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with this simple image-based approach is the loss of the temp
Video is a unique multimedia data type, in that it comes with ~ ral information inherentin a video sequence. Even when the ke
distinguished spatio-temporal constraints. Content-based video re-  frames or surrogates have been used to identify probable scer
trieval thus requires methods for video sequence-to-sequence match-  that may be similar to an input query, a human observer is sti
ing, incorporating the temporal ordering inherent in a video se-  required to manually verify if the returned sequences are actt
quence, without |05ing Slght of the visual nature of the information a”y similar to the guery sequence. Considering the |arge numbe
in the sequence. Such methods will require reliable measures of 4t sequences in typical video databases, effective and efficie
i;]r:'la”g bew}'ee.g the video sequences. In this paﬁer’ we formma“_’ methods are still required to perform such verifications automa
problem of video sequence-to-sequence matching as a patterm- ;. g\,ch methods will certainly call for reliable measures of
matchlng problemand propose the vstring edit distance asa suitable the similarity or difference between video sequences
distance measure for video sequences. 1999 Academic Press - . .

The spatio-temporal constraints that accompany video dai
types are one of the unique characteristics of video informatior
The importance of the temporal constraints has led to recel
efforts to incorporate them in video retrieval. The question is
In general, content-based video retrieval is concerned with tﬂ%"v to capture suph |mp0rt§mt video chgracterlstlcs for use i

q)ntent-based retrieval. For instance, motion cues between ad

indexing and retrieval of video information based on the actul ; h b 4 for vid ioval [12. 19, 34
contents of the video sequence. The first stage of this proces%qﬁt rames have been proposed for video _retrleva_[ S
ers have tried to model the temporal information directly

the initial partitioning (segmentation) of the video data into itgt . X .
constituent scenes and the identification of the various editi g treating the video data in its n_atural form—as an o rdere
effects in the video [3, 18]. The next stage involves the analy§ quence O.f frames [, .7’ 33]. This Ie{;\ds Q|rectly to video se
of the individual scenes to provide further information for fineduence similarity matching, whereby video is treated as a.terr
grained access to the digital video. One such analysis res@ga”y ordered sequence, rath_er t_han_as a mere collection

in the generation or selection of representations for each vid8pges. Video sequence matchmg Is primarily motivated by 'Fh'
scene. Atypical representation used here is the video key frar%a.q'cal need to Incorporate the '”heref“ temporal constrain
Others are compact representations, such as video mosaics |,deo sequencesin content—pased ret.neval. Result_s ”F’m su
layered representations [24], and super resolution frames [ "endeavor will b.e equally 9f mter.est n othgr ap'phca.non an
Further stages of the retrieval process could involve the clasef: su_ch as music and aUd'(.) ret_neval,_ me_d|cal 'maging .[28
fication or clustering of the partitioned video, based on cert omedical monitoring [32], chime mv_estlgatlon (copyrlgh_t n-

characteristics of the scenes, such as motion complexity or Hggement), and TV broadcasting. With the new popularity of

activity in the scene [2, 12]. From these, it could then becorﬁ@plications involving content-based access to digital videc

possible to address the more difficult problem of semantic accé(é%eo sequence matching stands to play a more important ro

to the video content [12] In various areas in modern-day computing.

So far, however, the problem of matching video sequences-rhe_rnethod used to address the video sequence similarit
for possible similarity has attracted little attention. The curreffatching prr]oblem general:z/ dgpends on_fthhe te_((:jhmqu;e used_
methods are generally based on the use of the above represéﬁﬁ{gsem the sequences. For instance, If the video informatic
tions (such as the key frame) as an image, and then using im a given sequence is treated as a time series signal, then ide

matching methods to compare the scenes [13, 23]. The probl time series analysis can be used to compare two such si
nals. Chang and Lee [9] used the bounding box approach 1

model transitions between frames and defined some similarit

) ) measures based on the bounding box representation. Anotf

* This work was supported in part by RGC Grant CUHK H164/97E, UGC ethod with which the information in a video sequence can b
Direct Grant (Project 1D 2050192), RGC Hong Kong CUHK 4176/97E and ISF with which the | lonin avi qu

Hong Kong AF/17/95. captured is the string representation. Here, the video sequen

1 Corresponding author. as described by a sequence of feature values is transformed ir
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26 ADJEROH, LEE, AND KING

a sequence of symbols. For a given feature, this will involsbe vstring distance. Normalizations for the vstring distance a

the initial transformation of the real-valued feature values intdescribed in Section 5. Experimental results are presented

some discrete classes. Each symbol in the string will repres&uaction 6.

a class, and the set of all symbols will form the alphabet. Thus,

the total number of symbols (the alphabet size) will depend on2. VIDEO SEQUENCE MATCHING AND STRING

the number of classes used. We call such a representation of the PATTERN MATCHING

video sequence\ddeo string or vstringfor short. Yazdani and

Ozsoyoglu [33] defined some statistics based on the lengths oPeriniTion 1. A video sequencis a set of temporally or-

image sequences and used them for image sequence matcifiaged scenes. Aceng(or sho) is a set of frames between two

Adjeroh, King, and Lee [1] described the general problems #&#ljacent scene breaks, as may be caused by camera operat

video sequence similarity matching and proposedvsteing (Such as a cut), or by special effect operations—such as a fe

as an appropriate representation for the video sequence wheslissolve. The number of frames in a scene depends on |

the objective is similarity matching. In this paper, we propostpecific contents of the scene. A vidieameis simply a single

a similarity measure for video sequences based on the vstrifiige. A frame can be divided into different subparts. When

representation. frame is so divided, we use the tesubframeto denote any of
Syntactic/structural pattern recognition is an area that wie subparts. We assume that whenever a frame is divided,

pioneered by Fu [6, 14, 15] and has found applications in testbframes are all equal in area.

ture analysis, shape recognition [29], and image retrieval [9, 8]'Given a query video sequence and a database of video

Extensions into the 3D and higher dimensions have also bptﬁﬂences, theideo sequence-searching problento find one or

propgsed [8, 14]. In genera_l, the_maml objective is to model t f the occurrences of the query video sequence in the databz
physical structure of the objects in an image. Though these a e problem then is to search the entire video database for t
lead to a string representation, the vstring representation is qg'quested query video sequence, producing a list of the positic
ferentin terms of the basic primitives from which itis generated, .« jatabase sequence wheré a match starts (or ends). W
Rather than the physical objects, the index feature values fofi, b ohjem is exact matching of the sequences, it is not diffict
the basis for the vstring representation. The vstring models tl%ecompute some simple statistics with which the matching ce
basic_ transitionbetyveerimage sequences, Wi,th no special ©Mbe performed. Exact matching is, however, not very suitable
pha§ls on 'the spatlgl or.struc'gural relgtlonshlp betvyeep objefiSitimedia information systems, especially those involving vi
within the images. Like in ordinary strings, the vstring is a S&ual data. A more useful variant of the problem is that of vide

quence of symbols. The symbols in the vstring are, hOWeveg, ,,encaimilarity searchingvhich will in turn depend on the
generally multivalued, rather than the simple presence/abseﬁg&hods for video sequensanilarity matching
symbols encountered in other strings. Moreover, to account for '

the various visual cues with which the video information can 21. The Problem

be analyzed, vstrings are typically multidimensional. Further, to

model the special functions involved in digital video, new edit Since we are often more interested in similarity (rather tha
operations are required for the vstring. One advantage of ¥act) matching, there is need for some measure to indicate |
vstring representation is that, with appropriate modificationdegree of similarity between two sequences. Let given two vide
the problem of video sequence similarity matching in multim&eduences andB be represented by thep-feature values at
dia information retrieval can be turned into the more familig#ach of the temporal indicésandr,

problem of approximate string matching. Techniques for ap A = [a(t). at), ..., a1,

proximate string matching can then be used for video similarity (1)
comparison. However, the major problem of computational com- B = [ba(r), bao(r), ..., bp(N)]T,

plexity for traditional approximate string matching will also have

to be addressed for the video string representation. Fast metherer =0,1,2,...,n;t=0,1,2, ..., m, x' stands for trans-

ods for general pattern matching is an area that has long bgese ofx. Given some possible variations in thdeatures from
investigated, especially for exact pattern matching [20]. Equiv&-and/orB, the problemis to find amapping A x B x 6 — %,
lently, fast algorithms have been proposed for approximate strigigch thatf is independent afi, mthe sequence lengths and still
matching [21, 22, 30]. A general review of fast pattern matchimgbust under the variations, as capture@bWe should be able
algorithms is presented in [10]. to normalize the resulting values 6fto some given ranges, for
In this paper, we focus on devising a suitable similarity me@stance [0 1], such that the degree of similarity increases ur
sure for video sequences. The next section describes the gerferahly from the minimum value (perfect mismatch) to the max
problem of video sequence matching, the vstring representationum value (perfect match). Different measures can be used
and the concept of string pattern matching. In Section 3, thehieve the required mapping. The measure could be a dista
vstring edit distance is proposed as a distance measure for vifl@action or a similarity function and need not necessarily be
sequences. Section 4 presents an alternative method to commeéic. Whether the two sequences are similar (matches) or r
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will then depend on some predefined threshold of similarity. Tloe do not appear in the string, and two different symbols are a:
threshold can be chosen based on the application, or it maysoened not to have much else in common. For the vstring, whe
stipulated by the user. the symbols are taken from an alphabet obtained from the cla

ConceptuallyA can represent the entire database, while sification of real-valued features, it is safe to assume that neart
is just a short query sequence. Here, we would be interestectiasses are related. Thatis, a feature value that belongs to the fi
knowing if there exists any subsequencefothat is similar to class is nearer to another feature value that belongs to the secc
B. The problem of exact video sequence matching is thus eagilgiss than to one that belongs to the last class (assuming mc
handled by an appropriate choice of the threshold. Three baian two classes). This implies that the symbols in the vide
types of matching can be identified in video sequence matchisgring will be multivalued. This modification is needed to im-
prove the accuracy of the similarity measurement using vstring
and will have some important implications in defining distance:s
between video strings. For some other types of classificatio
(e.g., semantic classification of the sequences) the symbols c
Rg treated as the traditional presence/absence symbols.

The advantage of the vstring representation is that it is fairl
general—we can represent different types of video scene cla

The case of sequence-to-scene matching is handled by simgifications using string sequences. For instance, we can eas
assuming that the database sequence is the longer of the tlessify, based on some semantic descriptions or using quan
sequences. This has no effect on the actual matching procéasve features from the video [1], motion vectors, angles, colol
We observe that (ii) is a generalization of (i) and will maketc. More importantly, the vstring representation provides al
use of the methods for (i). Similarly, (iii) is a generalizationntuitive method to model various characteristics and phenom
of (i) and its solution will depend on the solutions to (ii). Theena observed in a video sequence—such as repetitions, rever
basic problem, thus, is finding solutions to (i): the scene-to-scefast forward, and video scene breaks. Example 1 taken from [

(i) scene-to-scene matchirgheck if two scenes are similar;
(ii) scene-to-sequence matchimtpeck if a scene similar to
the query scene occurs in the database sequence;

The query can contain more than one scene.

matching problem. shows how the basic video scene transitions such as fast forwal
slow motion, reverse, and partial reverse can be modeled by tl
2.2. The vString Representation vstring representation.

The vstring describes the sequence of feature values from theEXAMPLE 1. (sVstring representation for different video transit-

video as a sequence of symbols. Each symbol in the string r?@ﬂs). The symbols, b, c, etc. represent the different classes
resents a class and the set of all symbols form the alphabet. Wg which the feature values are grouped. A video frame is repre

a nonuniform distribution of the feature values, an equiprobabggmed by a symbol. The special margatands for video scene
classification will require knowledge of the probability distribu ) '

tion of the feature values. If we assume an equiprobable distribu-
tion for the feature values (i.e., all the symbols in the alphabet £pgiginal sequence aaabbbcccdddeee$vvvxxxyyy
equally probable), a simple method that can be used to transquggt forward:
the features into vstrings is the simple uniform quantization. skip=1: speed= x2: aabccdee$vxxy
Let = be the symbol alphabef,, be a feature value, andskipzz: speed= x3: abcde$vxy
max f, and minf, be the respective maximum and minimungkip:& speed= x4: abce$vy
values for a given index feature. The quantization step size Is

given by Slow motion:
f in f speed= % original speed: aaa aaa bbb bbb ccc ccc ddd ddd
_ maxt, —mint ) eee eeeBvvVv VWV XXX XXX YYY YYY
1z speed= ;11 original speed: aaa aaa aaa aaa bbb bbb bbb
The quantization level to which a givefy belongs is then ob- bbb... eee eee eee eee$vvv
tained using: VWV VWV VW .

q(f) =i f(i-1)-A<f<i-Ai=12. .5 @) Reverse: yyy xxx vvv$eee ddd ccc bbb aaa

] o _ Partial reverse (due to video editing):
If a feature value belongs to tith quantization level, we assigncgge 1- bbbcccanddddeedransposed: aaa dddeee bbbece

theith symbol to it. For multiple features, we may have differ- $ VWVXXXYYY
ent classifications, leading to multiple alphabets, with possibly;ge 2- bbbandvvvtransposed: aaa $vwcecdddee
different cardinality. In such a case, we will have multidimen- e$ bbb $ xxxyyy

sional video strings, with the strings from each feature forming a
dimension. Usually, symbols in traditional text strings are taken Note Spaces between symbols are inserted only for clarity
as presence/absence symbols—that is, the symbols either appearpartial reverse, the first, second, and fourth scene breal
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in Case 2 are required since the edit operation involved twe more than one edit sequence that transforms s#imgo
different scenes. In Case 1, the editing involved only frames étring B. Let Sy, g represent the set of all edit sequences the
the same scene. Fast reverse is very similar to fast forward. transformAinto B. The edit distanc® (A, B) is determined by

] . o using the edit sequence with the minimum cost, that is,
2.3. String Pattern Matching and Edit Distances

Given a database strinyand a query string (the patterB) D(A, B) = min{c(S) | Se € Sa-s}- (5)
the string pattern matching problem is to find the first occurence ' ' '
(or all occurences) oB in A. Approximate pattern matching is\We can constrain the cost for each edit operatibn— y) to

a variant of the pattern matching problem in whiclsymbol be a distance metric by ensuring the following conditions ar
differences can be allowed in the match. That is, a symbol cakvays met:

be in A but not in B, or a symbol can be iB but not in A, () cx—y)=0 (nonnegative);
and A and B can differ in certain positions, but the number of (i) ¢(x—x)=0 (reflectivity);
positions where they differ should not be more thaithe dis- (i) c¢(X—y)=c(y — X) (symmetry);
tance between two strings is traditionally calculated using the(lV) ¢(X—Yy)<c(x—2)+c(z—y) (triangular
string edit distance. inequality).

DEerFINITION 2. Given two string®\: a;a, - - - &, andB : byb, With the above constraints and since the edit distance w

.- bm, over an alphabeX, a set of allowed edit operations, anclways sellect the path with the minimum cost, it is easy to pro
a unit cost for each operation, tedit distances the minimum the following lemma.
number of edit operations required to transform one string into ...\ 1.

If c(x — y) is a metric, the edit distance ([, B)
the other.

between strings A and B is also a metric. That ifADB) >
2.3.1. Edit Operation %(CD(Q) A)=0; D(A, B)=D(B, A); D(A,B)<D(A,C)+

Derinimion 3. Anedit operationusually written asX — y), Wi hat th . ¢ . v f
is a pair &, y)# (e ¢), of strings wherelx| <1 and|y| <1 e note that the requirement for a metric is only for conve

¢ represents the zero-lenath emoty svymbol). When we a \A})enge, but not a necessity. For in.stancg, with symmetric cos
(e rep g Pty Sy ) p;ﬂ e will not need to worry about which string is used as the quel

the edit operationX — y) on an input stringS to obtain an i ; :
output stringSy, we say the input strin@ is transformed into strmg or the d_atabasg SF””Q- On the oth_er hand, the_requ_lreml
for triangular inequality is often not met in most multimedia re-

the output strindSo, via the edit operationx(— y). Or simply

thatx is transformed inty. That is, there exist some strin§s trieval environments. The edit distance betwéena,a, - - - an
andS,, such thalS = SXS andSo = SLy'S andB : byb, - - - by is usually determined by use of some recur

rence relations [26, 31]:
With the above definitionx andy are constrained to be sin- initializations
gle symbols. Three basic types of edit operations are used:

ins—insertion of a symbol,¢— a); del—deletion of a sym- Do, =0,

bol, (a— ¢); andsubs—substitution of one symbol for another

(a— b). To any given edit operatiorx(~ y), a costc(x — y) Di.o = Di—10 + agel(@),
is assigned. The value of the cost is determined by use of a Do,j = Do j—1 + ains(bj);

weighting function.

. _ main recurrence
2.3.2. Edit Sequences and Edit Distance

DeriniTion 4. An edit sequencéor edit path) is an ordered Di-1j + adei(@) (deletion)
set of edit operations that transforms one string into another.  D; j = min{ Di_1,j_1 + asud@, bj) (substitution)
To transform a stringA into another stringd, one will typ- Di,j—1 + ains(bj) (insertion)

ically need to apply different edit operationS: =55, - - §,

wheres € {ins, del, subg. The cost of a given edit sequenceVhere 1=i <|A|=n; 1< | <|B[=m; agel, eins, aNdasupsare

is determined by the cost of the individual edit operations théte respective cost of deletion, insertion, and substitution ec

make up the sequence: operations. Example 2 below shows the edit distance betwe
two strings, for two different cost functions,

| . . .
o(Se) = ZC(S)’ s e {ins, del, subs (4) ExampLE 2. Edit distance between two sets of strings us

ing two different cost functionsr = [agel @ins asund =[1 1 1];

ande =[1 1 2]. Table 1 shows the computation procedure. Th
The costis independent of the order in which the constituent edighlighted path (underlined and bold) represents one of the pc
operations are applied. Given two stringsand B, there may sible minimum cost edit sequences. For (a), the path correspor

i=1
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TABLE 1
Edit Distance between Two Sets of Strings and for Two Different Cost Functions
A=[1,2,1,2,2,2],B=[2,1,2,1,1,1]; A=[1,2,1,2,2,2],B=[2,1,2,1,1,1];
a=[1 1 1]; D(A, B)=4 a=[1 1 2];D(A, B)=6
B B

D € 2 1 2 1 1 1 D & 2 1 2 1 1 1

& 0 1 2 3 4 5 6 € 0 1 2 3 4 5 6

1 1 1 1 2 3 4 5 1 1 2 1 2 3 4 5

2 2 1 2 1 2 3 4 2 2 1 2 1 2 3 4
A 1 3 2 1 2 1 2 3 A 1 3 2 1 2 1 2 3

2 4 3 2 1 2 2 3 2 4 3 2 1 2 3 4

2 5 4 3 2 2 3 3 2 5 4 3 2 3 4 5

2 6 5 4 3 3 3 4 2 6 5 4 3 4 5 6
(@ (b)

A=[2,3,1,2],B=[1,2,3,1,3,1,3]; A=[2,3,1,2],B=[1,2,3,1,3,13];
a=[1 1 1]; D(A, B)=4 a=[1 1 2];D(A, B)=5
B B

D e 1 2 3 1 3 1 3 D & 1 2 3 1 3 1 3

& 0 1 2 3 4 5 6 7 € 0 1 2 3 4 5 6 7

2 1 1 1 2 3 4 5 6 2 1 2 1 2 3 4 5 6
A 3 2 2 2 1 2 3 4 5 A 3 2 3 2 1 2 3 4 5

1 3 2 3 2 1 2 3 4 1 3 2 3 2 1 2 3 4

2 4 3 2 3 2 2 3 4 2 4 3 2 3 2 3 4 5
(c) (d)

Key:
ins
subs
del
to the alignment: similarity between strings include the longest common subse
quence (LCS), counting, and scoring functions.
1112(112]2]2] |
| 1211212101 3. THE VIDEO STRING EDIT DISTANCE

This represents 1 deletion, 2 substitutions, and 1 insertion, corMotivated by the traditional methods used in the video edit:
responding to the following edit operations: delete(1) in A, suling process—assemble and insert editing [11], and the edit di
stitute(2, 1), substitute(2, 1), insert(1) in A. The highlighted ediince used in string pattern matching, we propose a method f

path in (c) corresponds to the alignment: matching video sequences. The technique is suitable for bo
frame-by-frame sequence representation and comparison a
| 1213]1112] | | for shot-by-shot comparisons. We call the resulting similarity

indicator thevstring edit distance
Thevstringedit distance is based on an intuitive idea. Given
This corresponds to the operations: insert(1) in A, substituttvél0 video sequences (now represented by their vstrings), w
(2. 3), insert(1) in A, insert(3) in A. as_sumethatatsomelnltlal state the two sequences were the sg
(with no difference) and that the current state of the sequences
The above recurrence implies that@fmn) time is required a result of zero or more video editing operations. Here, by vide
for the edit distance. Some other measures used to evaluatedtthi&ing, we refer to the process of arranging individual frames

1112131113/ 1/3]
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shots, or sequences into an appropriate order [11]. In additiorDeriniTion5.  ThevString edit operationwrittenasg — v),
to the possible temporal rearrangements, our notion of vidsoa pair &, y) # (¢, &) of strings, wheréx| > 0 and|y| > 0. That
editing also includes possible changes in the aatoatentof s, rather than mere single symbolsy (the input and output of
the frames making up the shots. The string edit distance tike operation) there could be strings with more than one symb
been used in various applications, such as spell checking ancf. . I . .
) . his modification becomes important when we consider son

DNA sequence matching. When the problem is content-based . . : : . .

- . . . - -new edit operations required for video strings, especially tho:
access to digital video using the vstrings, the traditional strin

edit distance is, however, inadequate to capture the similartlﬁ At act on blocks of symbols, such as teck-swagor fusion

between the vstrings. The limitations can be illustrated Witho eration. For the vstring, we extend the traditional edit distan

. ) by defining some new edit operations, nam&hiap/transposi-
simple hypothetical example. tion, break, and fusion/fissiarperations. Generally, for a given

ExavpLE 3.  Assume we have three sequences all of the salEHQhabaEfZ: the vstring edit operatio®, can be represented as
length. Assume further that each has been transformed intofe= {, O: i-€.,insertion a=¢, be X; deletion ae %, b=¢;
respective vstring: v1, 11111; v2, 33333; v3, 88888, using gHPstitutiona, be X;swapa, be X*; fusiona, b e X*; break
alphabetsize of & = {1, 2, 3, . .., 8}. Practically, thiswill cor- & P€R, whereX ={s, $}, RN¥ =0, ¥ is the vstring alpha-
respond to an all-black frame sequence, frame sequences Wik and=" stands for any combination of symbolsin We can
some shades of grey: and an all-white frame sequence. WHgN Use the new edit operations and adopt an approach sim
the traditional string edit distance, all the sequences will 6@ tha_it used for traditional edltdls_tances_to define a correspon
equally distant (an edit distance of 5, using a unit cost for ealf}§) distance measure between video strings. The three new ¢
edit operation). In terms of visual content, however, v1 will b@Perations are described below.
observed as being much closer to v2 than to v3. The traditionak,p, |nterchange two symbols (or blocks of symbol) in

string edit distance as described previously cannot capture Sugl of the strings:abcde— adcbe abdc— adbce ¢ranspose
content-dependent details. bandd); abdc— cbda ¢ransposea andc). We note that in

video, apart from the temporal positioning, the actual conten

It is then obvious that traditional string edit distances will be the frames in the sequence are also important in assessing
inadequate to cope with video strings. First, the above contentg hilarity between sequences. Thus, the transposition operat

quirement implies that the symbols in the video string wil hav\%i” be useful in handling the special transitions such as a pa

some meaning (rather than traditional presence/absence S%ﬂ]'reverse, primarily caused by video editing (see Example 1

bols used in text or DNA strings). This further implies thatvidecr ough the temporal ordering may not be the same in the
string edit distances will have to contend with the values attach ;Eses the contents of the scene may still be viewed as simi

tothe.s.ym_bolsmthe alphabet. Thevaluetyplpallydepends N the human observer, since the frames basically contain t
classification method adopted and the particular features fr e information

which the vstring is derived. Second, the three basic edit oper- |

ations (ns, del, subpwill not be adequate in modeling certain The swap/transposition edit operation can be characterized
characteristics found in the vstring, such as repetitions. Furthiée size of the strings to be swapped, the number of symbols st
the cost of a video string edit operation will typically be affectedrating them in the database string, and the number of symb
by the parameters of the edit operation. For instance, the cosseparating them in the query string. This is illustrated by
some operations will depend on the number of symbols in their i

. . . AS Ay S

input and output strings. We therefore need to make appropri-

ate considerations with respect to the special nature of vstrings,

the unique characteristics of video sequences, and the different B:S Aq S
types of transitions that may occur in such sequences. S and S are the strings (not necessarily single symbols, i.¢
S| > 1, || > 1) to be swappedyq is the number of symbols
3.1. vString Edit Operations separating them in the database string, Agds the correspond-
Video sequences often involve special video edit operatio'r%“] size of the separation in the query string. Depending on t

(such as those used to produce special effect transitions), Sv(}lues ofAq andA,, we can define three variants of the sway

cial video functionalities (such as fast forward/reverse), or someIt operation:

form of frame skipping (used to improve the speed of process-A-swap: Aq = Aq = A; the swap operation can be applied tc
ing). To account for the differences that may arise from thesay of the sequences (the database or the query) at the same
unique aspects of video, new edit operations are required in cofins is also called &ranspositionoperation.

puting the edit distance between two video sequences. For the\g-swap: Agq < Ag; the swap operation will be applied to the
vstring distance, we need to make a slight modification to tliatabase string.

definition of an edit operation. We relax the constrajrf £ 1, Ag-swap: Aq < Ag; the swap operation will be applied to the
|yl < 1) onthe length of the strings involved in the edit operatiomuery string.
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In all cases, swapping is performedeitherthe database or theto both strings and this can be done offline, before starting th
query string (but not both), depending on the one that will residbmparison. In the subsequent sections, we shall use only fusi
inthe minimum cost. The formulation above is fairly general. Fdor the fusion/fission operation.

instance, in [21]S| = |$| =1 in all cases, and transposition is _

only valid for adjacent symbols\y = Aq =1). With the above ~ BREAK. Break inserts or deletes a scene break between two
formulation, however, we can introduce a new edit operati@ljacent symbols: insert break ab— a$h delete break
needed for video strings—ttock-swapoperation. Unlike the @$b— ab ($stands for a scene break  This is a special edit
usual swap or transposition edit operation, here we can S\,\;;\j&;aration that allows the insertion or deletion of video scen
blocks of symbols in one single operation, rather than througP&eaks at any pointin the sequence. Because of the significan

repeated use of the swap operation. Appendix A shows howdpScene breaks in video sequences, they may not be very acc
compute the cost for the swap edit operation. rately modeled as an ordinary concatenation, or by mere inse

_ ) tion and deletion operations.
FusioN/FIssioN  Fusion merges a consecutive stream of the

same symbol into a single symbalaa— a; fission converts
a single symbol into a stream of symbols all of the same type:
a— aaa. This is needed to deal with the repetitive nature of The bases for the vstring representation are the feature ve
symbols in a video string. A single symbol can be split intaes, which are real (continuous) numbers, representing nume
many symbols of the same typéigsior). Similarly, consecutive cal quantities in the video, such as color, angles, or motion. Th
symbols of the same type can be merged into a single symbetrings, on the other hand, have discrete values, but depel
(fusion. on the original feature values. We call the continuous featur
Let[aa---a] (p symbols) be represented @& The fusion/ values thébase/primary representatipand refer to the vstring
fission operation then performs a simple transformatidn:>  as thesymbolic/secondary representatidfor the vstrings, we
al, t=f(p)=1,2,.... Thus, f(p) determines the extent of consider the differences due to both the base representation a
the fusion/fision operation. For example, fif p) = |rE|, with  the symbolic representation. We refer to the former as the ba:
r = 3, the following will result from the application of the fusionor primary edit distance, and the latter as the secondary or syr
operatoraa— a; aaa— a; aaaa— aa; a® — aa; a’ — a’= bolic edit distance. This combination also provides a naturz
aaa The choice of the parametercan be made based on thevay for handling the fact that the video string could be multidi-
application, or based on the length of the database and quewgnsional and that symbols in a vstring could be multivalued
seguences. Typically,< [n/m], since in the extreme case, theMethods for multidimensional pattern matching [16] can ther
pattern (query string) will be made up of identical symbols; be used to compute the corresponding multidimensional symn
i.e.,B=Dbib,---by,=Db" The fusion/fission operation is, thus,bolic edit distance, while traditional multidimensional distance
aform of normalization or scalirigon the original strings. It also metrics can be used on the multidimensional feature values us
provides a natural way for handling special video frame trang6r the base representation.
tions, such as fast forward and slow motion, which are usually ] ] o
achieved by frame dropping or frame repetition. The cost of suchDEFINITION 6. For a given symbol, in the vstring, sgmbol
an operation may be different from that of the repetitive use ¥flu€is a specially assigned numerical value based on the actu
the insert or delete operations. feature values. Le‘E. be the symbol value of_theth syr_nb(_)l in
By simply makingt > p, we obtain the fission (split) oper- the alphabek. Smce = 1 2,...,|X|,theassignmentis simply
ation. In general, howevet,< p, and in practice we can ac-Performed by using; =i.
comphs_h both the fusion a_nd fission operations t_)y use O.f OnlyWe use the actual feature values to derive the vstrings, bt
the fusion operator. That is, before any symbol is used in tWe

i ) 7 ‘We use the symbol values for computing the base distance. Tl
edit operation, we look ahead to check if it can be fused W@ mbol value thus directly depends on the feature value. We she

the adjacent symbols. O n the other hand, we can prescan& & feature values and symbol values interchangeably, unle
database and query strings and apply the fusion operator Wh&rﬁerwise stated

the adjacent symbols meet the criteria for a fusion. The sym-

bols resulting from such qfusmn operanonlare then markgd ?{21 vString Symbolic Edit Distance

the purpose of cost and distance computations. Thus, unlike tfie

other edit operations which only need to be applied dynamicallyUsing the new operations, we can derive a general distanc

on only one of the strings, the fusion operation can be applieteasure for video strings as follows: L&, be the set of
editoperationsO, = {insertion, deletion, substitution, swap; fu
sion, break, and leto, be another set containing the respec-

introduced by Amietal.[5], our definition of scaling is different. Here, scaling istlve cost of each edit operation, = {ins, Oldel: Gsub asvya Yus .

only within the symbols in a string, while in [5], scaling was defined on the entil%bre}' Also, |§t Se denote a sequence of edit operations whicf

string, i.e. forA=aay - - a,, AS=aas - -- a5 # (AA- - - A)= Aconcatenated transformsAinto B: & = {zi 04, ﬁ; Oy, ..., ﬂ O}, Whereg O

stimes, wheres is the scaling factor. indicates tha#; — by by edit operatiorD, (O € Oy), at edit step

3.2. The vString Edit Distance

1 Though scaling as used here is related to the notioscafed matching
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i;a andb; are the two symbofsinvolved inith edit operation. editdistanceSa..g,, isan o;dered sequence of edit operations
We can then determine the symbolic edit distance betweenSa— 8w, = {b, O 1,02, ..., h O1}. We define the base distance
andB, based on the cost of using this particular edit sequendéetweenA and B based on the above minimum cost edit se

quence:
C(SE) = Z ainsd(g: Oi) + Z Olde|d(g: Oi) I
O; =insertion | O =deletion | db(A, B) _ de(a Oi)~ (8)
+ Y aad(fO)+ ) (R O) ©) =1
Oj =substitution O, =swap M I he b di . h
_ _ ore generally, we can express the base distance using the g
+ Z ansd (g Or) + Z apred (g Oi), eral Minkowsky metric:
O; =fusion O;=break
| 1/p
whered(§ Q) is a distance function whose result depends pri- do(A, B) = [d (a Oi)]p 9)
marily on the edit operatio®,. The result could also be made ’ = PAb ’

to depend ora andb. If the distance is independent afand

b, the symbolic distance defaults to the traditional edit distanqﬁheredp(g O;) is adistance function that uses the feature value
incorporating the new edit operations. Since we will typicallyo compute the primary distance between symbols. Since t
have different sequences of edit operations that can transfogymnbm (feature) values are used, the result depends not o
Ainto B, we will equally have a set of such edit sequencesh the specific edit operation, but also on the symbols involve
Saoe={St, . ..., S}, whereS: isthei th edit sequence that we used,, to denote the primary distance betwsmbolsn the

transformsA into B. The symbolic edit distance betwegrand vstring, whiled, denotes the base (primary) distance betwee
B, ds(A, B) is then given by the minimum cost edit sequenceystrings

- Derinimion 7. Let f,(x) be thesymbol value for symbol
ds(A, B) = min{c Sas B} 7 -
s( ) (e(Se) | 5¢ € Sa-s) 0 X. Let X: x1Xz - - - X; be a string. Thaverage symbol valuler

By choosing different cost functions, different values will p&tring Xis defined as

obtained for the edit distance. As with ordinary edit distances, ,

if the distance functiord(3O,) is a metric, the edit distance fU(X) — }Z f(%). (10)
ds(A, B) between string#\ and B will also be a metric. zi3

3.2.2. vString Base Edit Distance An analogous definition can also be made using the origin
The symbolic edit distance is a simple extension from ﬂ{gature yalues. The average 1s then transformed into & ;ymk
?Iue using the alphabet size. We use Definition 7 to derive tt

traditional edit distance, but with consideration of the speciX_ dist bet bal F hofth i
vstring edit operations. On its own, it cannot capture importa fimary distance between sym k(). For each of the vstring
djt operationsd, is defined as

differences in visual content. The base edit distance, on the otfi
hand, uses the feature values and, thus, can capture important ~ . .
contentinformation. The base edit distance can be calculated us- Ky +1f,(b) — 1,(B)l  (insertion)

ing the minimum cost edit sequence used to obtain the symbolic Ko + | f,(@) — f,(A)| (deletion)
editdistance. Thatis, computing the base edit distance need onlyq,(a, b) = |f,(a) — f,(b)] (substitution) (11)
be performedafter computation of the symbolic edit distance. K f b

Thus, computation of the base edit distance will not add to the w (@) = fu(b) - (swap)
complexity of the symbolic edit distance, since, at worst, only Ke +1f,(@) — fu(b)]  (fusion)

O(m) additional computations will be required.

On the other hand, the minimum-cost edit path for the sythereKw, K, Kp, K¢, andK, are constants. .
bolic distance may not necessarily lead to a minimum cost pathf & andb are symbol-blocks, rather than single symbols, i.¢
for the base distance. Thus, we need to search for the mifiiF 2182 - -8, b=Dbiby - - - b, then we define the base distance
mum cost path for the base distance, though using a simif@F the block-swap edit operation as
procedure. This will, however, lead to an additional compu-

. . . . S
tational cost inO(nm). Let S g,,, represent the minimum dp(a, b) = K,, + Z |f.(&) — fu(b)| (block-swap) (12)
cost edit sequence that transformsinto B using the base —

The above definition for is quite general. The constants c:
2 They could also be symbol blocks for certain edit operations, for instanb® assigned the value of zero when desired. For instance,
in the fusion or the swap edit operation. may not need to assign any other special cost after the fusi
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(or fission) operation, since we will need to apply other edit o metric. That is D, (A, A) = 0, D,(A, B) > 0, D,(A, B) =
erations on the symbols. The base distance foirtkertionor D,(B, A), D,(A, B) < D,(A, C) + D,(C, B).

deletionoperation depends on the symbols involved. The idea

is that, if for instance we insert a symbol into a strikigthe 4. ALTERNATIVE DISTANCE COMPUTATION FOR
distance should be small if the inserted symbol is similar to the MATCHING WITH THE FUSION OPERATION
average symbol irK. We should have a larger distance if the

inserted symbol is very different from the rest of the symbols in We can apply the fusion operation offline on both the query
X. The substitution operation has no further cost attached t@hd the database strings before performing the matching, whi
since it does not require extra operations on the symbols. Tkgeping information on the parameters of the operatjpar(d
break operation is not explicitly indicated in (11). Typically, t). The vstring distance can then be computed by manipulatin
andds will be used together; thus, the symbol distance will alsthie parameters and by use of the internal representation of tl
account for the break operation. However, if (11) is to be us#epdified vstrings. We assume thais fixed att =1, while p
independently, the break operation will need to be indicated esan vary. Thus, internally, we use the length difference betwee
plicitly. As always, the cost of the special edit operations shoilfie input and output strings as part of the internal representatio
be no larger than the equivalent cost of using the traditional editat is, for the simple transformation performed by the fusior
operations to perform the required transformation. Appendix @perationa* — a¥, we represent the result a& V..

shows how to compute the exira cost involved in using the SWabe,avpLe 4. Table 2 shows the internal representation for the

operation. . . . _ _ results of the fusion operation on sample input strings.
A comment is in order on distances involving the fusion op-

eration. The distance computation uses the fusion part only ifTo compute the cost of the fusion operation, we use the abo\
eithera or b is the result of a fusion operation. For example, iinternal representation by making the following considerations

the substitution operation involves a symbol that is the result of . : . e .
. . : o 1. The fusion operation can be realized by repetitive insertiol
a previous fusion operation, an extra c#st is incurred. Ob- or deletion

viously, if the computation branches into the fusion part; then 2. Matching with fusion should result in smaller distances,

(@, b)# (e, ¢). If a=e¢, thenf,(a) is replaced witth(B), Con- . ) . . S
versely, ifb— ¢, f,(b)is replacedwithf ,(A). The constants can as compared with the d|stances obtained without fusion (i.e., b
v of, say, repeated deletion).

o VAT u
be chosen based on the specific application. However, we shou?él_ The larger the difference between the length of the inpt

haveKe < Kp, Kr < K, for the fusion operation to be meanin- Rd output stringsx(andy), the larger the cost. The difference
ful. (See sections on normalization and experiments.) Also, (16]1)5
also depends on theandt parameters.

implies that, apart from the additional fusion cdsk, no other
attention is paid to the actual input strings involved in the fusiorhe first two considerations imply that the cost of the fusion
operation. In a later section, we present an alternative methmgkration can be made a function of the cost for insertion and/c
that computes the distance with consideration of the input/outglgletion. The last point was not considered by Eq. (11). Belov

strings. we give an alternative method for computing the distance, base
on the internal representation.
3.2.3. vString Edit Distance Let: Atayay---a, andB:bsb; - - - by be the initial vstrings.

_ _ o _ _ Let As iccy? - - ¢y and By :dy™dy® - ..dm™ be their corre-
_The finalvstring edit distance A, B) is obtained by com- g4nding international representations, whetis theith sym-
bining the symbghc edit _d|stance and the base edit distanggy i A¢, n; is the difference between the lengths of input and
through a weighting function, output strings from whicle, was formed, ana; = |A¢| is the
length of the new string; and similarly fd;. Also, letK; be
Dy(A, B) =B - ds(A, B) + (1 — B) - do(A, B), (13) the new cost for the fusion operation using the alternative corr
putation,K; < Kp, Kt < K,. TheK; used here is not neces-

) o ) ) ] sarily equal to theKg in (11). In the last section, the distance
where g is a weighting function (& 8 < 1) which biases the

weight to either the symbolic or the base distances. The dis-

tancedls andd, are suitably normalized. The appropriate choice TABLE 2

for the weighting function is still an issue that has to be consid- Results of the Fusion Operation and Their Internal

ered, but it can generally be application dependent or it can be Representation (p=3,t=1)

given as an option for the user to decide. The vstring edit dis= _ _ _

tance described above may/or may not be a metric. However, Stingl - String2 String3

the following lemma holds. Original string aabbbc  aabbbbc aaaabbbbccc
String after fusion abc abbc aabbc

Lemma 2. If ds and d, are metric distances, then the vstringy emation representaion alb?c®  alb?b®c®  a2alb2blc?
editdistance D(A, B) betweentwo video strings Aand B isalsa
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betweenA; and B was computed using only the values &pr

TABLE 3

andd;, while ignoring the length difference between the input Example Parameter Values for Different Cases of the Fusion
Operation (p=3,t=1)

and output strings. A better measure of the distance should in-

clude information on the parameters of the fusion operation. For

the discussion here, we assuie=Kp andp = 3,t = 1. o Original  After _ -
~ ~ . ase Description strings fusion ¢, d; ni, mj
We observe thaf ,(A) and f ,(B) can be computed directy
from the internal representatiof; and B¢, respectively. We | ni=mjc#¢d#¢ Aaaa A:a? cg=a n=2
use the following equivalent definition for the average symbol B:bbb Bi:b? dj=b mj=2
value for the original stringd, using the internal represention !!  ni #mjic =e&dj#e  Ate Arte  G=e ni=-1
As B : bbb Bf2b2 dj:b mj:2
f 1 ni #mj;¢ #¢&,dj=¢ A:aaa A:a? c=a nm=2
B:e Bt e dj:g mj =-1
ng . ' \Y) n; # m;j; ¢ = dj Aaaa Ar:a®2 cg=a n=2
~ ~ _.(ni + 1)g i pE =
f,(A) = fu(Af):M- (14) B:aa Bi:al dj=a mj=1
Yoisa(ni+1) Von#£mjg #dj; Araaa Ar:a® g=a n=2
G #edj # e B:bb Bf:b! dj=b mj=1

To obtain the distance between two symmﬂls‘rom As and
d;“J from B¢, we need to consider five cases:

Casel. Simple case of repeatitive substitution:

The above cases are sumarized in Table 3 with examg
strings. In the table, values ofl were used in the internal repre-

sentation of the null symbol. This is simply to distinguish it from

ni=mj, G # e, dj # &,
d(g". d") = (i + D)l fu(c) — fu(d))I.

other symbols which could have zero in their internal represent
(15) tion. From (15) and (16), this will have no effect on the distance
Notice that the above distance computation always selectst

minimum cost path. With the above method, the fusion cost wi

Casell. Trivial case of insertion:

no longer appear as an explict edit cost, but will be embedded

the other operations. More importantly, we can also use the abc

n#mj, ¢=g¢, d;#s,
d(d", d") = (my+ 1)(Ky + | () — F,(B)I).

distance we make use of the definitions:

Caselll: Trivial case of deletion:

n #mj, G #e, dj=e¢,
d(c. d™) = (ni + DKt + | fu(c) — ,(ADD).

CaselV. More difficult case of insertion or deletion:

mm—uw={

07
1,

f,(x) — f,(X) = 0.

if G =di,
if ¢ # di;

relations for the symbolic distance. We recall that the symboli
(16) distance treats the symbols as binary (presence/absence) s
bols. Thus, to use the alternative computation for the symb

(20a)

(20b)

Since the time required for string matching is inn@), the
main advantage in using the alternative computation is the in

proved speedup in the matching process. Typically< n and

N #mj, ¢ =dj,
d(c". d™)
Ini —myl- (K¢ +1f.(6) = f,(A)D, if ni >m,

m; < m, implying that shorter strings are manipulated by the
alternative method. The above internal representation is us
j (18) to keep the presentation simple. The representation is neitt
optimal in space nor in time. Thus, there is room for some i

= provement, for instance by increasing the valugpof better

i = my (K () = Fu (B, i < m;.

approach could be to enforce a constraint£ ¢, in which

no two adjacent symbols in the internal representation will b
CaseV. Most difficult case, requring substitution and inserthe same. Here, a given Symkm“n A can be interna"y rep-

tion and/or deletion:

resented ag ¥, wherex, andy; now explicitly express the

length of the input and output symbols. An alternative compt

N #mj, ¢ #dj,¢ #e,dj #e,

tation using the new representation can be derived and usec

compute the edit distances. It is interesting to observe the si

d(c!. d™) = (1 + min{ni, m;}) - (| fu(6) — f(d))))

nificance of the alternative distance computation. The intern

19 (e . . . .

~ . presentation is essentially a form of encoding on the vide
i —m;l- (K +11u(G) - fj(Af)D’ ifn > mj, strings. This means that the method can equally be applied
i —m;|- (K¢ +|f(cdh) — T,(Bs)]), if i <m;. encoded sequences, such as run-length encoded sequences
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5. NORMALIZATIONS K, is used to remove the additional cost incurred by the extr

deletions or insertions that will be needed on sequences th

For the normalizations below, we assume equal costs for tﬁl@ of differing lengthsK, = Kp are the same as the constants

three traditional edit operations. With unequal costs, differegéed in see Section 3. The constants decrease with increasi

normalizations may be needed. For the vstring symbol distangghabet size. This is logical since the distance will typically

ds, the major normalization required is that against differencgscrease with increasing alphabet size. Thus, if used as define

in sequence lengths. We use two normalizations on the symBgbve, the constants will also serve to reduce the effect of th
edit distance: alphabet size.

In subsequent sections, we assuilg@andd, are in the nor-

NORML: dg; = ds — [IAl— Bl (21) malized form, unless otherwise stated.
min{|Al, | B[}
ds
NORM2: Oop= ——— . 22 6. EXPERIMENTS
2~ max(|Al, B[} (e2)

To check the effectiveness of the proposed distance measul
NORML emphasizes thexistencef similar subsequences be-we carried out some tests using real video sequences. The ¢
tween the database and the query, while minimizing the effgagriments were carried outin a MATLAB environment, running
of length differences. The smaller the distance between the g8-UltraSparc workstations. Two color features from the frame:
guences, the longer the similar subsequence(s)—hence, the nfidv@ average color and the standard deviation) were used as !
the overall similarity. Matching wittvorML will thus result in  indexing features. Each frame in the sequence was subdivid
better recall, but less precision. Hypothetically, retrieval basétio n subframes, and for each subframe two different vstring:
only onNorML could return a one-frame sequence for a 1000vere formed using the two features. The vstring edit distance
frame query, where the 1000 frames are all copies of the saffleandd,,) were then computed independently for each featurt
frame. and for each subframe, after which the results were combine
NORM2 accounts for botltontent-similarityand length dif- For the experiments, we used the unit cost for each edit oper:
ferencesThe results are more precise (in terms of both visutipn: =9, except for the case of studying the effectpfand
content and sequence duration), BORM2 could miss out pos- |Z| =4, except when studying the effect [af|. For all exper-
sibly similar sequences (say, in terms of visual content) purdpents, we used the actual feature values to derive the vstrin
on account of length differences. and then used the symbol values to calculate the base distanc
With the vstring base distance, we perform a transformationFirst, we studied the behavior of the vstring base and symbc
into symbols with the actual feature values, but use the symist$tances under the two methods of normalizatiooRML and
values for matching. Therefore, the symbol value depends BaRM2) for different settings of the alphabet siZe|, and num-
the alphabet size. The vstrings thus needs to be normalizedtier of subframes;. Information about such behavior is required
different alphabet sizes. For thth symbol in an alphabet, for parameter setting and for fine-tuning the results. For instanc
the symbol value is given b¥; =1, 2, ..., |X|. We normalize We need to determine appropriate scaling factors and weights fi
the symbol values a$,(=;) = =i /(|=| — 1). Thus, the symbol combining says andd, (or NORML andNORM?) results. We took
values fallin the range of || — 1) to 1+ 1/(|=| — 1) and not _ different sequences and selected 12 scenes from each sequet
necessarily from 0 to 1. For each sequence, the vstring distance between the 12 scel
Like the symbol distance, the base distance is also normaliz&as computed. The scenes were selected to include both simil
against differences in sequence lengths. The major issue he@g nonsimilar scenes in the sequence.
that, unlike the symbol distance, the primary distance betweerfFigure 1 shows the variation of the distances with the alphabe
two symbols will not necessarily be 1 but will depend on the#gize for different distance normalizations. For batbrmL and
symbol values. Thus, we need to adjust the sequence lengiR&M2 the symbol distances (Figs. 1a and b) was found to be
(and their differences) accordingly. For the base distapcéne  very sensitive tgX|, increasing quite rapidly with the alphabet
corresponding normalizations are: size. This is expected since the probability of having a match de
creases withincreasing alphabet size. On the other hand, the bz
dp — [|Al — B - (| f,(A) = f,(B)| + K)) di;tance (Figs. 1c an_d d) is more stable; though it aI;o chang
min|AL B[} - max{fN A 7 (B)] » with | 2|, the change is much less when compared with the caxs
’ v of ds. This is a more preferable behavior since the underlyin
(23) similarity (or distance) between two scenes should not be great
. 1 affected by small changes in the alphabet size. The figure al:
Tz -1 shows that, undetormM2, d, decreases with increasing alphabet
size. Though less obvious, this is due to the effed€ phndK p
: do - _ ) (24) (Ky =Kp=1/(]2] — 1)). For two given sequences, the length
min{|A|, |B[} - max f,(A), f,(B)} difference is constant, but the additional cost due to the extr

NORML: dy; =

Ki

NORMZ: dp =
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FIG. 1. Variation of vstring edit distances with alphabet size, for two distance normalizations: (a, b) symbolic edit distances; (c, d) base edit distan

insertion/deletion needed to transform one sequence into that for a given alphabet size the distances were generally s
other is inversely proportional @ |. As expected, for a given ble for different values ofi. Thoughd, increased slightly with

alphabet size the distances obtained usiogM2 are always increasingy, the increase is negligible (typically less than 0.0t
greater than those fronoRrML. Similarly, the symbol distances for the values ofZ | tested). The implication is that, with respect
are generally greater than the base distances. The same vaoighe color features used—(the average color and the stand
tions are shown on a log scale, indicating that for a giyéhe deviation), is not a critical issue. We do not think that this will
vstring distances tend to change more linearly with the log bé the case in general; it could be different for other feature
| %], rather than withX|. such as motion. Judging from the results shown in the figure, v

Figure 2 shows the variation of the distances for varying nuraan conveniently use any value fptwe suggest > 9) without

ber of subframes;, for different values ofZ|. We expected the affecting the results. This is an important consideration (esp
distance to increase with increasimgsince increasing the num- cially for speed), since more time will be required to compute th
ber of subframes should imply that more specific information ombined distance (from thevstrings for each feature used)
being used to match the sequences. However, it was obserasg gets large. On the other hand, for a giverds increases



DISTANCE MEASURE FOR VIDEO SEQUENCES 37

symbol distance: norm1
Qe iens e e B R RTTT 1

symbol distance
symbol distance
o
~
v
T

0.7

065k oo B [RITITPPTRTP TP
: : : ——O Izi=4 : : : : 0 Ifl=4
0.2f e e P G ] o6——  Izi=8 0.8 - e F O——o  IZl=8
: B : e——=8  [I=16 : : : : &=——=a [Z=16
: : : o +  im=s2 | : : : oeren +  1E=32
Qb B b RIS \Sl=64 |-+ 055k +vvemereanenans o B P 3 |5=64
: : : ¥——x  |T=128 | : : : ; e |Zl=128
0 ' 1 1 1 | 0.5 1 ) ! 1 )
0 5 10 15 20 25 0 5 10 15 20 25
number of subframes number of subframes

(a) (b)

base distance: norm1
035k : : : : . OuB e rrree s IR S RTINS AR

0.3F
0.25} - 4
3 °
B 0.2 e 8
8 8
o 2
o ©
o @
& &
20 SR =1 S P 5
0f P o U S S
: o—™O |ZI=4 Zt=4
o—> 1Z1=8 I1£1=8
[ 3] IEl=16 I1Z1=16
oo +  Izl=az2 1zl=32
*—%  |Zl=64 {Z}=64
: : : *——x  |5l=128 : : : 1g1=128 | @
0 1 ] I I ) 0 I i t | 1
0 5 10 15 20 25 o 5 10 15 20 25
number of subframes number of subframes

() (d)
FIG. 2. Variation of vstring base and symbol edit distances with number of subframes for different alphabet sizes using two distance normalization:

for bothNORML andNORM2 while dp increases foNORML, but The distance results are shown in Tables 4 and Bifomi.
decreases f(WORM2 as| X | increases. This mirrors the observaTable 4 shows the vstring distance matrix for the 12 scenes, whil
tions from Fig. 1, but for different values qf Table 5 gives the ranking of the scenes based on their similarity-
To evaluate the vstring distance measure, we then compausthg the vstring distance. The indicated distances are the cor
the results returned by the proposed methods by visually cobined distances obtained frody and d,, using 8 =0.5. For
paring different video sequences for similarity. First, we usgd| =4 we multipliedd, with an initial scaling factor of 1.75
the same sequences used in studying the behavior of the bisfore combing withts. This was informed by the average val-
tances (i.e. the 12 specially selected scenes for each sequenms) ofds andd, for a given|X| for the different normalizations.
For each sequence each of the 12 scenes was matched aghicah be seen that the length differences have no effectonthe
the other 11 scenes in the sequence. Figure 3 shows the reputs. Equivalent results fotorM2 are shown in Tables 6 and 7.
sentative frames (selected periodically from each scene) for dve further scaling was used @ anddy, since their values are
of the sequences. The sequence is taken from a news videodmparable af>X|=4. The NORM results are, however, very
relatively simple video), and thus, it is easy to visually comparauch influenced by the differences in scene lengths. (Compa
the scenes. the ranking of v1 versus v11 and v12 in Table 3 with those ir
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FIG. 3. Representative frames for Epeciallyselected scenes for one of the video sequences used in testing. Scenes are selected such that, both sin
nonsimilar sequences will be included. The scene lengths are given in the tables. The indicated scenes are taken from a news video—a relat@ciestaple
and, thus, easy to compare.

FIG.4. Threerepresentative frames fori2hdomlyselected scenes from six different video sequences. From each sequence, four scenes were selected ra
without regard to their similarity. The scenes are arranged (and can be grouped) according to their originabsesre:v1-v4; NEwS, v5-v8; COMMERCIAL-FILM-1,
v9-v12; cOMMERCIAL-FIRM-2, v13-v16; ADVERT-2, v17-v20; DOCUMENTARY, V21-v24. The scene lengths are given in the tables (see text).
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TABLE 4 TABLE 5
vString Distance Matrix for the Video Sequences Ranking of the Video Sequences in Descending Order
(Using norm1) Shown in Fig. 3 of Similarity—Based on the Vstring Distance
vi v2 v3 v4 v5 v6 v7 v8 Vv9 v10 vll vi2 vi v2 v3 v4 v5 v6 v7 v8 Vv9 wv10 vlil vi2
Len® 155 386 563 53 85 38 121 46 110 414 434 133Len 155 386 563 53 85 38 121 46 110 414 434 133
vl O 0 0 0 0 0 0 0 0 0 0 0 Rank
v2 0.09 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 8 9 10 11 12
v3 0.11 0.06 0 0 0 0 0 0 0 0 0 0 2 7 10 10 5 4 4 1 9 6 2 12 11
v4 0.59 0.61 0.590 0 0 0 0 0 0 0 0 3 10 3 2 6 6 5 10 11 11 3 6 4
v5 0.66 0.66 0.64 0.120 0 0 0 0 0 0 0 4 2 1 7 11 11 11 3 12 4 1 4 6
v6 0.56 0.60 0.57 0.12 0.1® 0 0 0 0 0 0 5 3 7 1 12 12 9 2 5 8 7 5 5
v7 0.04 0.13 0.10 0.66 0.69 0.68 0 0 0 0 0 6 6 6 6 9 9 12 8 6 5 6 9 9
v8 0.61 0.69 0.68 0.57 0.54 0.56 0.63 0 0 0 0 7 4 4 9 10 8 10 6 4 12 4 8 8
v9 0.63 0.62 0.59 0.33 0.36 0.31 0.67 0.35 0 0 0 0 8 8 9 4 8 10 1 4 1 10 9 10 10
vl0 0.09 0.04 0.05 0.54 0.61 0.51 0.09 0.62 0.57 0O 0 0 9 9 11 5 1 3 8 11 10 3 5 3 3
vll 0.66 0.65 0.64 0.29 0.30 0.28 0.66 0.46 0.32 0.64 O 0 10 5 5 11 3 1 3 9 7 2 8 2 2
vl2 0.73 0.70 0.68 0.31 0.34 0.33 0.75 0.51 0.38 0.67 0.03 0 11 11 8 8 2 2 2 5 3 1 11 1 1
12 12 12 12 7T 7 7 12 2 7 12 7 7
aLen stands for length of the video sequence.
TABLE 6

Table 5. Visually, v11 and v12 look similar, but differ in scene du-
ration). Typically for bothds andd,, NORM? distances are always
greater than the correspondingrML distances. While NORML
provides results that are visually more intuitive, the advantage 1, > v3 v vs5 v6 v7 v8 V9 vi0 vil vi2
of usingNORM is that any two sequences that it proposes asn 155 386 563 53 85 38 121 46 110 414 434 133
similar (the first few positions in the ranking) will be similar in
bothdurationandvisual contentNORM? thus provides a more zl 845 8 8 8 g
accurate result, but at the risk of missing out some scenes th@i 054 0250 0 0
are visually similar, but which differ only in scene duration.  v4 071 078 0790 0
The technique was then used on a more difficult set of videas 0.67 0.77 0.79 0.330
sequences. Here, four scenes were randomly selected from gi& 0.73 0.79 0.79 0.29 0.48)
different video sequences (for a total of 24 scenes). (The scenéé 017 052 057 0.70 0.66 0.78
. . . . v8 0.73 0.82 0.83 0.51 0.62 0.53 0.7
were not involved in the previous test with 12 scenes). Eachg g1 074 077 055 041 061 058 059 0 0 0 0
of the 24 scenes were then matched against the remaining 23 0.47 0.07 0.22 0.77 0.76 0.78 052 081 074 0 0O 0
0
0

vString Distance Matrix (Using norm2) for the Video
Sequences Shown in Fig. 3

Oocoooo
OCooocoo
OCo0oocoocooo
©Coococoococoo
©Cooocooocoo
Co0ooocooocoo
©Coocoocooocoo

scenes in the set. This is a controlled simulation of the practicel1 0.74 0.56 0.60 0.75 0.71 0.77 0.76 0.81 0.69 0.53 0
situation where one will wish to search for a given video scen¢!2 0.63 0.76 0.79 0.59 0.48 0.66 0.63 0.71 0.40 0.76 0.55
in a video database, which typically contains video sequences
from different sources. Figure 4 shows the representative frames
for each scene. The scenes are arranged (and can be grouped)
according to their original sourceoverT-1, v1-v4; NEWS, V5—
v8; COMMERCIAL-FILM-1, vO9—v12; COMMERCIAL-FIRM-2, v13-v16;
ADVERT-2, v17-v20; DOCUMENTARY, v21-v24. Scenes belonging vi v2 v3 v4 V5 V6 v7 v8 v9 vi0 vil v12
to the same group are not necessarily similar. Len 155 386 563 53 85 38 121 46 110 414 434 133

The results are shown in Tables 8 and 9. We take visual sim-=

TABLE 7
Ranking of the Video Sequences in Descending Order
of Similarity Using norm2 Distance

. . . . nk
ilarity to be more important than length differences, and tth%al 1 2 3 4 5 6 7 8 9 10 11 12
2 7 100 10 6 4 4 1 4 12 2 10 9
3 2 3 2 5 9 5 10 6 5 3 12 5
3 Some values in Table 46rM2) are smaller than the corresponding values 4 10 1 1 8 12 8 2 9 4 1 2 11
in Table 2 (orML) due to the scaling factor used on the results framml. 5 3 7 7 9 6 9 3 5 7 7 3 4
4 A comment is in order on the use wbrML andnorM2 results. We can sim- 6 9 11 11 12 8 12 9 12 8 11 9 7
ply take a weighted average of the results from the two normalization methodsz 12 9 9 7 7 1 12 7 1 9 5 1
This will, however, lose information about the cause of any differences—if the 8 5 12 12 1 1 7 5 1 6 12 1 6
sequences are not similar. SinegerML could lead to no misses (with respectto 9 4 5 5 11 11 11 4 11 11 5 4 8
visual content as compared to results fraorm2), a better method for com- 10 6 4 4 10 10 10 8 10 10 4 7 10
bining the two results could be to usermML results for the initial selection of 11 8 6 6 2 2 2 6 2 2 6 6 2
probable (visually)similar scenes and then to nsem2 results to verify ifthe 12 11 8 8 3 3 3 1 3 3 8 8 3

scenes are also similar in duration.
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only NORML results are indicated. We acknowledge the fact thegpresentation may not be very reliable. The other problem i
the distance values returned by the proposed distance measisgecomputational time and space that may be needed, esy
may not always correspond to whata human observer may assigily when the database and the query sequences are both lol
to the scenes; our experiments were based only on color featutdeas from fast algorithms for traditional string patterns [22,
In retrieval involving visual data, however, the ranking of th&80] can be used to speed up the vstring distance computatic
results are often taken to be more important. We can see fr@ne can still identify other issues that deserve some attentic
the tables that the rankings returned by the distance measurdmresing the proposed vstring edit distance, such as multidi
quite reliable—the visually similar scenes are always rankegensional vstring edit distance and context-dependent edit cc
in the first few positions. The tables thus show that the vstrifignctions.

edit distance provides a good measure of the similarity between

video sequences.
APPENDIX A: EDIT COST FOR THE

SWAP OPERATION

7. CONCLUDING REMARKS The swap operation can be realized by a sequence of insertic

%{gation, or substitution operations. For the special operations:

suring the similarity between video sequences. The vstring e ft use:‘jgl_, hovlve\:fr, the CO.St ShOCUId b%Iesshthan rt]he CO.St zf lIJs"
distance incorporates two basic components that account for %tgal g:ons & It ogeratlons. donsr: er tbelsb(i emat|c elov
visual similarity between video scenes and for the temporaﬁym ol blockS, is to be swapped with symbol blod:

constraints in the video. Experimental results have shown that

An edit distance based method has been presented for

the vstring edit distance is able to rank different video scenes AS Ag S
consistently according to their similarity. The vstring edit dis-
tance thus provides a reliable measure of the distance between B:S Aq S

video sequences. It can form the basis for applications where re-
trieval requires a consideration of the spatio-temporal constraintsg .o pProcepure A — min{Ag, Al If A= Agq, perform

in the video, beyond the current method of simple image-basggap OnA; if A = Aq, perform swap orB. Lets, = swap block

retrieval using key frames. _ size andAps = separation block size. That,is, =S| = |S|
With the proposed measure, the distance between any %Abs:A- The cost of the block-swagswawill be:
vstrings depends very much on the cost of the edit operations P

and on the number of edit operations. When the cost of each

edit operation is assumed to be the same, for instance unity, the otbswap = (Sp + Abs)ordel + (Sp + Aps)eting
problem of choosing a threshold for similarity is reduced to just = (S + Abs)(tdel + ins)-
deciding thek-differences that are to be allowed in the match.

As one may have noted from the previous discussions, aunif(_)m%equential swap is used—i.e., no block swap operations ai

cost for each edit operation may not accurately model the ”gﬂowed, the swap block size will be 1, since only single sym-

portance of each operation in the video sequence. For instancgog are swapped. The sequential swap will be performed onc
deletion operation (analogous to removing one frame in a vid each symbol in the swap block—a total gf times. Let

scene) should not carry the same weight as a break operation (for _ size of separation block for sequential SWasqswa=

. . . a .. s
instance inserting a scene break) which divides one scene igi; ¢ sequential swap operation. Since we are still considerin

two different scenes. Parametric edit distances try to put thqﬁg same string and the same swap operands, we should hav
issues into consideration in determining the suitable cost func-

tions for each edit operation and in the choice of thresholds. For

the case of traditional string edit distance, some methods have AssT1 =[S+ Abs+1Sf, 0O Ass=2(S — 1)+ Avs;
been proposed for the basic edit operations—insertion, deletion,

and substitution [5, 17]. Parametric video edit distance opetaat is,

tions can borrow ideas from these proposals for their realization,

with special attention to the new edit operations. aseqswap= (1 + As(del + ¢ing)So
One major problem with the vstring approach is the high
dependence on the robustness of features used to derive the = (2% + Aps — 1)(ctdel + ins) -

vstrings. For instance, the edit distance relies more on the un-

derlying index features for spatial information in the framesNote thats, andAysrefer to their respective values for the block-
Moreover, if the index features are not invariant under certagwvap operation. Clearlyseqswag> dbswap EQuality holds only
changes in the video sequence, such as illumination or partidien s,, the swap block size is 1, in which case any of the
occlusion, edit distances that are computed based on the vstrimgthods (block swap or sequential swap) can be used.
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APPENDIX B: SYMBOLS LIST 5.

A B Sequence of symbols, or video sequences
represented as vstrings, 6.

n Number of symbols irA

m Number of symbols irB ;

by Symbol alphabet

a,b Symbols inZ

e Null symbol 8

S Sequence of edit operations

c(s) Cost of edit operatios 9.

c(Se) Cost of usingSe

SaB Set of all edit sequences that transfofninto B 10.

SasBmin Sequence S, g with minimum cost
D(A, B) Edit distance betweeA andB

o Cost function for the edit operations 1
f, Numerical value of an index feature 12
q(f,) Quantization level forf,
Op Set of all edit operations 13.
$ Symbol for video scene break
% Symbol value for théth symbol in the 14.
alphabet®
ap Set of respective costs for each edit operation
in Op 15.

d(Z‘O.) Distance between symbaisandb using edit
operationQ
ds(A, B)  Symbolic edit distance betweekhand B

du(A, B) Base distance betweehandB 17.

dp(‘a Oi) Base distance between symbols, using the

feature values 18.
fU(X) Average symbol value for string
D,(A, B) vString edit distance betweehand B 19.
B Weighting function fords anddy,
A¢ Internal representation fok after fusion 20.
operation 21,
Ko k-Difference threshold for normalized vstring
distances
n Number of subframes for each video frame 22.
23.
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