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Abstract—In this paper, we propose an analytical model for
computing the utility of ESP games, i.e., the throughput rate
of appropriate labels for given puzzles. The model targets
generalized games, where the number of players, the consensus
threshold, and the stopping condition are variable. Via extensive
simulations, we show that our model can accurately predict the
stopping condition that will yield the optimal utility of an ESP
game under a specific setting. A service provider can therefore
utilize the model to ensure that the hosted ESP games produce
high-quality labels efficiently, given that the number of players
willing to invest time and effort in the game is limited.

I. INTRODUCTION

With the help of Web 2.0 technology and appropriate
designs to motivate people, any group of Internet users, who
do not know each other, can combine their “computation
power” to solve AI-hard problems. Because of this ability,
the process is called social computation [1]. In [2], Ahn
and Dabbish proposed the ESP game, a real-time, web-based,
two-player application. To play, in each round, the randomly
matched players keep suggesting appropriate labels to describe
an image until they achieve a consensus, i.e., both players
suggest the same label. If the players achieve a consensus, the
label they agree on is likely to be an appropriate description
of the current image.

In this paper, our objective is to model the performance
of the ESP game and optimize its utility by redefining the
criteria for finishing a game. The ESP game proposed in [2]
only allows two players to participate. Once they achieve a
consensus, the current image is considered solved and the
game continues with the next image. In our study, we consider
a more generalized ESP game that incorporates the following
extensions:

1) The number of players, n, can be greater than 2.
2) The consensus threshold, m, can be any positive integer

that is not larger than n; that is, a label is considered
a consensus decision if it is proposed by m out of n
players.

3) The stopping condition, k, can be any positive integer;
that is, an image is considered correctly labeled if k
consensuses are reached.
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In our framework for generalized ESP games, the game
proposed by Ahn and Dabbish [2] corresponds to an instance
where n = 2, m = 2, and k = 1. Hereafter, we use
“ESP games” or “games” to refer to the proposed generalized
version. As some variants of ESP games ask players to label
audio clips instead of images, we use the term “puzzle” to
denote the target object that players must label by consensus.

In our model, we assume that the number of appropriate
labels for each puzzle is limited, and all remaining words
are considered inappropriate. For example, to label an image
containing a red car beside a river, “car,” “river,” “red” are
considered appropriate or good. Other words are considered
inappropriate or bad, even if there is a consensus among the
players. For example, players may input typos like “cra,”
“rive,” or “rde” by mistake, or words that are too vague or
general, such as “picture,” “photo,” “sea” and still achieve
a consensus occasionally. In such cases, we deem that the
current game yields a bad label and the quality of the game’s
output is decreased.

We model the utility of generalized ESP games, i.e., the
throughput rate of good labels for the puzzles and its rela-
tionship with the game’s settings, i.e., the number of players,
the consensus threshold, and the stopping condition. We find
that a tradeoff exists between the efficiency of the consensus
achieved and the quality of matched labels. Our contribution
in this work is three-fold:

1) We present a generalized ESP game in which the number
of players, the consensus threshold, and the stopping
condition are variable.

2) We propose a probabilistic model that can predict the
efficiency, quality, and utility of an ESP game based on
the game’s settings.

3) Via extensive simulations, we show that the proposed
model can accurately predict the optimal stopping con-
dition, which facilitates the maximal utility of a gen-
eralized ESP game. This feature can be used by game
service providers to maximize the outcome of games,
given that the number of players willing to invest time
and effort in the game is limited.

The remainder of this paper is organized as follows. We
present our probabilistic model for generalized ESP games
in Section II, and evaluate its performance via simulations in
Section III. Section IV details the optimal stopping conditions
predicted by our model. Then, in Section V, we summarize

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.220

180

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.220

184



our conclusions.

II. MODELING OF ESP GAMES

In this section, we describe the proposed probabilistic model
for generalized ESP games. First we detail our assumptions
and define the variables of the model. We then estimate the
number of rounds required to solve a puzzle, as well as the
number of good and bad labels suggested by participants
before a puzzle is finally solved. Finally, based on our model,
we evaluate the productivity of an ESP game by three char-
acteristics, namely, efficiency, quality, and utility.

A. Assumptions

Our model of an ESP game is based on the following
assumptions:

1) Round-based play. We assume that the game play is
round-based rather than continuous. In each round, a
player can only make one guess about the current puzzle,
and the system checks whether the players’ guesses
match at the end of each round.

2) Independent guess. For model tractability, we assume
that a player’s current guess is not affected by his/her
guesses in previous rounds.

3) Good and bad words. We assume that the number of
“good” labels for each puzzle is limited, so all remaining
words are considered “bad”, i.e., inappropriate. We
assume that players will do their best to guess good
words in the vocabulary. However, there is a possibility
that they will fail to pick the right words.

4) Uniform guess. We assume that players’ guesses are
drawn uniformly from both the good and bad vocabulary
pools.

In our model, we assume that n players participate in a
game. In addition, the consensus threshold is set to m, and
the stopping condition is set to k. For a certain puzzle, the
size of the good vocabulary is denoted by vgood, while that of
the bad vocabulary is denoted by vbad. Thus, the total number
of words that players can choose from is d = vgood + vbad.
The probability that a player will guess a word in the good
vocabulary is probgood; and the probability that a player will
guess a bad word is probbad, which is equal to 1− probgood.
The default value of n = 2, m = 2, vgood = 20, d = 1000,
probgood = 0.8.

B. Time Required to Solve Puzzles

We begin by modeling the number of rounds required to
solve a puzzle, i.e., how many rounds it takes to satisfy the
specified stopping condition k. The terms “consensus” and
“match” are used interchangeably to indicate that a label has
been proposed by m players, and denote the label as a matched
label. In addition, we define a discrete random variable, S, to
represent the number of rounds needed to solve a puzzle, and
write the probability mass function of S as follows:

fS(s) = Pr(no. of matches ≥ k in the sthround).

We assume the probability that exactly i matches will occur
in the first s rounds is P (i; s), and that the i matches will
comprise igood matches from good words and ibad matches
from bad words. The number of good matches, igood, must be
in the range 0 and min(i, vgood), and igood + ibad = i.

Now we focus on computing the probability of igood

matches in the first s rounds. On average, each player in the
first s rounds proposes sgood = s · probgood good words and
sbad = s · probbad bad words. We can model the probability
of one good match occurring in the first s rounds as

Pgood(1)

= 1 −
m−1∑
q=0

(
n · sgood

q

)(
1

vgood

)q (
1 − 1

vgood

)n·sgood−q

.

(1)
Next, we model the probability of igood good matches

occurring in the first s rounds. Therefore, the probability of
igood good matches in the first s rounds can be computed by

Pgood(igood)
= C

vgood

igood
Pgood(1)igood [1 − Pgood(1)]vgood−igood .

(2)

Similarly, the probability of ibad bad matches in the first s
rounds can be computed by

Pbad(ibad)
= Cvbad

ibad
Pbad(1)ibad [1 − Pbad(1)]vbad−ibad .

(3)

Combining Eq. 2 and Eq. 3, we can derive the probability of
i matches in the first s rounds as

P (i; s) =
min(i,vgood)∑

igood=0

Pgood (igood) Pbad (ibad).

After rewriting the probability mass function of S, the number
of rounds needed to solve a puzzle becomes

fS(s) = Pr (no. of matches ≥ k in the first s rounds)
−Pr (no. of matches ≥ k in the first (s − 1) rounds)

=
[
1 −

k−1∑
i=0

P (i; s)
]
−
[
1 −

k−1∑
i=0

P (i; s − 1)
]

.

Finally, we obtain the expected number of rounds needed
to solve a puzzle as follows:

E (s) =
∑
s=1

s · fS (s).

C. Number of Matches

Here we model how many good labels and bad labels are
matched. We treat the question of whether a certain word is a
match or not as a Bernoulli event, where “success” indicates
that the label is matched and “fail” indicates a non-match. The
probability of a good label being matched in the first s rounds
is shown in Eq. 1. Consequently, the sum of the Bernoulli
random variable of each good word will be a binomial random
variable with a success probability equal to Eq. 1. It can be
computed as ∑

vi∈Vgood

I(vi matched), (4)
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where Vgood denotes the set of good words, and I(·) denotes
the indicator function. Let Ngood(s) be the expected value of
Eq. 4, i.e., the expected number of good matches in the first
s rounds. The value can be derived by

Ngood(s) = vgood · Pgood(1).

Nbad(s), the expected number of bad matches in the first s
rounds, can be derived similarly by

Nbad(s) = vbad · Pbad(1).

D. Efficiency, Quality, and Utility

Here we explain how we evaluate the productivity of an ESP
game. We define the efficiency of an ESP game as the rate
that labels are matched for the given images. If the number of
participants remains the same, higher efficiency indicates that
the system is more “productive” given the same amount of
resources. In addition, we define the quality of an ESP game
as the proportion of good labels among all the matched labels.
Higher quality indicates that the matched labels are more likely
to be appropriate descriptions of the target puzzle.

However, there is often a trade-off between efficiency and
quality in a real system because configurations that yield
higher efficiency often lead to lower quality; conversely,
settings that yield higher quality may impact on the level of
efficiency. For this reason, we define the utility of an ESP
game as the product of the game’s efficiency and quality. This
definition enables us to explain utility as the throughput rate
of good labels produced by an ESP game.

Based on the probabilistic model presented in this section,
we can write the formula of the efficiency, quality, and utility
of an ESP game as follows:

Efficiency =
E (Ngood (s) + Nbad (s))

E (s)
;

Quality =
E (Ngood (s))

E (Ngood (s) + Nbad (s))
;

Utility =
E (Ngood (s))

E (s)
. (5)

III. MODEL VALIDATION

In this section, we describe the simulations used to validate
our model. After explaining the simulation setup, we compare
the utility computed by our model with that derived in the
simulations.

A. Simulation Setup

To investigate the accuracy of our model under different
settings, we change the parameters and observe whether the
simulated quantity of good and bad matches is identical to or
close to that computed by our analytical model. Specifically,
we change the four major variables, i.e., n, m, vgood and
probgood. When evaluating the effect of one variable, the other
three are set to their default values. Moreover, when we adjust
the consensus threshold, we set the number of players at 20,
as the consensus threshold must be no greater than the number
of players.
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Fig. 1. The relationships between utility and stopping conditions under
different n.
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Fig. 2. The relationships between efficiency, quality, and utility in an ESP
game.

B. Validation by Utility Curves

In the following, we investigate how the utility of an
ESP game changes under different stopping conditions, k.
As shown in Fig. 1, the utility reaches its maximum when
n = 2 and k = 10. As the number of participants increases,
the shapes of the utility curves change slightly, and the optimal
stopping condition shifts slightly to the lower k values. The
concave shape of the utility curve indicates that, as k increases,
there should be a tradeoff between the efficiency and quality
of ESP games such that the utility curve is not monotonic. To
demonstrate the tradeoff between efficiency and quality, we
plot the values of all three characteristics in Fig. 2. Clearly,
the game’s efficiency increases as k increases, while its utility
decreases. The utility reaches the highest point when k is
around 15.

We now consider the effects of the other parameters on the
utility curves of ESP games, and check the correspondence
between the results derived by our model and those of the
simulations. The effects of m, vgood, probgood are investigated.
However, because of space limitations, we only show the
conclusion we have. For all the parameters, the utility curves
computed by our model are very close to those derived by the
simulations. We observe that m and vgood have a strong effect
on the optimal k, while n and probgood have relatively little
effect.

IV. OPTIMAL STOPPING CONDITIONS

In this section, we focus on how to set the stopping
condition to maximize an ESP game’s utility. We explain the
derivation of the optimal stopping conditions, and discuss how
they change under different configurations. In addition, we
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Fig. 3. The effect of the parameters on the optimal stopping conditions

examine how our optimization method improves the game’s
utility.

A. Computation

The utility equation of our model (Eq. 5) is a discontinuous
function, so we cannot obtain its optimal point by differen-
tiating the function with respect to the stopping conditions.
Therefore, we derive it in a numerical way. From Section III-B,
we know that the utility function that takes the stopping
condition, k, as the only parameter is a unimodal function.
In addition, the domain of k is a positive integer, which is
usually small (less than 100 in most of our scenarios). Thus,
we use an exhaustive search to find the maximum utility within
a reasonable range, say, from 1 to 200. In our implementation,
this exhaustive search process takes only a few seconds on a
commodity PC.

B. Effect of Parameters

Here, we consider the effect of different parameters on
the optimal stopping conditions. Interestingly, the number of
participants does not affect the optimal stopping conditions, as
shown in Fig. 3(a). This is reasonable because the probability
of good matches and bad matches remains the same regardless
of the number of players, which only affects the rate of label
matching. The consensus threshold, on the other hand, affects
the optimal stopping conditions significantly when it increases,
as shown in Fig. 3(b). Raising the consensus threshold makes
label matching more difficult; however, the advantage is that
matching bad labels will become relatively more difficult
than matching good labels. Therefore, when the consensus
threshold increases, the matching rate of good labels will
grow faster than that of bad labels; consequently, the optimal
stopping condition is deferred to allow more good words to
be matched before finishing the puzzle.

Both increasing the number of good words and reducing
the probability of choosing good words increase the optimal
stopping conditions because they make matching good labels
more difficult. Thus, a relatively late stopping condition is
required in order to increase the proportion of good matches.

C. Benefit of Optimization

To demonstrate how optimization improves the game’s
achieved utility, we examine the gain derived by adopting the

5 10 15 20

1

2

3

4

(a) Number of players

U
til

ity

2

Optimal
Original

5 10 15 20
0

1

2

3

4

(b) Consensus threshold

U
til

ity

2

Optimal
Original

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Size of good vocabulary

U
til

ity

Optimal
Original

0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

(d) Probability of choosing good words

U
til

ity

0.1

Optimal
Original

Fig. 4. The effect of the parameters on the improvement in utility

optimal stopping condition suggested by our model. We define
the utility gain as the ratio of the utility of an optimized game
to that of a simple ESP game, i.e., with the stopping condition
set to 1.

The relationships between the utility gain and various game
parameters are shown in Fig. 4. We observe that, the opti-
mization achieved by adopting the optimal stopping condition
generally provides a utility boost that is 2 or more times higher
than that of the simple ESP game. Even if we consider a more
conservative scenario, where only two participants play the
game and the consensus threshold is set to 2, the utility gain
will be around 2, assuming the number of good words is 20
and the probability of choosing good words is 0.8. Moreover,
the utility gain increases rapidly as either the consensus
threshold or the size of the good vocabulary increases. The
utility gain is only significantly lower than 2 when the number
of participants is much higher than 2. However, we can still
achieve a utility gain of around 1.3, even the number of players
is as high as 20. These findings demonstrate that the utility
optimization provided by our analytical model can generally
provide twice as much utility as a non-optimized game, which
stops immediately after a label has been matched.

V. CONCLUSION

We have proposed a generalized ESP game in which the
number of players, the consensus threshold, and the stopping
condition are variable. In addition, we have presented an
analytical model that computes the efficiency, quality, and
utility of an ESP game given the game’s settings. Via extensive
simulations, we show that by applying the optimal stopping
condition predicted by our model, the game’s utility will be
usually be at least 2 times higher than that of a non-optimized
game. This feature can be leveraged by game service providers
to improve the utilization of finite player efforts in order
to maximize both the efficiency and quality of the matched
labels.
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