
Site-To-Site (S2S) Searching
Using the P2P Framework with CGI

Wan Yeung Wong
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, Hong Kong

wywong@cse.cuhk.edu.hk
ABSTRACT
Peer-To-Peer (P2P) networks like Gnutella improve some
shortcomings of Conventional Search Engines (CSE) such as
centralized and outdated indexing by distributing the search engines
over the peers, which maintain their updated local contents. But they
are designed for sharing and searching the contents in personal
computers instead of websites. In this work, we propose a novel web
information retrieval method called Site-To-Site (S2S) searching,
which uses the P2P framework with CGI as protocol. It helps the
site owners to turn their websites into autonomous search engines
without extra hardware and software costs. In this paper, we
introduce S2S searching with some related work. We also describe
the system architecture and communication protocol. Finally, we
summarize the experimental results, and show that S2S searching
works well in one thousand sites.

Categories & Subject Descriptors: H.3.3
[Information Search and Retrieval]: Search process

General Terms: Algorithms, Performance

Keywords: Search Engine, Web Information Retrieval, Site-
To-Site (S2S), Peer-To-Peer (P2P), Distributed System

1. INTRODUCTION
Conventional Search Engines (CSE) like Google and AltaVista have
three shortcomings, which are (1) centralization of resources used,
(2) no control over information shared by the content owners, and (3)
lack of relevant feedback from the users. In this paper, we propose
Site-To-Site (S2S) searching in order to distribute the search engines
over websites based on Peer-To-Peer (P2P) paradigm without extra
hardware and software costs. It improves the three aforementioned
shortcomings of CSE.
1. Centralization of Resources Used: CSE are centralized which
require powerful servers to handle search requests. And they need
large storage space to store the crawled contents, which are not
always up-to-date as the web pages are being updated [1]. To
achieve high performance, the hardware cost is heavy. On the other
hand, S2S search engines are decentralized. So they need less
powerful machines to handle search requests, and less storage space
to store the local index. Each site maintains its own local index,
which is always up-to-date.
2. No Control over Information Shared: CSE crawl all published
contents on the web, and make them become searchable without
their owners’ permissions. The site owners are also unable to alter
the ranking strategy for their prioritized contents. On the other hand,
S2S search engines allow the site owners to selectively disable their
published contents to be searchable. They could also prioritize their
contents in order to advertise and rank the results in a more
customized way.

3. Lack of Relevant Feedback: CSE ignore the intentions, interests,
and preferences of their users, as the search engines always return
the same search results with the same keywords for every user [3].
On the other hand, S2S search engines provide relevant feedback by
monitoring the actions of the users to the search results. Users could
express their preferences by giving scores to a particular link
(assume there is no cheating).
Related Work: Unlike crawler-based search engines, P2P networks
like Gnutella [2] and YouSearch [4] offer a real-time information
retrieval based on most updated contents. Gnutella is designed for
sharing and searching the contents in personal computers, which is
not optimized for the web search. YouSearch is designed for
searching in the network of personal web servers, which is also not
optimized for searching in ISP web servers. It improves the query
flooding problem of Gnutella, by using the centralized registrar to
summarize the local index for each peer. On the other hand, S2S
searching is designed to share and search the contents in websites,
which are hosted by ISPs. Currently, it does not prevent the query
flooding, which would be improved by integrating some query
routing algorithms in the future.

2. ARCHITECTURE AND PROTOCOL
The S2S paradigm makes each website, which joins the S2S
network, becomes an autonomous search engine. The site owners
only need to install the S2S software to their websites, which is a set
of CGI programs written in Java Servlet. Then the users could use
the search form to start searching the web contents. The query
requests are propagated from site to site, which are limited by the
Time-To-Live (TTL) value. Finally, all the search results are
propagated back to the requester, and displayed to the users.

Figure 1. System Architecture

System Architecture: Figure 1 shows the system architecture of
S2S search engines. When the query starter receives a query request
from the search form, it generates a unique request ID, which is
passed to the local searching CGI together with the keywords and
other parameters in the search form. Inside the local searching CGI,
the searcher checks if the requester is in the black list by its IP
address, and the current request is a repetitive request by its request
ID. The next step is to check if the TTL value from the CGI
parameters is greater than zero. If it is, then the searcher asks the
peer threads producer for spawning threads to broadcast the query
request to the adjacent sites. Each thread calls a distinct site’s Copyright is held by the author/owner(s).

WWW 2004, May 17-22, 2004, New York, NY, USA.
ACM 1-58113-912-8/04/0005.

360

searching CGI, and waits for its return. During the waiting period,
the searcher asks the keywords matcher to match the keywords by
looking at the local index. Once they match, the similarities are
calculated and the results are returned. Usually, the keywords
matcher is able to utilize the full CPU resource, as the peer threads
producer is idle for waiting other sites’ searchers to return. This
makes the searching process highly distributed and efficient. After
some time, the searcher gathers the results and returns to the query
starter, which forwards the results to the ranker. It ranks the results
based on the four values of the documents. They are the priority
value (priority) which is assigned by the site owner, click proportion
(click), average users’ scores (score), and similarity (sim) which is
calculated by the keywords matcher. The final ranking value (rank)
is calculated by

 simsscorerclickqpriorityprank ×+×+×+×= ,
where p, q, r, s are the adjustable ranking parameters. Finally, the
ranker sorts the search results in descending order by the ranking
values, which are then displayed to the users.
S2S Communication Protocol: S2S searching targets on those site
owners, whose websites are hosted by ISPs. So they have limited
site administration privilege. It is a challenge to make S2S search
engines plug into the websites easily, which does not require any
system administrator to install special software and open specific
firewall. Taking these into consideration, CGI is a good choice.
There are four CGIs for the S2S communication protocol. (1)
Starting CGI is called by the search forms for starting the search
requests. It also generates a unique request ID, and calls the local
searching CGI for obtaining the search results. (2) Searching CGI is
called by local or other sites for searching the target information. It
also calls the searching CGIs of other sites to broadcast the query
requests. (3) Pinging CGI is called by other sites for querying the
information about the current site like the response time. (4) Joining
CGI is called by other sites for requesting the current site to join
another site.

3. EXPERIMENTS AND DISCUSSIONS
There are two experiments which measure the (1) performance of
S2S searching and (2) dependence of searching time. Table 1 shows
the configurations of three different types of computers, which
overall performances are much lower than those dedicated web
servers.

Table 1. Computer Configurations
 Model RAM Network Overall

X Sun Blade 1000 2GB 100Mbps Fast
Y Sun Ultra 5/400 512MB 100Mbps Medium
Z Sun Ultra 1/140 64MB 100Mbps Slow

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 200 400 600 800 100
Number of Sites

Ti
m

e
(s

ec
on

ds
)

Figure 2. Experiment 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10
Trial

Ti
m

e
(s

ec
on

ds
)

A B C D

Figure 3. Experiment 2
1. S2S Searching Performance: This experiment is to measure the
performance of S2S searching. The simulation is done by two
computers X. The local searching time of each site is fixed to 0.1
second. Figure 2 shows the relationship between the total searching

time and the number of sites in the S2S network. We measure the
worst case by using the worst connection structure, which adjacency
matrix adj is defined as

 =−

=
 otherwise0
1 if1 ji

adjij .

2. Searching Time Dependence: This experiment is to show that
the total searching time depends on the slowest site in the S2S
network. Five websites with 441KB HTML documents each are
connected by using the worst connection structure. Figure 3 shows
the total searching time in ten trials. Line A is obtained by using
four computers Y and one computer Z. Line B is obtained by
searching locally in the computer Z. Line C is obtained by using
four computers Y and one computer X. Line D is obtained by using
five computers Y.
Discussion: From the first experiment, we observe that S2S
searching is quite efficient in a large scaled S2S network. It is due to
the highly distributed and parallel searching process. The searching
time is further improved if a better keywords matching algorithm is
used. From the second experiment, we demonstrate that the total
searching time depends on the slowest site in the S2S network. It is
because the query request is first broadcasted to all sites. Then each
site performs a local searching. Those fast sites, which finish their
searching, always wait for those slow sites to return. So if there are
very slow sites that join the S2S network, the total searching time
may be unacceptable. On the other hand, S2S search engines
circumvent this problem by applying the timeout mechanism in
order to skip those slow sites.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel web information retrieval method
called S2S searching, which helps the site owners to turn their
websites into autonomous search engines without extra hardware
and software costs. Finally, we show that S2S searching works well
in one thousand sites. Since S2S technology is a relatively new topic,
there is still much research that could be done. We plan to improve
the current query flooding problem by integrating some algorithms
to S2S searching. We also plan to extend S2S searching to include
multimedia information retrieval in the future.

5. ACKNOWLEDGMENTS
This work is supported in part by the Earmarked Grant, CUHK
#4351/02E, from the Research Grants Council (RGC) of Hong
Kong Special Administrative Region.

6. REFERENCES
[1] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A Large-

Scale Study of the Evolution of Web Pages. In Proceedings of
12th International World Wide Web Conference, 2003.

[2] Gnutella website. http://www.gnutella.com
[3] J. Pujol, R. Sanguesa, and J. Bermudez. Porqpine: A

Distributed and Collaborative Search Engine. In Proceedings
of 12th International World Wide Web Conference, 2003.

[4] M. Bawa, R. Bayardo, S. Rajagopalan, and E. Shekita. Make it
Fresh, Make it Quick – Searching a Network of Personal
Webservers. In Proceedings of 12th International World Wide
Web Conference, 2003.

361

