
A Probabilistic Cooperative-Competitive

Hierarchical Model for Global

Optimization

Abstract|Stochastic searching methods have been widely
applied to areas such as global optimization and combinato-
rial optimization problems in a vast number of disciplines.
Existing methods intended to solve these problems by navi-

gating their search on the surface of the rugged landscapes.
This is considered insu�cient since the property of the land-
scape at di�erent resolutions can be very di�erent. It is
reasonable to adopt appropriate searching strategies at dif-
ferent resolutions. In this paper, we propose a new proba-

bilistic searching model for global optimization. The main
contributions of the model are 1) to provide a basis for res-
olution control and smoothing of search space and 2) to
introduce memory into stochastic search. Structurally, the
search space is divided into �nite number of n-dimensional

partitions. The bene�ts of this organization are twofold.
First, the rugged problem landscape can be smoothed, as
the hierarchy allows di�erent levels of resolution. The dif-
�culty due to the ruggedness can be decreased. Second, it
provides a basis to implement algorithms which dynamically
change the 'view' of the landscape on the way of searching.

In the presence of feedback, past searching experience ob-
tained can be used to provide guidance to the current search.
We present results on the algorithm performance in han-

dling numerical function optimization (both high-dimension
and deceptive). The empirical results showed that our new

model is comparable to that of the other advanced methods
in terms of solution quality and computation.

I. Introduction

A. Motivation

Global optimization approaches under the category of
stochastic methods such as simulated annealing (SA) [12],
[11] and evolutionary algorithms (EAs) [7], [6], [5], [2] and
those under the category of heuristic search methods such
as multistart greedy descent strategies (MGDs) [20], [17],
[8] share several common characteristics:

1 Landscape Without Di�erent Resolutions{For SA and
MGDs, these algorithms use a single search space at
the highest resolution during the search. This type of
algorithm is ine�cient and inexible since the search
space at the highest resolution is typically huge to be
search practically.

2 Search Without Memorization{Typically these algo-
rithms do not use information accumulated from the
past during the search. Often, these past information
may help to guide the search in a more focused and
e�cient manner.

Motivated by their shortcomings, we present an alterna-
tive approach for global optimization.
Suppose we have a balanced binary hierarchy (Fig. 1) of

l levels, if we need to make a decision on the branch to
traverse next, we will have to make l number of such de-
cisions. Since a branch of the hierarchy leads to a unique

hierarchy viewed
by root

hierarchy viewed by
right first level node

root

First level nodes

l=3

Fig. 1. Search space reduction (First view)

non-overlapping sub-hierarchy below it, after making a de-
cision on the branch to go, in principle we just need to
consider the corresponding sub-hierarchy in the next deci-
sion. It is clear that the size of the hierarchy we are facing
is diminishing with the decision made towards the bottom.
Viewing the hierarchy in another way, if we cut the hi-

erarchy into 2 halves longitudinally at node level bl=2c as
shown in Fig. 2, the number of leaf nodes faced by all sub-
hierarchies at the upper half are reduced to 2bl=2c. Those in
the lower half are, however, kept unchanged as mentioned
before. In general, if we cut the hierarchy successively at
each node level in a top-down manner, total number of `leaf
nodes' faced are 2l. It can be seen that the apparent size
of the hierarchy can be reduced drastically.

The formation of such a hierarchy basically de�ned l+1
number of resolution levels of the solution landscape. Node
level upper in the hierarchy represents a coarse landscape
revealing the general macroscopic view, while node level
lower in the hierarchy represents a �ne landscape revealing
the detail. This resolution hierarchy allows an algorithm
designed to concentrate on the searching at the lower res-
olution, which is easier, locating the promising area �rst
and to drive into the precise optimum later at the higher
resolution when the search is converging.

B. Paper Organization

Section II describes the essential idea of the probabilistic
cooperative-competitive hierarchical model. Section ?? is
the formulation of the model. Section ?? shows the ex-
perimental results carried to illustrate the behavior and
performance of the model. algorithms.

II. Search Space Partitioning

A typical function optimization can be expressed as fol-
lows. Given a n-dimensional continuous real-value function

F : X �! R where X � Rn

and xl � X � xu (1)

to be considered
Only four leaves

to be considered
Sixteen leaves

l/2

Fig. 2. Search space reduction (Second view)

to optimize, we need to �nd x� 2 X such that F (x�) is
maximized (or minimized).
To solve the above optimization problem, one may quan-

tize the search space into equal partitions. The size of
these partitions is related to the solution precision, i.e., the
smaller the partition size, the �ner the precision.
De�nition 1 (Basic partitioning:) Given a search space

of n-dimension, it contains V n number of equal partitions,
where V equals 2l; each of them is of n-dimension.

By creating this sample space with V n partitions, the
optimization problem can then be modeled as a searching
and approximation problem with V n number of choices in
n-dimensional space. Without loss of generality, we con-
sider the one-dimensional case �rst.

De�nition 2 (Binary number labeling scheme:) Denoting
S as the set of all binary strings of length l in the form of
bl�1 bl�2 � � � b0, where bi 2 f0; 1g, we can label the parti-
tions of the sample space of the one-dimensional function
by assigning consecutive binary strings from 0 to V � 1 to
consecutive partitions as illustrated in Fig. 3.

For instance, if l equals to 3, the partitions are repre-
sented sequentially as 000, 001, 010, : : :, 110, and 111 in an
increasing x direction. Based on this labeling scheme, we
noticed that the one-dimensional search space is not only
divided into V partitions, but also a hierarchy of partitions
with each bit demarcating the partition inherited from the
immediate more-signi�cant bit into two halves (see Fig. 4).
(The digits at the upper part of Fig. 3 show the partition
hierarchy formed by the di�erent signi�cant bits). The top
layer (the most signi�cant bit) consists of two bit-values
which represent the right and the left half of the whole
sample space. The second layer consists of four bit-values
representing the four partitions divided from the two in
the previous layer. Partitioning in this way allows us to
treat each partition as a sequence of bits so that �nding an
optimal partition can be done by optimizing each bit.
For functions of n-dimension, we apply the same label-

ing scheme to each of the variables in x, and hence n num-
ber of such separate binary hierarchies. The optimization
problem would then become n simultaneous series of l se-
lections.
To locate the optimal solution, we adopt the probabilistic

search. In this search, we give scores to the states of each
bit bi. Since we are considering a binary system, two scores

000 001 010 011 100 101 110 111

Most-significant
bit

Least-significant
bit

0 0 0 01 1 1 1
0 01 1

0 1

Search space

Partitions

Labels

Fig. 3. Labeling of partitions: Partitioning

0 01 1

0 0 0 01 1 1 1

0

1

3 4

7 8 9 10

5

2

6

13 141211

0 1

00
0

00
1

01
0

01
1

11
1

11
0

10
1

10
0

Fig. 4. Labeling of partitions: (b) Formation of hierarchy

are assigned, one to each state, indicating how well the
states perform in that bit position in the past.

We now model our problem as follows.

The original problem is to �nd x� 2 X where X � Rn

such that

8x 2 X �

�
F (x�) � F (x) if Maximization;
F (x�) � F (x) if Minimization:

(2)

After the transformation, it becomes �nding an optimal
vector of binary strings s� 2 Sn to where x� belongs prob-
abilistically:

max Prob(select s�)

= max

n�1Y
m=0

Prob(select s�m)

= max

n�1Y
m=0

0Y
i=l�1

Prob(select b�m;i) (3)

where s�m 2 S is the m-th component in vector s� and b�m;i

is the i-th signi�cant bit of binary string s�m.

It can then be re-formulated as �nding b�m;i such that for
0 � m < n and 0 � i < l,

b�m;i = argmax
k
f am;k : k = 2(l�1�i) + bm;i g: (4)

III. The model

To solve the problem formulated in the last section, we
present in this section an iterative algorithm based on an
information processing cycle characterized by a population
of homogeneous searching agents and a searching environ-
ment. We will describe the model progressively from: (1)
the basic pBHS (probabilistic binary hierarchical search) to
(2) pBHS with cooperation (pcBHS) and �nally (3) pcBHS
with competition (pccBHS).

A. Local searching agents

Each agent is designed to generate in each time step
n number of binary strings through n sequences of bit-
value selection probabilistically. We treat the set of scores
am;k(t) 2 [0:0; 1:0] at time t stated in Eq. (4) as our global
information accumulated up to time t. For each function
variable xm, we de�ne a vector

Am(t) = [am;0(t) am;1(t) am;2(t) � � � am;2l�1(t)] (5)

composed of 2l number of am;k(t) (two consecutive am;k(t)
for one bit in binary string of length l). For an n-
dimensional problem, the whole set of scores would be

A(t) = [A0(t) A1(t) � � � An�1(t)]T : (6)

In order to make the selection possible, a correspondence
is drawn between Am(t) and our binary string sm. Every
non-overlapping pair of two consecutive am;k(t) is used to
represent a single bit. For instance, elements am;0(t) and
am;1(t) correspond to the most-signi�cant bit bl�1, am;2(t)
and am;3(t) correspond to the second most-signi�cant bit
bl�2 and so on. For each such pair of elements, we dedicate
the former one as the score for bi = 0 and the later one as
the score for bi = 1. For instance, am;0(t) is the score of 0 in
bit bl�1 and am;1 is the score of 1 in bit bl�1. Fig. 5 shows
the correspondence of a binary string and Am(t). In fact,
it is not necessarily that Am(t) and the correspondence be
de�ned as above. Di�erent applications may have di�erent
de�nitions.

De�nition 3 (Bit-value selection probability:) The prob-
ability of selecting a bit-value at the i-th bit bm;i of the
m-th string sm is de�ned as follows:

Prob (bm;i = �) =

�
am;k(t); � = 0;
1� am;k(t); � = 1:

(7)

As shown in Eq. (7), the selection of bit-value depends in
a straightforward way on the respective global information
complying with Eq. (3) and Eq. (4). The larger the am;k

value, the higher the chance the corresponding bit-value is
selected.

l

si

2b 1b 0b
binary
string

Global
Infor-
mation

a0 a1 a3 a4 a5a2

component
fitness
for 0

component
fitness
for 1

Am

Fig. 5. Correspondence of binary string and the retained component
�tness list

After generating the binary strings sm; 0 � m < n for all
function variables xm, we have an n-dimensional partition
picked out. Since the ultimate goal is to optimize the orig-
inal function stated in Eq. (2), we need a function value x
from the partition for evaluation. The function value x for
the partition is chosen according to:

xm =
sm

V
(xum � x

l
m) + xum; (8)

i.e., the minimumx in the region sm. Now we have a means
of evaluating the partition by evaluating the representative
instead.

B. Global environment

Given a reliable global information A�, the searching
agents described in the above section may be able to �nd
s� with probability approaching 1.0 ful�lling Eq. (3), i.e.,
Prob(select s�) � 1. The question is how to make A� reli-
able? We approach this question as follows.
Every binary string generated will be evaluated to give

a function value F (x), which is the raw �tness of the
binary string vector. Assuming that the good perfor-
mance of a binary string vector is contributed by the un-
derlying components of each constituting binary strings,
we assign the raw �tness of the binary string vector to
the constituting components. The previously de�ned cor-
respondence between Am and a binary string basically
treats each bit as a single constituting component. Then,
two vectors of length l for the raw �tness values of both
states gained by a binary string are de�ned. We denote
um = [um;0 um;1 : : : um;l�1] as a vector indicating the
raw �tness of the bits with bit-values equal to 0 for sm and
wm = [wm;0 wm;1 : : : wm;l�1] as the vector indicating
the raw �tness of bits with bit-values equal to 1. Fitness
assignment to the states of each component is as follows:
For the m-th binary string sm of the solution x, and

0 � i < l,�
um;i = F (x) and wm;i = 0 if bm;l�1�i = 0;
um;i = 0 and wm;i = F (x) if bm;l�1�i = 1:

(9)

It is obvious that a single sample is not reliable enough
in terms of getting the global view. Hence, we distribute
a population of searching agents trying di�erent partitions

simultaneously. Their raw �tness values are added together
forming another quantity called component �tness. The
more partitions are tried, the more reliable the component
�tness values are.
In order to maintain su�cient convergence power when

the raw �tness of the samples are getting closer on at
landscape and at the sharp peak, the raw �tness F (x) used
in Eq. (9) must be scaled:

fj =
F (xj)� Fmin

Fmax � Fmin
(10)

where Fmax = max0�i<NF (xi), and Fmin =
min0�i<NF (xi).
De�nition 4 (Component �tness:) For a population of

size N , we have two sets of N raw �tness vectors um and
wm. Summation of all the same components of the N vec-
tors of the respective sets gives the component �tness for
the respective states. Denoting uj;m;i and wj;m;i as the raw
�tness values for states 0 and 1 in the (l�1�i)-th bit gained
from evaluating the j-th binary string in the population for
variable xm respectively, the component �tness values for
both states of the (l�1�i)-th bit bm;j;(l�1�i) resulted from
the population are:

Um;i =

PN�1
j=0 um;j;i

j
m;i;0j
; Wm;i =

PN�1
j=0 wm;j;i

j
m;i;1j
: (11)

where
m;i;� = fj 2 f0; 1; : : :; N�1g : bm;j;l�1�i = �g and
� = f0; 1g.
While Um and Wm are vectors with l number of vector

components:

Um = [Um;0 Um;1 � � � Um;l�1]; (12)

Wm = [Wm;0 Wm;1 � � � Wm;l�1]: (13)

Vectors Um and Wm are normalized such that Um;i +
Wm;i = 1, 0 � i < l.
Putting Um andWm together, we obtain a vector of com-

bined component �tness with the same structure as Am:

Hm = [Um;0 Wm;0 Um;1 Wm;1 � � �Um;l�1 Wm;l�1]: (14)

Using this current component �tness values to make de-
cision, the searching agents should be able to produce bet-
ter binary strings, as they now could rely on an imme-
diate past searching experience. Continuously using the
newly produced component �tness means forgetting the
past searching experience except the immediate one. In-
stead of forgetting completely the past, we retain all the
past information. The past component �tness values for
the m-th function variable are retained as follows:
De�nition 5 (Accumulation of past searching experience:)

Denote hm;k(t�1) as the k-th component of Hm at time
t�1, 0 � i < l,

am;k(t) = �m;i(t�1) � am;k(t�1) + (15)

(1��m;i(t�1)) � hm;k(t�1)

where k = 2(l � 1� i) for state 0, and k = 2(l � 1� i) + 1
for state 1.
In practical application, we keep every antagonistic pair

inside Am(t) normalized: am;k(t) + am;k+1(t) = 1.
The newly introduced quantity �m;i(t) is called remem-

brance. It determines the fraction of the past collected in-
formation am;k(t�1) to be retained in the generation t. It is
de�ned in such a way that di�erent bits can have di�erent
remembrance values. There are two reasons why di�erent
bits should have di�erent remembrances:

1 Intuitively, the more signi�cant bits controlling larger
common partitions should have more reliable informa-
tion collected than the less signi�cant bits controlling
smaller shattered partitions given same number of sam-
ples tried. Losing more past information to accommo-
date for the new one at the more signi�cant bits to
increase the speed of convergence becomes plausible.
Hence, the more signi�cant the bit, the smaller the re-
membrance should be.

2 The hierarchical structure has the advantage on search
space reduction . Briey speaking, reduction occurs at
a level of the hierarchy when su�cient information is
collected in all of the upper levels. For instance, if
the most-signi�cant bit bm;l�1 collected enough informa-
tion, either am;0(t) or am;1(t) will have very high value.
Say if am;1(t) has a higher value, it is highly probable
that the right partition contains the global optimum.
Searching should then be concentrated on that region.
In other words, the size of the search space is reduced by
half, suggesting a smaller remembrance value be used to
speed up the convergence.

Therefore, we devised an adaptive remembrance scheme
to speedup the convergence.
De�nition 6 (Adaptive remembrance scheme:) Let � de-

note a convergence threshold. Any score am;k(t) that is
greater than � as said to be converged. Let � denote the

minimum allowed remembrance. Suppose the r-th bit bm;r

of binary string sm for function variable xm is the �rst bit
encountered starting from the most signi�cant side that
satis�es the following:

j 0:5� am;2(l�1�r)(t) j > � _ j 0:5� am;2(l�r)(t) j < �: (16)

Then the remembrance value used in each bit of sm is
set according to:

�m;i(t) =

(
�(t) l > i � r;
r � i + �(t)
r � i + 1 r > i � 0:

(17)

This scheme, basically, keeps the remembrance for the
converged bits (bl�1 to br+1) constant at �, while interpo-
lates the rest from � to (r + �)=(r + 1). Fig. 6 shows the
remembrance settings at di�erence stages of convergence.

C. pcBHS: pBHS with cooperation

High-dimensionality poses a great challenge to all op-
timization algorithms, in particular searching algorithms,
because of the exponential scale-up of the size of the search

0.7

0.75

0.8

0.85

0.9

0.95

1

051015202530

R
em

em
br

an
ce

bit position

r=31 r=15 r=5

Fig. 6. Remembrance for di�erent bits under di�erent stages of
convergence

Solution
fragments

A single

solution in

the basic

pBHS model

1

N-1
N-2

0

Subpopulationsn

Fig. 7. Decoupling

space. To handle the high-dimensional problem, we intro-
duce pcBHS (Probabilistic Cooperative Binary Hierarchi-
cal Search) incorporating cooperation. Besides the cooper-
ation among searching agents in the basic model described
before, the model incorporates the cooperation among di-
mensions of the problem [15].

In the basic pBHS model, a population is de�ned as a
group of sample points consisting of samples from all sub-
spaces. In the following, sample point is referred to as a
complete solution while a sample from a sub-space is re-
ferred to as a solution fragment. For instance, a complete
solution for a three-dimensional function F (x) is a vector
[x0; x1; x2] which consists of three solution fragments: x0,
x1 and x2.

In pcBHS, decoupling is taken such that each sub-space
exists as its own and a single population in the pBHS model
becomes n subpopulations here. The size of each subpop-
ulation is still kept at N in order to maintain the same
varieties of solution fragments as in pBHS. The situation
is illustrated in Fig. 7. The shaded region enclosed by two
dotted lines indicates a single complete solution in the ba-
sic pBHS model. In pcBHS, all solution fragments in a
subpopulation are not tied with any solution fragment in
other subpopulations. What we have are n sets of N solu-
tion fragments.

Before describing how to combine solution fragments,
the issue on �tness measurement should be addressed �rst.
The ordinary �tness measurement as used in pBHS be-
comes inappropriate in the cooperative model. Raw �t-
ness is meaningful only when a single complete solution
exists. After decoupling, fragments representing the prob-

lem sub-spaces are created. Their �tness values are unde-
�ned. Cooperative �tness as de�ned in [15] is employed
to evaluate the solution fragments. Given n arbitrary
solution fragments fx0; x1; � � � ; xn�1g from each subpopu-
lation, each of their raw cooperative �tness equals F (x)
where x = [x0 x1 � � � xn�1]. Suppose that the same
set of solution fragments are given with xn�1 replaced by
x0n�1, their raw cooperative �tness become F (x0) where
x0 = [x0 x1 � � � x

0
n�1].

The cooperative pcBHS model di�ers from the basic
pBHS model in three aspects - �tness evaluation, �tness
scaling, and elitism:

1 Fitness measurement and �tness scaling
As discussed in the previous sections, raw �tness is re-
placed by cooperative �tness owing to the decoupling of
solution fragments. Suppose that there is a global elite
xe = [xe0 x

e
1 � � � x

e
n�1], the cooperative �tness of each

solution fragment xm;j in each subpopulation m is de-
�ned as cF (xm;j; x

e). Function cF is simply the objec-
tive function F applied to a complete solution formed by
replacing the m-th element in xe by xm;j . Algorithm 2
shows how it is implemented. Under this scheme, there
are n�N number of complete solutions centered around
xe formed. These raw cooperative �tness cF of each so-
lution fragments are scaled within their subpopulations
only. Denoting cf as the scaled cooperative �tness, the
cf of the j-th individual in the m subpopulation is:

cf(xm;j ; x
e) =

cF (xm;j; x
e) � cFmin

m

cFmax
m � cFmin

m

(18)

cFmax
m = maxf F (xe); max 0� j�N�1 cF (xm;j; x

e)g
and cFmin

m = minf F (xe); min 0� j�N�1 cF (xm;j; x
e)g.

In Eq. 9 and , it is fj that is fed back into the system.
We now use the scaled cooperative �tness cf . Given a
binary string sm of the m-th dimension, and 0 � i < l,
the component �tness for the (l � 1� i)-th bit is deter-
mined as follows:8>><
>>:

um;i = cf(xm;j ; x
e) and

wm;i = 0 if bm;l�1�i = 0;
um;i = 0 and
wm;i = cf(xm;j ; x

e) if bm;l�1�i = 1:

(19)

2 Elitism
Under this model, the elitist strategy used in the basic
pBHS model have to be modi�ed. Since each subpop-
ulation is individually responsible for a single unique
dimension, elitism is applied separately to each subpop-
ulation (see Algorithm 2) in each generation producing
a set of new local elites fx0e0 ; x

0e
1 ; � � � ; x

0e
n�1g. The new

global elite x00e is selected from the either one of the
following:

� No-change

The existing global elite xe with raw �tness F (xe).

� Local

Any one of the local elite x0em in cooperation with the
existing global elite xe.

� Random

The best of n complete solutions formed be cooperat-
ing randomly picked solution fragment xrm with the
global elite xe. The cooperative �tness of a complete
solution formed by cooperating a randomly selected
solution fragment in them-th subpopulation with the
global elite is denoted as cf(xrm; x

e).

� Multiple

A complete solution formed by combining the exist-
ing global elite xe and those x0em whose cf is greater
than F (xe):

8m; 0 � m < n s:t: cf(x0em ; x
e) � F (xe) (20)

Suppose that the set of local elites satis�es this cri-
terion is = fx0e1 ; x

0e
3 g, the complete solution would

be fxe0; x
0e
1 ; x

e
2; x

0e
3 ; � � � ; x

e
n�1g and its cooperative �t-

ness is denoted as cf(; xe).

The global elite is replaced by any one of them with the
maximum cooperative �tness:

F (x00e) � max fF (xe); cf(x0em; x
e); (21)

cf(x0em; x
r); cf(; xe)g

The last two choices (random and multiple) are used to
lower the greediness of the simple no-change plus lo-
cal scheme of CCGA-1 as illustrated in [15]. Although
the replacement scheme is still a winner-take-all strat-
egy, the random scheme may introduce new solution
fragments which may lead to a new and possibly op-
timal path, while the multiple scheme allows multiple-
subspace movement in one single step.

D. pccBHS: The cooperative-competitive model

The two basic design goals of the model described so
far are: (1) distribution of a population of individuals
who search cooperatively for a single global optimum, and
(2) assumption of no (or minimal) aprior information about
the problem to be solved. However, this design would
make both algorithms easily be deceived, because (1) when
the landscape of a problem has multiple number of similar
basin of attractions, and (2) the landscape of a problem to
be solved provides misleading information. In this section,
we extend both models to cater for the problem by intro-
ducing redundancy and competition. The enhanced model,
pccBHS (Probabilistic cooperative-competitive binary hier-
archical search) shares similarities with the existing shar-
ing mechanisms. The strength of the model over sharing
mechanisms is the avoidance of niche radius. Niche radius
inherently limits the niching mechanisms to be applied to
problems that requires niches to be located at di�erent res-
olution levels simultaneously. The drawback of the pccBHS
model, is that the number of niches to be occupied is bound
by a prescribed number.
The main structural characteristic of the pccBHS model

is the division of a whole population into a number of
subpopulation groups (subgroups) to provide redundancy.
They are allowed to gather their own set of global informa-
tion. The one with the highest �tness is considered as the

Landscape

viewed by g1

Landscape

viewed by g2

Fig. 8. Re-modeling of function landscape

x0

x1

jx
centerF

O
P

g1
g2

0
0

0

Fig. 9. Overlapping of two subgroups

global solution. In the course of searching, these subgroups
are allowed to compete with each other for exclusive occu-
pancy of territories. The aim of the competition is to force
them to search di�erent areas by separating them in the
n-dimensional space. The competition is achieved by gen-
erating a repulsive force when two subgroups come together
in the n-dimensional space. The closer the two subgroups,
the greater the repulsive force. Once they are separated,
the force disappears. E�ectively, pccBHS re-models the
function landscape in such a way that the deceptive at-
tractor is made hidden by another subgroup as shown in
Fig. 8. What each subgroup faces is a unimodal or non-
deceptive landscape.
Suppose there are G number of subgroups gr, 0 � r < G.

Each of these subgroups is the same as a single population
in pcBHS model. The only di�erence is the size of each
subgroup which is equal to bN=Gc. The cooperative pcBHS
is a special case of the pccBHS model that G = 1.

For the sake of clarity, the model is presented using two
subgroups only. Given two subgroups g1 and g2, we �rst
check if all of their dimensions are overlapped, since two
subgroups are said to be overlapped only when they are
overlapped in all dimensions. Two metrics that are re-
quired to calculate the repulsive force are (i) degree of over-
lapping and (ii) proximity.

For each dimension m, we measure the distance Fm
which is the maximumdistance of all pairs of binary strings
from the two subgroups in consideration as shown in Fig. 9.
Denote g1min

m and g1max
m as the minimum and the maxi-

mum of the m-th dimension solution fragments of g1 re-
spectively, g2min

m and g2max
m as the minimum and the max-

imum of m-th dimension solution fragments of g2m respec-
tively. The distance Fm is de�ned as,

Fm = maxfg1max
m ; g2max

m g �minfg1min
m ; g2min

m g: (22)

Minimumpossible value of Fm is 0 when all of the m-th di-
mension solution fragments in g1 and g2 are identical, i.e.,

both g1 and g2 are merged together in the m-th dimen-
sion. Maximum possible value of Fm is xum � x

l
m, i.e., the

full range of the m-th dimension of x. We also measure the
distance Om of the region where they overlap (the shaded
region in Fig. 9). Overlapping distance Om equals 0 when
g1max

m < g2min
m or g2max

m < g1min
m .

De�nition 7 (Degree of overlapping) Degree of overlap-
ping Dm(g1; g2) between the same dimension m of g1 and
g2 is de�ned as:

Dm(g1; g2) =
Om

Fm
(23)

There are three distinct situations:

1 Disjoint

g1 and g2 are totally separated.

Dm(g1; g2) = 0 when Om = 0 (24)

2 Enclosure

g1 is totally enclosed by g2 or vice versa.

Dm(g1; g2) = 1

when�
g1min

m < g2min
m ^ g1max

m > g2max
m ; or

g2min
m < g1min

m ^ g2max
m > g1max

m

(25)

3 Overlapping

g1 and g2 are overlapping.

0 < Dm(g1m; g2m) < 1

when�
g1min

m < g2min
m < g1max

m < g2max
m ; or

g2min
m < g1min

m < g2max
m < g1max

m

(26)

The quantity Dm serves two purposes: (1) decides
whether the repulsion exists and (2) determines the level
of force required if repulsion exists. However, it does not
reect the fact that individuals farther away from the over-
lapping subgroup should receive less repulsive force. Thus,
a proximity value is then introduced.
De�nition 8 (Proximity) For the m-th dimension, prox-

imity value Pm(g1; xm;j) is de�ned over the j-th individual
xm;j of g2 and its overlapping neighbor subgroup g1 as the
normalized distance between xm;j and the center of g1 (see
Fig. 9):

Pm(g1; xm;j) =
jxm;j � xemj

Fm
; (27)

where xem is the m-th solution fragment of the elite in g1
and Pm(g; xm;j) 2 [0; 1]. Being the driving force within a
subgroup, the subgroup elite is considered as the center.
De�nition 9 (Repulsive force) Repulsive force Rm 2

[0; 1] experienced by the binary string xm;j of g2 due to
the overlapping with g1 is de�ned as:

Rm(g1; xm;j) = Dm(g1; g2)� (1� Pm(g1; xm;j)): (28)

Finally, another quantity interaction �tness Im(xm;j; x
e)

is de�ned to indicate how well an individual performs in the
competition:
De�nition 10 (Interaction �tness) For the mth dimen-

sion,

Im(xm;j ; x
e) =

cf(xm;j ; x
e)

Rm(g1; xm;j)
; (29)

where cf(xm;j ; x
e) is the cooperative �tness of xm;j (see

Eq. 19).
Instead of feeding back cf into the system, Im should be
used:8>><
>>:

um;i = Im(xm;j; x
e) and

wm;i = 0 if bm;l�1�i = 0;
um;i = 0 and
wm;i = Im(xm;j; x

e) if bm;l�1�i = 1:

(30)

IV. Experiments

A. Basic

In this experiment, we tried four problems listed in Ta-
ble I. They are commonly used in testing global optimiza-
tion algorithms. We tried:

for R2, GP2 and H3

N = f10, 50, 90g
� = f0.80, 0.85, 0.90, 0.95g
� = 1, � = 0:4
l = 16

for S1

N = f10, 20, 30g
� = f0.93, 0.94, 0.95, 0.96g
� = 1, � = 0:4
l = 16

Tables II and III show the percentage of trials and aver-
age iterations required to get the global optima of the re-
spective functions. We obtained 100% success rate (reach-
ing the prescribed f+) on S1 and GP2 functions under
majority of our experimental conditions. Comparing the
amount of computations required, our algorithm is in gen-
eral less expensive than those listed in Table IV-A. While
for R2 and H3 functions, the low success rates for some test
conditions can be explained by their rugged landscapes and
the raise in dimensionality.

B. High-dimensionality

In this experiment, several problems with problem size
up to 100 dimensions are tried. These problems are com-
monly used in testing global optimization algorithms. Each
family of problems possesses characteristics quite di�erent
from each other. A brief summary of the test problems
used are listed in Table IV.
The results listed in Table V shows that the performance

of our algorithm is comparable with the existing advanced
techniques such as Breeder GA (BGA) [14] and Evolution-
ary Algorithm with Soft genetic operators (EASY) [21],
[22]. Both variants of GAs are said to be highly e�ective

TABLE I

Benchmark test for pBHS: Test problems

Problems n f
�

x
� #evaly

S1 1 14.5926520 0.6858609 [

R2 2 2.0000 [0 0] [

GP2 2 -3.00001 [0 -1] 492 [19]

H3 3 3.86 [0.4047 1,014 [3]

0.8828

0.8732]

S1 - Shekel, R2 - Rastrigin, GP2 - Goldstein-price, H3 - Hartman3

y: Average number of function evaluations

]: Number of iterations

[: See the entry GA in the table below.

Algorithms
Function evaluations

S1 R2 GP2 H3

MS - 1176 4400 2500

CRS - - 2500 2400

SA - - 563 1459

SAsde - - 5439 3416

HGA - - 146 191

ARS - - 492 -

NP - - 936 1014

PE - - 200] -

GA? 1185.9 3676 1644.6 972

]: Number of iterations

?: Experiments carried by ourselves.

See the following table for the experimental conditions.

-: No results reported.

MS - Multistart [17], [20]

CRS - Controlled random search [16]

SA - Simulated annealing [4]

SAsde - SA based on stochastic di�erential equations [1]

ASA - Adaptive simulated annealing [10]

HGA - Hybrid genetic algorithm [9]

APRS - Adaptive partitioned random search [19]

NP - New Price's algorithm [3]

PE - Perttunen's method [18]

GA - Genetic Algorithm

Experimental conditions for the GA test

S1 R2 GP2 H3

Population size 30 50 30 90

Mutation probability P� 1=nl , l = 16
Crossover probability P� 1.0 (Two-point)

Fitness Fitness scaling

Selection 2-Tournament

Replacement Proportional

Success rate 100%

TABLE II

Percentage of trials getting the global optimum for S1, R2,

GP2, and H3

�
S1

�
R2

10 20 30 10 50 90

0.96 100 100 100 0.95 84 100 100

0.95 99 100 100 0.90 69 100 100

0.84 100 100 100 0.85 56 97 100

0.93 98 100 100 0.80 44 94 98

�
GP2

�
H3

10 50 90 10 50 90

0.95 100 100 100 0.95 100 98 100

0.90 100 100 100 0.90 95 96 98

0.85 99 100 100 0.85 83 92 98

0.80 99 100 100 0.80 74 90 95

TABLE III

Average number of function evaluations required to reach

the global optimum for S1, R2, GP2, and H3

�
S1

�
R2

10 20 30 10 50 90

0.96 1,236 1,908 2,510 0.95 1,260 4,565 6,993

0.95 1,001 1,600 2,174 0.90 704 2,695 4,023

0.94 915 1,444 2,039 0.85 514 1,925 3,006

0.93 825 1,331 1,800 0.80 398 1,530 2,412

�
GP2

�
H3

10 50 90 10 50 90

0.95 951 3,100 4,653 0.95 709 1,181 1,547

0.90 590 1,890 3,042 0.90 434 724 959

0.85 405 2,420 2,331 0.85 330 555 766

0.80 329 1,125 1,872 0.80 274 458 563

yet as a general model for evolutionary algorithms. How-
ever, the performance of the algorithm on the Shekel fam-
ily is comparatively poorer than those from the existing
techniques. We attribute this poor performance as their
golf-hole-like landscapes. The �gure shows that S5 has 5
prominent optima resting on a plateau, all of which has
similar basin of attraction. Landscapes of this kind pro-
vides no useful information for guidance. The reason why
the successful rate drops from S5 to S10 is due to the raise
in the number of prominent optima. This problem will be
catered in the next test (see section IV-C).

C. Deception

Our algorithm is demonstrated to be able to solve some
of the GA-deceptive problems such as Goldberg's bipolar
deceptive function (see [13] for details).
Besides handling GA deceptive problems, our algorithm

can also handle problems with golf-hole-like landscape such
as those in the Shekel family|S5, S7 and S10. The land-
scapes of these three functions share a commonality: sev-
eral sub-optima with similar basin of attractors sitting on
a large at plateau. The sizes of these attractors are so
similar that no useful information can be obtained about

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Su
cc

es
s r

ate

Number of subgroups

Shekel S5: Success rate

’S5’

(a)

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8

Fu
nc

tio
n e

va
lua

tio
ns

Number of subgroups

Shekel S5: Average number of function evaluations

’S5’

(b)

Fig. 10. Shekel family S5: (a) Graph showing the e�ect of di�erent
number of subgroups on the percentage of runs getting the global
optimum. (b) Graph showing the computational expenses on
using di�erent number of subgroups.

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Su
cc

es
s r

ate

Number of subgroups

Shekel S7: Success rate

’S7’

(a)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8

Fu
nc

tio
n e

va
lua

tio
ns

Number of subgroups

Shekel S7: Average number of function evaluations

’S7’

(b)

Fig. 11. Shekel family S7: (a) Graph showing the e�ect of di�erent
number of subgroups on the percentage of runs getting the global
optimum. (b) Graph showing the computational expenses on
using di�erent number of subgroups.

TABLE IV

Benchmark: Test problems

Problems] n f
+ #eval Ref.

S5 - Shekel 4 9.9 5,403 ?

S7 - Shekel 4 9.9 5,386 ?

S10 - Shekel 4 9.9 5,862 ?

H3 - Hartman 3 3.86 1,014 ?

A30 - Ackley 30 0.001 13,997/19,420 y

A100 - Ackley 100 0.001 57,628/53,860 y

R20 - Rastrigin 20 0.9 6,098/3,608 y

R100 - Rastrigin 100 0.9 45,118/25,040 y

]: see Appendix ?? for the description of the problems

?: A clustering technique: New Price's algorithm [3]

y: EA with soft genetic operators/Breeder GA [EASY/BGA] [21]

f
+: Function values at which the algorithms stop.

#eval: Number of function evaluations.

TABLE V

Benchmark test: Results

Problems f
+ attained #eval %z Conditions�

S5 10.004523 12,476.40 34% �=0.97 N=50

S7 10.100106 13,168.60 29% �=0.97 N=50

S10 10.126623 13,909.30 14% �=0.97 N=50

H3 3.861696 755.80 100% �=0.90 N=30

A30 -0.00078 18,679.68 100% �=0.40 N=40

A100 -0.00074 58,216.17 90% �=0.35 N=40

R20 -0.48987 5,413.22 100% �=0.45 N=40

R100 -0.54718 45,194.86 100% �=0.45 N=40

z: Percentage of runs reaching f
+ stated in Table IV.

�: 100 independent consecutive runs, l = 16.

the location of the global solution.

The performance of our algorithm with G = 1 is shown
in Table V, while the experimental conditions are listed in
Table VI. The purpose of this experiment is to illustrate
the usefulness of redundancy with competition in improv-
ing the pcBHS model. Moreover, we examined the e�ect
of di�erent number of subgroups on the algorithm perfor-
mance for these problems. The result is listed in Table VII.
It shows clearly that by increasing the number of subgroup,
the success rate can be increased.

V. Conclusion

In this paper, a new iterative stochastic searching al-
gorithm called probabilistic cooperative-competitive binary
hierarchical search (pccBHS) is proposed for global opti-
mization. It is proposed to complement for the insu�-
ciency of existing algorithms by providing resolution con-
trols, smoothing of search space and introducing memory
into stochastic search. Two key ideas of nature has been
used in the algorithm: cooperation and competition. Deal-
ing with high-dimensional functions, we have adopted a
decoupling scheme. This decoupling scheme improves the

TABLE VI

Shekel family: Conditions

Problems f+ G Conditions]

S5 9.9 1,2,3,4,5,6,7,8 N = 100

S7 9.9 1,2,3,4,5,6,7,8 N = 100

S10 9.9 1,2,4,6,8,10,12,14 N = 140

]: 100 consecutive independent runs, � = 1, � = 0.05

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Su
cc

es
s r

ate

Number of subgroups

Shekel S10: Success rate

’S10’

(a)

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14

Fu
nc

tio
n e

va
lua

tio
ns

Number of subgroups

Shekel S10: Average number of function evaluations

’S10’

(b)

Fig. 12. Shekel family S10: (a) Graph showing the e�ect of di�erent
number of subgroups on the percentage of runs getting the global
optimum. (b) Graph showing the computational expenses on
using di�erent number of subgroups.

algorithm signi�cantly on solving high-dimensional func-
tion.

Competition has been introduced to level o� the strong
exploitation e�ect. By competition, we mean the use of
multiple number of populations to search separately while
keeping a repulsive force among them. In this way, each
population can search in high speed to exploit the informa-
tion gathered and at the same time maintain the solution
quality by searching diversely. Furthermore, this compe-
tition model has one advantage over existing techniques
that is it does not need a pre-de�ned radius which inher-
ently limits the algorithm from �nding optima in di�erent
resolutions simultaneously.

Comparing the performance of ours with the existing
algorithms, we have the advantage of versatility and com-
putationally more economical.

TABLE VII

Shekel family: Results

S5

G % f+ #eval

1 32 10.030556 1,860.6

2 55 10.023210 5,323.7

3 68 10.012363 6,331.0

4 86 10.021969 7,487.6

5 87 10.011920 9,519.9

6 92 10.013254 11,991.6

7 99 10.009583 11,196.6

8 97 10.013743 12,717.8

S7

G % f+ #eval

1 31 10.171804 1,659.3

2 47 10.113239 4,885.9

3 66 10.121162 6,179.5

4 74 10.113394 6,841.3

5 89 10.145635 9,574.2

6 92 10.117482 9,579.1

7 95 10.098005 11,826.0

8 99 10.100353 10,845.1

S10

G % f+ #eval

1 19 10.358868 2,170.7

2 31 10.189666 5,868.7

4 53 10.194831 7,526.4

6 74 10.135957 11,811.3

8 88 10.194929 13,040.2

10 97 10.169039 13,717.1

12 99 10.164886 13,560.0

14 99 10.173139 12,858.3

f+: Average function value reached

#eval: Number of function evaluations

%: Success rate

Appendix

I. Algorithm*

References

[1] F. Alu�-Pentini, V. Parisi, and F. Zirilli. Global optimization
and stochastic di�erential equations. Journal of Optimization
Theory and Applications, 47:1{16, 1985.

[2] D. Beasley, D.R. Bull, and R.M. Ralph. An overview of ge-
netic algorithms: Part 1, fundenmental. University Computing,
15(2):58{69, 1993.

[3] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi.
A new version of the price algorithm for global optimization. J.
Global Optimization, 10, 1997.

[4] A. Dekkers and E. Aarts. Global optimization and simulated
annealing. Mathematical programming, 50:367{393, 1981.

[5] D.B. Fogel. An introduction to simulated evolutionaryoptimiza-
tion. IEEE Transactions on Neural Networks, 5(1):3{14, 1 1994.

[6] D.E. Goldberg.Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

Algorithm 1 The information processing cycle

Procedure InformationProcessingCycle
global environment Empty
While stopping criteria are not met
Loop

For each searching agent do
search result Search(global environment)

End For
global environment Modify(collection of search result,

global environment)
End While

End Procedure

Algorithm 2 pcBHS - Cooperative fitness assign-

ment and local elites updating. This procedure assigns
�tness (cooperative �tness) to all solution fragments. In
each subpopulation, if the best fragment is better than the
elite fragment x0em, it becomes the new elite fragment. It
should be noted that the current elite xe is not changed in
this procedure.

Procedure CoopEvaluation

For each subpopulation Pm; 0 � m < n

/* x0em: Elite fragment of the m-th subpopulation */
x0em xem
For each solution fragment xm;i in Pm

x replace the m-th element of xe by xm;i

cf(xm;i; x
e) F (x)

if cf(xm;i; x
e) > cf(x0em; x

e) then
x0em xm;i

End if

End for

End for

End Procedure

[7] J.H. Holland. Adaptation in Natural and Arti�cial Systems. The
University of Michigan Press, 1975.

[8] R. Horst and P.M. Pardalos. Handbook of Global Optimization,
page 832. Kluwer Academic Publishers, 1995.

[9] M.F. Hussain and K.S. Al-Sultan. A hybrid genetic algorithm
for nonconvex function minimization. Journal of Global Opti-
mization, 11:313{324, 1997.

[10] L. Ingber. Simulated annealing: Practice versus theory. Journal
of Mathematical and Computer Modeling, 18(11):22{59, 1993.

[11] S. Kirkpatrick. Optimization by simulated annealing: Quanti-
tative studies. J. Statistical Physics, 34(5{6):976{986, 1986.

[12] S. Kirkpatrick, C.D. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671{680, 1983.

[13] K.S. Leung, Terence Wong, and Irwin King. Probabilistic
cooperative-competitive hierarchical modeling as a genetic oper-
ator in global optimization. In Proc. 1998 Intl. Conf. Systems,
Man, and Cybernetics (SMC'98), 1998.

[14] H. M�uhlenbein and D Schlierkamp-Vosen. Predictive models for
the breeder genetic algorithm, i. continuous parameter optimiza-
tion. Evolutionary Computation, 1(1):25{49, 1993.

[15] M.A. Potter and K.A. De Jong. A cooperative coevolutionary
approach to function optimization. In Y. Davidor, H-P Schwefel,
and R. Manner, editors, Parallel Problem Solving from Nature
III. Springer-Verlag; Berlin, Germany, 1994.

[16] W.L Price. A controlled random search procedure for global op-
timization, pages 71{84. North Holland, Amsterdam, 1978.

[17] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic methods
for global optimization. American Journal of Mathematical and
Management Sciences, 4(1), 1984.

[18] B.E. Stuckman and E.E. Easom. A comparison of
bayesian/sampling global optimization techniques. IEEE Trans-

actions on Systems, Man, and Cybernetics, 22(5):1024{1032,
1992.

[19] Z.B. Tang. Adaptive partitioned random search to global
optimization. IEEE Transactions on Automatic Control,
39(11):2235{2244, 1994.

[20] A. T�orn and A. �Zilinskas. Global Optimization. Lecture Notes
in Computer Science. Springer-Varlag Berlin Heidelberg, 1989.

[21] Hans-Michael Voigt. Soft genetic operators in evolutionary al-
gorithms. In W. Banzhaf and F.H. Eeckman, editors, Evolution
and Biocomputation. Berlin; New York: Springer, 1995.

[22] Hans-Michael Voigt and Anheyer Thomas. Modal mutations
in evolutionary algorithms. In Proceedings of the First (1994)
IEEE Conference on Evolutionary Computation (ICEC'94).
IEEE World Congress on Computational Intelligence, pages 88{
92. IEEE; New York, NY, USA, 1994.

