users are able to download

thumbnail or full size images directly from DISCOVIR peers without the

help of gateway.

4.4.4 Advantages of DISCOVIR Everywhere over Preva-

lent Web-based Search Engine

Compared to existing search engines and web-based P2P services, DISCOVIR

Everywhere exhibits the following advantages:

1. Comprehensiveness - By utilizing the storage capacity and individual

contribution of peers in the network, we increase the comprehensiveness

of data archive for searching. Besides, the web-based interface provide a

handy access compared to using pre-installed P2P client programs.

2. Query Richness - DISCOVIR Everywhere possess CBIR functional-

ity beyond existing text based retrieval, while eliminates the need for

preprocessing, storage and indexing in existing CBIR search engines by

delegating them to peers in DISCOVIR network.

3. Scalability - Compared to existing web-based P2P service, the DIS-

COVIR Everywhere Gateway is much more light weighted. Instead of

serving as a centralize server for web users to access the P2P network, it

takes the role of coordinator between web users and DISCOVIR peers.

Apart from reducing the workload for initiation of query and collection of

results, this also avoids perverted usage of P2P network by distributing

query requests among peers evenly.
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Figure 4.17: Query Procedure of DISCOVIR Everywhere

Detailed information of DISCOVIR Everywhere can be found in the home-

page of DISCOVIR Everywhere [10] and our technical report written in De-

cember of 2002 [49].



Chapter 5

Experiments and Results

In this section, we discuss the design of experiments and evaluate the perfor-

mance of our proposed Firework Query Model. First, we present our model of

Peer-to-Peer network used in our simulation. We then introduce the perfor-

mance metrics used to evaluate different search mechanisms. We simulate the

experiments to study the performance of different mechanisms using different

parameters. We show how our strategy performs and behaves at scale.

5.1 Simulation Model of Peer-to-Peer Network

Our goal of the experiment is to model a typical Peer-to-Peer network where

each node contains a set of documents. We built different size of Peer-to-

Peer networks to evaluate the performance of different search mechanisms. As

shown in figure 3.10, the simulation models have a power law distribution with

an average degree of 3.97. The number of peers in each network varies from

2,000 to 20,000. The diameters of the network1 vary from 9 to 11, and the

average distances between two peers vary from 5.36 to 6.58. Table. 5.1 lists

the detailed information of each model.

To evaluate search mechanisms accurately, the simulations are done over

different network formations and data locations. We run 100 iterations and

1The longest shortest path between any two peers in the network.

62
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Figure 5.1: Power law distribution simulation model.

Table 5.1: Characteristic of Simulation Model
Number of Peer 2000 4000 8000 12000 16000 20000
Diameter 9 9 10 10 11 11
Average distance
between two peers 5.36 5.77 6.12 6.33 6.47 6.58

average the results for each set of parameters. For each iteration, we initiate

a query starting from a randomly selected peer and collect the statistical in-

formation listed in next section. We rebuild the network every 10 iterations.

In our experiment, we use two set of test data, synthetic data and real data:

1. Synthetic data–We generated 100 sets of random mean and variance.

For each set, 100 data points are generated according to the Gaussian

distribution, which is to model feature vectors of data belonging to the

same class.

2. Real data–We use 10,000 images (from 100 categories) in the Corel-

Draw’s Image Collection CD and use the Color Moment feature as test

data. The images in the CD are grouped based on their semantic mean-

ing and under the same semantic meaning, images may not necessary

have closely clustered feature vector. In our experiments, we show that
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there is still 60% improvements in the query efficiency, which means that

images having same semantic meaning are more or less clustered in low

level feature vector space. But we can expect the real data cannot be

clustered as well as our generated synthetic data.

In the experiment, we randomly assign different classes of images to each

different peer; therefore, the data location of every build of network is different.

Competitive Learning clustering algorithm [46] is used to cluster data insides

each peer. The simulation is done on Sun Enterprise E4500 (12 400MHz Ultra

IIi) running Solaris v.7 using C. In our C simulation program, each peer is

represented by a data structure and the message passing between peers in

the logical network is simulated by simple parameter passing between data

structures. For a simulation of 20,000 peers, the running time is approximately

15 minutes. For the DISCOVIR system, we build our client program based

on Gnutella v0.4 protocol. For image related operations, we use Java’s image

manipulation routines to assist in extracting visual feature.

5.2 Performance Metrics

The metrics we use to evaluate the performance are:

1. Recall– The success rate of desired result retrieved. It is the fraction of

the relevant documents which has been retrieved, i.e.,

Recall = Ra/R, (5.1)

where Ra is the number of retrieved relevant documents, R is the total

number of relevant documents in the Peer-to-Peer network. If Recall is

high, it means more relevant documents can be retrieved, so, the perfor-

mance is better.
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2. Query scope– The fraction of peers being visited by each query, i.e.,

V isited = Vpeer/Tpeer, (5.2)

where Vpeer is the number of peers received and handled the query, Tpeer

is the total number of peers in the Peer-to-Peer network. For each query,

if the fraction of involved peers in the network is lower, the system will

be more scalable.

3. Query efficiency– The ratio between the Recall and Query Scope, i.e.,

Efficiency = Recall/V isited. (5.3)

In general, the performance of P2P network is more desirable if we can

retrieve more relevant documents (high recall) but only visited fewer

peers (small query scope). Observing either Recall or Query Scope only

is not enough to determine the goodness of algorithm. Therefore, we

defined the query efficiency as the ratio between Recall and Query Scope.

If the algorithm can retrieval more relevant documents but only visited

fewer peers, the query efficiency will be a large value. If the data locations

are evenly distributed, the Query Efficiency will be equal to 1 under BFS

algorithm, i.e., if we visited 50% of peers in the network, it is expected

that we can retrieve 50% of relevant documents in the network also.

4. Generated network traffic– The number of packets generated for each

query. Reducing the load at individual peers and network traffic are

desirable for scalability.

5. Minimum reply path length– The number of hops for the reply to

come back. In our experiments, it is defined as the average number of

hops for first ten replies. It is more desirable if the minimum reply path

length is shorter. The requester can receive the reply in a shorter time

and the system is also more scalable because fewer packets are generated.
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5.3 Experiment Results

In this section, we experimentally compare our proposed Firework Query

Model against Brute Force Search algorithm. We explore how the perfor-

mances are affected by:

1. different number of peers in the P2P network

2. different Time-To-Live (TTL) value of query message

3. different data sets, synthetic data and real data

4. different number of local clusters of each peer

5.3.1 Performances in different Number of Peers in P2P

Network

This experiment tests the scalability of search mechanisms. The number of

peers in each network varies from 2,000 to 20,000. The experiment parameters

are listed in Table. 5.2.

Table 5.2: Parameters using in experiment 5.3.1
Number of Peer 2,000 - 20,000

Test Data Set Real Image Data Set 1 from
CorelDraw’s Image Collection CD

Diameter of the P2P network 9 - 11 hops

Average distance between 2 peers 5.4 - 6.6 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet Fixed to 5

Number of local cluster per peer 1 (No local clustering)

1. Recall
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Figure 5.2 depicts the recall against number of peers in two search mech-

anisms. When the size of network increases, the recall of Firework Query

Model continues to remain at a higher range, while the recall for BFS

drops when size of network grows. We conclude that our algorithm is in-

sensitive to the change of network size. Our mechanism is more scalable.

Even the size of network grows, FQM still can reach a large portion of

the network containing the query target.
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Figure 5.2: Recall against Number of Peers

2. Query Scope

As seen in Figure 5.3, we achieve the load reduction by using FQM.

Fewer peers are exposed to each query.

3. Query Efficiency

As seen in Figure 5.4, FQM outperforms BFS because more relevant

data are retrieved but fewer peers are visited. The efficiency is improved

up 60% - 160%. The curve of FQM follows a small bell shape. Query

efficiency increases at first due to two reasons:

(a) The network can be clustered more appropriately when the network

size increases. When the number of peers increases, new peers can
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Figure 5.3: Query Scope against Number of Peers

have more choices and make their attractive link to a more similar

peer.

(b) The percentage of peers visited is inversely proportional to the net-

work size when the TTL is fixed. FQM advances the recall percent-

age when the query message reaches the target cluster.

When the network size increases further, a query might not reach its

target cluster for low TTL value (The TTL is fixed to 5 in this experi-

ment and the diameter increases from 9 to 11 when the number of peers

increases from 2000 to 20000), so query efficiency starts to drop. There-

fore, choosing a good TTL value is important in our algorithm and this

will be discussed in the next section.

4. Generate Network Traffic

Our proposed Firework Query Model reduces the generated traffic by

routing the query selectively rather than broadcasting. Figure 5.5 shows

the average number of packets generated.

5. Minimum Reply Path Length

Figure 5.6 depicts the minimum reply path length of the average number

of hops for first ten replies. On average, the relevant documents are 3-7
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hops away in Brute Force Search algorithm, however, the path length

in Firework Query Model is just 2-5 hops. It is more desirable if the

minimum reply path length is shorter. The requester can receive the

reply in a shorter time and the system is also more scalable.
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Figure 5.6: Minimum Reply Path Length against Number of Peers

6. Conclusion

In conclude, Firework Query Model outperforms Brute Force Search in

all measures. The Query Efficiency of FQM is better because it finds

more relevant data while visits fewer peers. Less query messages are

generated. Some of the irrelevant peers avoid to receive and handle the

query and the requester also receives the reply from other peers in a

shorter reply path length.

5.3.2 Performances in different TTL value of query packet

in P2P Network

In this section, we explore how the performances are affected by different Time-

To-Live (TTL) values of query packet. The number of peers in each network is

fixed to 10,000. The TTL value varies from 4 to 9. The experiment parameters

are listed in Table. 5.3.
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Table 5.3: Parameters using in experiment 5.3.2
Number of Peer 10,000

Test Data Set Real Image Data Set 2 from
CorelDraw’s Image Collection CD

Diameter of the P2P network 10 hops

Average distance between 2 peers 6.2 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet 4 - 9

Number of local cluster per peer 1 (No local clustering)

1. Recall

Figure 5.7 shows the recall against different TTL values of query message.

When the value of TTL increases, both the recall of Firework Query

Model and the BFS increase, while our proposed strategy reaches the

maximum value in a much faster rate. When the TTL is larger than

8, the recall graph tails down in the Firework Query Model because the

recall is nearly saturated and cannot be improved anymore.
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Figure 5.7: Recall against TTL value of query packet

2. Query Scope

Figure 5.8 shows the number of visited peers in both strategies. We

vary the TTL of query message to observe the changes in the query
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scope when a peer initiates a search. The Firework Query Model shows

a promising sub-linear increase in the query scope subject to increasing

TTL of query message, while the BFS increases in a much faster rate.

The query scope of Firework Query Model is larger than BFS when

the TTL value is small because a Chance-To-Survive (CTS) 2 value

is introduced in Firework Query Model. This strategy lets the query

message to have a higher chance to survive when forwarding through

attractive connections, therefore, the query scope is larger. Specifically,

we choose CTS=1 in all the simulations.
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Figure 5.8: Query Scope against TTL value of query packet

3. Query Efficiency

As seen in Figure 5.9, FQM outperforms BFS under different TTL values

of query packet. We found that the optimal TTL value is 6-8 in a network

size of 10,000 peers under Firework Query Model. The Query Efficiency is

low at the beginning because the TTL value is not enough for the query

packet to reach its target cluster. When the TTL value increase, the

query has a larger chance to reach its target cluster, therefore, the Query

Efficiency increases. When the TTL value is 6-8, the Query Efficiency

2The inverse probability of decreasing TTL value. It is an arbitrary value in [0, 1]. If
CTS is small, the chance to decrease the TTL value when the query is passing from one
peer to another peer is larger.
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is optimal because the query packet can just reach its target cluster.

However, further increasing the TTL value will only generate unnecessary

traffic, therefore, the Query Efficiency starts to level off beyond TTL 8.
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Figure 5.9: Query Efficiency against TTL value of query packet

4. Conclusion

In conclude, we find that FQM is sensitive to the TTL value of query

message, so, choosing a suitable TTL value is important. If the chosen

TTL is too small, the query cannot reach its target cluster. If the chosen

TTL is too large, unnecessary traffic is generated. The performance of

FQM is somehow related to the distance between the requester and the

target cluster. However, FQM still outperforms BFS in general.

5.3.3 Performances in different different data sets, syn-

thetic data and real data

In this section, we explore how the performances are affected in different data

sets, synthetic data and real data. We assign different data set to each peer.

In each experiment, we carry two different parts. In the first part, the number

of peers in each network varies from 2,000 to 20,000 while the TTL value is
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fixed to 5. In the second part, the number of peers in each network is fixed

to 10,000 while the TTL value varies from 4 to 9. The experiment parameters

are listed in Table 5.4 and 5.5.

1. Query Efficiency against different number of peers

Table 5.4: Parameters using in experiment 5.3.3
Number of Peer 2,000 - 20,000

Test Data Set 1) Real Image Data Set 3 from
CorelDraw’s Image Collection CD
2) Synthetic data generated following
Gaussian distribution

Diameter of the P2P network 9 - 11 hops

Average distance between 2 peers 5.4 - 6.6 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet Fixed to 5

Number of local cluster per peer 1 (No local clustering)

As seen in Figure 5.10, FQM outperforms BFS in both synthetic data

and real data set. The efficiency is improved up 60% - 160% in real

data. The efficiency is improved by 13 times in synthetic data. Since

the variance of synthetic data we generated is much smaller than the

variance of real data. Therefore, the synthetic data can be clustered

more appropriately insides the network, thus, the performance is much

better.

2. Query Efficiency against different TTL values of query packet

As seen in Figure 5.11, FQM outperforms BFS under different TTL

values of query packet. In synthetic data, we found that the optimal TTL

value is 8 in a network size of 10,000 peers under Firework Query Model.

Since the variance of synthetic data we generated is much smaller than

the variance of real data. Therefore, the synthetic data can be clustered
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Figure 5.10: Query Efficiency against Number of Peers under different data
sets

Table 5.5: Parameters using in experiment 5.3.3
Number of Peer 10,000

Test Data Set 1) Real Image Data Set 3 from
CorelDraw’s Image Collection CD
2) Synthetic data generated following
Gaussian distribution

Diameter of the P2P network 10 hops

Average distance between 2 peers 6.2 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet 4 - 9

Number of local cluster per peer 1 (No local clustering)
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more appropriately insides the network, thus, the performance is also

much better.
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Figure 5.11: Query Efficiency against TTL value of query packet under differ-
ent data sets

3. Conclusion

From the results of the experiments, we found that our algorithm work

well in both real data and synthetic data. Using both data sets have at

least 60% improvement. In our experiment, we use the feature vector

extracted by Color Moment algorithm. However, since the images in

the CorelDraw Image CD are grouped based on their semantic meaning

and under the same semantic meaning, images may not necessary have

closely clustered feature vector in color space, therefore, the real image

data cannot be clustered as well as our generated synthetic data, thus,

the performance is worse as expectation.

5.3.4 Performances in different number of local clusters

of each peer in P2P Network

In this section, we explore how the performances are affected in different num-

ber of local clusters of each peer in P2P network. Two settings are used in
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the experiments: 1 single cluster to represent a peer(Peer Clustering - Single

Cluster Version: no local clustering is performed) and 3 local sub-clusters to

represent a peer(Peer Clustering - Multiple Clusters Version: local clustering is

performed) In each experiment, we carry two different parts. In the first part,

the number of peers in each network varies from 2,000 to 20,000 while the TTL

value is fixed to 5. In the second part, the number of peers in each network

is fixed to 10,000 while the TTL value varies from 4 to 9. The experiment

parameters are listed in Table 5.6 and 5.7.

Table 5.6: Parameters using in experiment 5.3.4
Number of Peer 2,000 - 20,000

Test Data Set Real Image Data Set 4 from
CorelDraw’s Image Collection CD

Diameter of the P2P network 9 - 11 hops

Average distance between 2 peers 5.4 - 6.6 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet Fixed to 5

Number of local cluster per peer 1 , 3

1. Recall, Query Scope and Query Efficiency against different num-

ber of peers

Figure 5.12, 5.13 and 5.14 depict the recall, query scope and query effi-

ciency against different number of peers under different local clusters of

each peer in P2P Network. In general, FQM with 3 clusters outperforms

FQM with 1 cluster. As shown in Figure 5.12, both algorithm have the

same recall while FQM with 3 clusters visits less peers than FQM with

1 cluster, thus, the query efficiency is better in FQM with 3 clusters.

The curve of query efficiency follows a small bell shape because the net-

work can be clustered more appropriately when the network size in-

creases. When the number of peers increases, new peers can have more
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choices and make their attractive link to a more similar peer. However,

when the network further increases, a query might not reach its target

cluster for low TTL value (The TTL is fixed to 5 in this experiment),

therefore, the efficiency drops.
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Figure 5.12: Recall against Number of Peers
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Figure 5.13: Query Scope against Number of Peers

2. Generate Network Traffic against different number of peers

As shown in Figure 5.15, our proposed Firework Query Model with 3

local sub-clusters can represent the peer more accurately and routes the

query more efficiently, therefore, less unnecessary traffic is generated.

3. Recall, Query Scope and Query Efficiency against different TTL
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Figure 5.14: Query Efficiency against Number of Peers
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Figure 5.15: Generated Network Traffic against Number of Peers

Table 5.7: Parameters using in experiment 5.3.4
Number of Peer 10,000

Test Data Set Real Image Data Set 4 from
CorelDraw’s Image Collection CD

Diameter of the P2P network 10 hops

Average distance between 2 peers 6.2 hops

Number of documents
assigned to each peer 100 documents

Dimension of extracted feature
vector to represent the image 9

TTL value of the query packet 4 - 9

Number of local cluster per peer 1 , 3
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values of query packet

Figure 5.16, 5.17 and 5.18 depict the recall, query scope and query effi-

ciency against different TTL values of query packet under different local

clusters of each peer in P2P Network. The results are the nearly same as

the last experiment. FQM with 3 clusters still outperforms FQM with 1

cluster in general.
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Figure 5.16: Recall against TTL value of query packet
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Figure 5.17: Query Scope against TTL value of query packet

4. Generate Network Traffic against different TTL values of query

packet

As shown in Figure 5.19, our proposed Firework Query Model with 3
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Figure 5.18: Query Efficiency against TTL value of query packet

local sub-clusters can represent the peer more accurately and routes the

query more efficiently, therefore, less unnecessary traffic is generated.
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Figure 5.19: Generated Network Traffic against TTL value of query packet

5. Conclusion

In conclude, 3 local sub-clusters to represent a peer (Peer Clustering -

Multiple Clusters Version: local clustering is performed) outperforms 1

single cluster to represent a peer(Peer Clustering - Single Cluster Ver-

sion: no local clustering is performed). Since our proposed Firework

Query Model with 3 local sub-clusters can represent the peer more ac-

curately and routes the query more efficiently, therefore, the query effi-

ciency is better and less unnecessary traffic is generated. We expect the
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performance will be even better if more local sub-clusters are used to

represent a peer. However, it is a trade-off between resolution of cluster

and computational cost.

5.4 Evaluation of different clustering algorithms

To choose a good clustering algorithm to be used in the simulation experiments

and the development of DISCOVIR, we tested the efficiency and correctness

of different clustering algorithms in three sets of experiments. The first set

of experiments examine the performance of clustering algorithms when the

estimated cluster number (k) is equal to the actual cluster number (c) we

generated. The second set of experiments examine the performance of under

estimation of cluster number (k < c). The last set of experiments examine the

performance of over estimation of cluster number (k > c). In each experiment,

we compare the performance of following clustering algorithms: k-means (KM)

[1], competitive learning (CL) [46], shift mean (SM), expectation maximization

(EM) [23], branching competitive learning (BCL) [58] and adaptive rival

penalized competitive learning (RPCL) [27, 24].

In our experiments, we use a 2-dimensional generated data sets to evaluate

the clustering performance of each clustering algorithms. We generate 5 Gaus-

sian distribution with σ = 5 and centered at (0, 500) and (0, 500) respectively.

Each cluster has 1000 generated data points. In the experiments, we measure

the accuracy of clustering, which is measured by the average percentage of

correct classification data over 10 consecutive runs.

Figure 5.20 shows one of the results of competitive learning (CL). The

black points are the data points generated by 5 Gaussian distribution. The

color paths are the moving paths of our estimated cluster centers. We construct

the confusion matrix of each algorithm and calculate the accuracy of it. The

accuracy is defined as the proportion of the total number of predictions that
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were correct. It is determined using the equation:

Accuracy = Tc/T. (5.4)

where Tc is the total number of predictions that were correct and T is total

number of data. Table 5.8 shows one of the sample result of confusion matrix.

The accuracy is 88.82% ((977+985+909+920+650)/5000) in this example.

Table 5.8: Result of confusion matrix of competitive learning.
Number of data points classified by CL

Class A Class B Class C Class D Class E
Class A 977 5 8
Class B 985 15
Class C 91 909
Class D 17 920 63
Class E 222 128 650

Figure 5.20: Screen caption of competitive learning experiment

Table 5.9 shows the average clustering accuracy when the estimated cluster

number (k) is equal to the actual cluster number. Table 5.10 shows the average

clustering accuracy of under estimation for cluster number (k < c, and k = 4).
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Table 5.11 shows the average clustering accuracy for over estimation of cluster

number (k > c, and k = 7). We can see that competitive learning (CL) gives

more accurate clustering result than others in all three cases. They do not be

affected by k easily and give a more stable result. Therefore, we have chosen

competitive learning as our clustering algorithm in simulations and DISCOVIR

development.

Table 5.9: Average clustering accuracy in estimated cluster number equal to
the actual cluster number

algorithm average correctness
KM 74.92%
SM 65.22%
CL 77.92%

RPCL 70.56%
BCL 84.30%
EM 76.52%

Table 5.10: Average clustering accuracy in under estimation of cluster number
algorithm average correctness

KM 73.22%
SM 66.26%
CL 73.80%

RPCL 70.82%
BCL 73.04%
EM 75.94%

Table 5.11: Average clustering accuracy in over estimation of cluster number
algorithm average correctness

KM 66.96%
SM 68.92%
CL 70.86%

RPCL 70.24%
BCL 65.02%
EM 73.08%



Chapter 6

Conclusion

In this thesis, we propose a peer clustering and content-based routing strategy

to retrieve information based on their content efficiently over the P2P network.

We verify our proposed strategy by simulations with different parameters to

investigate the performance changes subject to different network size and TTL

value of query message. We show that our Fire Query Model outperforms the

Brute Force Search method in both network traffic cost and query efficiency

measure.

Moreover, we migrate the traditional CBIR to the P2P network to dis-

tribute storage capacity and workload among peers and provide content-based

search in P2P network. We illustrate the design and implementation of DIS-

COVIR, in order to exhibit the key components required in a P2P based CBIR

system. We also illustrate how Fire Query Model can be integrated into P2P

systems to increase retrieval perfromance.
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