
QoS-Aware Web Service Recommendation
by Collaborative Filtering

Zibin Zheng, Student Member, IEEE, Hao Ma, Michael R. Lyu, Fellow, IEEE, and

Irwin King, Senior Member, IEEE

Abstract—With increasing presence and adoption of Web services on the World Wide Web, Quality-of-Service (QoS) is becoming

important for describing nonfunctional characteristics of Web services. In this paper, we present a collaborative filtering approach for

predicting QoS values of Web services and making Web service recommendation by taking advantages of past usage experiences of

service users. We first propose a user-collaborative mechanism for past Web service QoS information collection from different service

users. Then, based on the collected QoS data, a collaborative filtering approach is designed to predict Web service QoS values.

Finally, a prototype called WSRec is implemented by Java language and deployed to the Internet for conducting real-world

experiments. To study the QoS value prediction accuracy of our approach, 1.5 millions Web service invocation results are collected

from 150 service users in 24 countries on 100 real-world Web services in 22 countries. The experimental results show that our

algorithm achieves better prediction accuracy than other approaches. Our Web service QoS data set is publicly released for future

research.

Index Terms—Web service, collaborative filtering, QoS, service recommendation, service selection.

Ç

1 INTRODUCTION

WEB services are software components designed to
support interoperable machine-to-machine interac-

tion over a network [35]. The increasing presence and
adoption of Web services on the World Wide Web demand
effective recommendation and selection techniques, which
recommend the optimal Web services to a service users
from a large number of available Web services.

With the number increasing of Web services, Quality-of-
Service (QoS) is usually employed for describing nonfunc-
tional characteristics of Web services [34]. Among different
QoS properties of Web services, some properties are user
independent and have identical values for different users
(e.g., price, popularity, availability, etc.). The values of the user-
independent QoS properties are usually offered by service
providers or by third-party registries (e.g., UDDI). On the
other hand, some QoS properties are user dependent and
have different values for different users (e.g., response time,
invocation failure rate, etc.). Obtaining values of the user-
dependent QoS properties is a challenging task, since real-
world Web service evaluation in the client side [7], [31], [36]
is usually required for measuring performance of the user-
dependent QoS properties of Web services. Client-side Web
service evaluation requires real-world Web service invoca-
tions and encounters the following drawbacks:

. First, real-world Web service invocations impose
costs for the service users and consume resources of

the service providers. Some Web service invocations
may even be charged.

. Second, there may exist too many Web service
candidates to be evaluated and some suitable Web
services may not be discovered and included in the
evaluation list by the service users.

. Finally, most service users are not experts on Web
service evaluation and the common time-to-market
constraints limit an in-depth evaluation of the target
Web services.

However, without sufficient client-side evaluation, accu-
rate values of the user-dependent QoS properties cannot be
obtained. Optimal Web service selection and recommenda-

tion are thus difficult to achieve. To attack this critical
challenge, we propose a collaborative filtering based
approach for making personalized QoS value prediction
for the service users. Collaborative filtering [10] is the

method which automatically predicts values of the current
user by collecting information from other similar users or
items. Well-known collaborative filtering methods include
user-based approaches [2], [14], [32] and item-based

approaches [8], [16], [24]. Due to their great successes in
modeling characteristics of users and items, collaborative
filtering techniques have been widely employed in famous
commercial systems, such as Amazon,1 Ebay,2 etc. In this

paper, we systematically combine the user-based approach
and item-based approach for predicting the QoS values for
the current user by employing historical Web service QoS

data from other similar users and similar Web services.
Similar service users are defined as the service users who
have similar historical QoS experience on the same set of
commonly invoked Web services with the current user.

140 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

. The authors are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong,
China. E-mail: {zbzheng, hma, lyu, king}@cse.cuhk.edu.hk.

Manuscript received 14 Sept. 2009; revised 7 Feb. 2010; accepted 11 Feb. 2010;
published online 14 Dec. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2009-09-0194.
Digital Object Identifier no. 10.1109/TSC.2010.52.

1. http://www.amazon.com.
2. http://www.half.ebay.com.

1939-1374/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Different from the traditional Web service evaluation
approaches [7], [31], [36], our approach predicts user-
dependent QoS values of the target Web services without
requiring real-world Web service invocations. The Web
service QoS values obtained by our approach can be
employed by other QoS driven approaches (e.g., Web service
selection [33], [34], fault tolerant Web service [38], etc.).

The contribution of this paper is three-fold:

. First, we propose a user-collaborative mechanism for
collecting historical QoS data of Web services from
different service users.

. Second, we propose a Web service QoS value
prediction approach by combining the traditional
user-based and item-based collaborative filtering
methods. Our approach requires no Web service
invocations and can help service users discover
suitable Web services by analyzing QoS information
from similar users.

. Finally, we conduct a large-scale real-world experi-
mental analysis for verifying our QoS prediction
results. 100 real-world Web services in 22 countries
are evaluated by 150 service users in 24 countries.
1.5 millions Web service invocations are executed by
these service users and detailed experimental results
are reported. To the best of our knowledge, the scale
of our experiment is the largest among the published
work of Web service QoS evaluation and prediction.
Our real-world QoS data set has been released
online3 for promoting future research and making
our experiments reproducible.

The rest of this paper is organized as follows: Section 2
introduces a user-collaborative QoS data collection mechan-
ism. Section 3 presents the similarity computation method.
Section 4 proposes a Web service QoS value prediction
approach. Section 5 shows the implementation and experi-
ments. Section 6 describes related work and Section 7
concludes the paper.

2 USER-COLLABORATIVE QOS COLLECTION

To make accurate QoS value prediction of Web services
without real-world Web service invocations, we need to
collect past Web service QoS information from other service
users. However, it is difficult to collect Web service QoS
information from different service users due to: 1) Web
services are distributed over the Internet and are hosted by
different organizations. 2) Service users are usually isolated
from each other. 3) The current Web service architecture
does not provide any mechanism for the Web service QoS
information sharing.

Inspired by the recent success of YouTube4 and Wikipe-

dia,5 we propose the concept of user-collaboration for the Web
service QoS information sharing between service users. The
idea is that, instead of contributing videos (YouTube) or
knowledge (Wikipedia), the service users are encouraged to
contribute their individually observed past Web service

QoS data. Fig. 1 shows the procedures of our user-
collaborative QoS data collection mechanism, which are
introduced as follows:

1. A service user contributes past Web service QoS data
to a centralized server WSRec [40]. In the following
of this paper, the service users who require QoS
value prediction services are named as active users.

2. WSRec selects similar users from the training users for
the active user (technique details will be introduced
in Section 3). Training users represent the service users
whose QoS values are stored in the WSRec server
and employed for making value predictions for the
active users.

3. WSRec predicts QoS values of Web services for the
active user (technique details will be introduced in
Section 4).

4. WSRec makes Web service recommendation based
on the predicted QoS values of different Web
services (will be discussed in Section 4.4).

5. The service user receives the predicted QoS values
as well as the recommendation results, which can
be employed to assist decision making (e.g., service
selection, composite service performance predic-
tion, etc.).

In our user-collective mechanism, the active users who
contribute more Web service QoS data will obtain more
accurate QoS value predictions (details will be explained in
Section 4). By this way, the service users are encouraged to
contribute their past Web service QoS data. More architec-
ture and implementation details of WSRec will be intro-
duced in Section 5.1.

3 SIMILARITY COMPUTATION

This section introduces the similarity computation method
of different service users as well as different Web services
(Step 2 of Fig. 1).

3.1 Pearson Correlation Coefficient

Given a recommender system consisting of M training
users and N Web service items, the relationship between
service users and Web service items is denoted by an M �
N matrix, called the user-item matrix. Every entry in this

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 141

3. http://www.wsdream.net.
4. http://www.youtube.com.
5. http://www.wikipedia.org.

Fig. 1. Procedures of QoS Value Prediction.

matrix ru;i represents a vector of QoS values (e.g., response

time, failure rate, etc.) that is observed by the service user u

on the Web service item i. If user u did not invoke the Web

service item i before, then ru;i ¼ null. In the case that a Web

service includes multiple operations, each item (column) of

the user-item matrix represents a Web service operation

instead of a Web service.
Pearson Correlation Coefficient (PCC) has been intro-

duced in a number of recommender systems for similarity

computation, since it can be easily implemented and can

achieve high accuracy. In user-based collaborative filtering

methods for Web services, PCC is employed to calculate

the similarity between two service users a and u based on

the Web service items they commonly invoked using the

following equation:

Simða; uÞ ¼
P

i2I ðra;i � raÞðru;i � ruÞffiP
i2Iðra;i � raÞ

2
q ffiP

i2Iðru;i � ruÞ
2

q ; ð1Þ

where I ¼ Ia \ Iu is the subset of Web service items which

both user a and user u have invoked previously, ra;i is a

vector of QoS values of Web service item i observed by

service user a, and ra and ru represent average QoS values

of different Web services observed by service user a and u,

respectively. From this definition, the similarity of two

service users, Simða; uÞ, is in the interval of ½�1; 1�, where a

larger PCC value indicates that service user a and u are

more similar. When two service users have null Web service

intersection (I ¼ null), the value of Simða; uÞ cannot

be determined (Simða; uÞ ¼ null), since we do not have

information for the similarity computation.
Item-based collaborative filtering methods using PCC

[8], [24] are similar to the user-based methods. The

difference is that item-based methods employ the similarity

between the Web service items instead of the service users.

The similarity computation of two Web service items i and j

can be calculated by

Simði; jÞ ¼
P

u2U ðru;i � riÞðru;j � rjÞffiP
u2Uðru;i � riÞ

2
q ffiP

u2Uðru;j � rjÞ
2

q ; ð2Þ

where Simði; jÞ is the similarity between Web service item i

and j, U ¼ Ui \ Uj is the subset of service users who have

invoked both Web service item i and Web service item j

previously, and ri represents the average QoS values of the

Web service item i observed by different service users.

Simði; jÞ is also in the interval of ½�1; 1�. When two Web

service items have null service user intersection (U ¼ null),
the value of Simði; jÞ cannot be computed (Simði; jÞ ¼ null).

3.2 Significance Weighting

Although PCC can provide accurate similarity computa-

tion, it will overestimate the similarities of service users

who are actually not similar but happen to have similar QoS

experience on a few coinvoked Web services [19]. To

address this problem, we employ a significance weight to

reduce the influence of a small number of similar coinvoked

items. An enhanced PCC for the similarity computation

between different service users is defined as

Sim0ða; uÞ ¼ 2� jIa \ Iuj
jIaj þ jIuj

Simða; uÞ; ð3Þ

where Sim0ða; uÞ is the new similarity value, jIa \ Iuj is the

number of Web service items that are employed by both the

two users, and jIaj and jIuj are the number of Web services

invoked by user a and user u, respectively. When the

coinvoked Web service number jIa \ Iuj is small, the

significance weight 2�jIa\Iuj
jIajþjIuj will decrease the similarity estima-

tion between the service users a and u. Since the value of
2�jIa\Iuj
jIajþjIuj is between the interval of ½0; 1� and the valueSimða; uÞ
is in the interval of ½�1; 1�, the value of Sim0ða; uÞ is in the

interval of ½�1; 1�.
Just like the user-based methods, an enhanced PCC for

the similarity computation between different Web service
items is defined as

Sim0ði; jÞ ¼ 2� jUi \ Ujj
jUij þ jUjj

Simði; jÞ; ð4Þ

where jUi \ Ujj is the number of service users who invoked
both Web service item i and item j previously. Similar to
Sim0ða; uÞ, the value of Sim0ði; jÞ is also in the interval of
½�1; 1�.

As will be shown in our experimental results in Section 5.5,
the similarity weight enhances the QoS value prediction
accuracy of Web services. Based on the above similarity
computation approach, if an active user provides more past
QoS values of Web services to WSRec, the similarities
computation will be more accurate, which will consequently
improve the QoS value prediction accuracy. By this way, the
service users are encouraged to provide more Web service
QoS data.

4 QOS VALUE PREDICTION

In reality, the user-item matrix is usually very sparse [24],
which will greatly influence the prediction accuracy.
Predicting missing values for the user-item matrix can
improve the prediction accuracy of active users [28].
Consequently, we propose a missing value prediction
approach for making the matrix denser. The similar users
or items of a missing value in the user-item matrix will be
employed for predicting the value. By this approach, the
user-item matrix becomes denser. This enhanced user-item
matrix will be employed for the missing value prediction
for the active users.

4.1 Similar Neighbors Selection

Before predicting the missing values in the user-item matrix,
the similar neighbors of an entry, which include a set of
similar users and a set of similar items, need to be identified.
Similar neighbors selection is an important step for making
accurate missing value prediction, since dissimilar neighbors
will decrease the prediction accuracy. Traditional Top-K
algorithms rank the neighbors based on their PCC simila-
rities and select the top k most similar neighbors for making
missing value prediction. In practice, some entries in the
user-item matrix have limited similar neighbors or even do
not have any neighbors. Traditional Top-K algorithms ignore
this problem and still include dissimilar neighbors to predict

142 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

the missing value, which will greatly reduce the prediction
accuracy. To attack this problem, we propose an enhanced
Top-K algorithm, where neighbors with PCC similarities
smaller or equal to 0 will be excluded.

To predict a missing value ru;i in the user-item matrix, a set
of similar users SðuÞ can be found by the following equation:

SðuÞ ¼ fuajua 2 T ðuÞ; Sim0ðua; uÞ > 0; ua 6¼ ug; ð5Þ

and a set of similar Web service items SðiÞ can be found by
the following equation:

SðiÞ ¼ fikjik 2 T ðiÞ; Sim0ðik; iÞ > 0; ik 6¼ ig; ð6Þ

where T ðuÞ is a set of top k similar users to the user u and
T ðiÞ is a set of top k similar items to the item i. By this way,
the null intersection neighbors and the dissimilar neighbors
with negative correlations will be discarded from the
similar neighbor sets.

4.2 Missing Value Prediction

User-based collaborative filtering methods [2] (named as
UPCC for ease of presentation) apply similar users to
predict the missing QoS values by the following equation:

P ðru;iÞ ¼ uþ
P

ua2SðuÞ Sim
0ðua; uÞðrua;i � uaÞP

ua2SðuÞ Sim
0ðua; uÞ

; ð7Þ

where P ðru;iÞ is a vector of predicted QoS values of the
missing value ru;i in the user-item matrix, u is a vector of
average QoS values of different Web services observed by the
active user u, and ua is a vector of average QoS values of
different Web services observed by the similar service userua.

Similar to the user-based methods, item-based collabora-
tive filtering methods [24] (named as IPCC) engage similar
Web service items to predict the missing value by employ-
ing the following equation:

P ðru;iÞ ¼ iþ
P

ik2SðiÞ Sim
0ðik; iÞðru;ik � ikÞP

ik2SðiÞ Sim
0ðik; iÞ

; ð8Þ

where P ðru;iÞ is a vector of predicted QoS values of the
entry ru;i and i is a vector of average QoS values of Web
service item i observed by different service users.

When a missing value does not have similar users, we
use the similar items to predict the missing value, and vice
versa. When SðuÞ 6¼ ; ^ SðiÞ 6¼ ;, predicting the missing
value only with user-based methods or item-based methods
will potentially ignore valuable information that can make
the prediction more accurate. In order to predict the missing
value as accurate as possible, we systematically combine
user-based and item-based methods to fully utilize the
information of the similar users and similar items.

Since user-based method and item-based method may
achieve different prediction accuracy, we employ two
confidence weights, conu and coni, to balance the results from
these two prediction methods. Confidence weights are
calculated by considering the similarities of the similar
neighbors. For example, assuming a missing value in the
user-item matrix has three similar users with PCC similarity
{1, 1, 1} and has three similar items with PCC similarity {0.1,
0.1, 0.1}. In this case, the prediction confidence by user-based
method is much higher than the item-based method, since the

similar users have higher similarities (PCC values) compar-
ing with the similar items. Consequently, conu is defined as

conu ¼
X

ua2SðuÞ

Sim0ðua; uÞP
ua2SðuÞ Sim

0ðua; uÞ
� Sim0ðua; uÞ ð9Þ

and coni is defined as

coni ¼
X
ik2SðiÞ

Sim0ðik; iÞP
ik2SðiÞ Sim

0ðik; iÞ
� Sim0ðik; iÞ; ð10Þ

where conu and coni are the prediction confidence of the
user-based method and item-based method, respectively,
and a higher value indicates a higher confidence on the
predicted value P ðru;iÞ.

Since different data sets may inherit their own data
distribution and correlation natures, a parameter �

(0 � � � 1) is employed to determine how much our QoS
value prediction approach relies on the user-based method
and the item-based method. When SðuÞ 6¼ ; ^ SðiÞ 6¼ ;, our
method predicts the missing QoS value ru;i by employing
the following equation:

P ðru;iÞ ¼ wu � uþ
P

ua2SðuÞ Sim
0ðua; uÞðrua;i � uaÞP

ua2SðuÞ Sim
0ðua; uÞ

 !

þ wi � iþ
P

ik2SðiÞ Sim
0ðik; iÞðru;ik � ikÞP

ik2SðiÞ Sim
0ðik; iÞ

 !
;

ð11Þ

where wu and wi are the weights of the user-based method
and the item-based method, respectively (wu þ wi ¼ 1). wu
is defined as

wu ¼
conu � �

conu � �þ coni � ð1� �Þ
ð12Þ

and wi is defined as

wi ¼
coni � ð1� �Þ

conu � �þ coni � ð1� �Þ
; ð13Þ

where both wu and wi are the combinations of the confidence
weights (conu and coni) and the parameter �. The prediction
confidence of the missing value P ðru;iÞ by our approach
using (11) can be calculated by equation

con ¼ wu � conu þ wi � coni: ð14Þ

When SðuÞ 6¼ ; ^ SðiÞ ¼ ;, since there are no similar
items, the missing value prediction degrades to the user-
based approach by employing (7), and the confidence of the
predicted value is con ¼ conu. Similarly, when SðuÞ ¼ ; ^
SðiÞ 6¼ ;, the missing value prediction relies only on the
similar items by employing (8), and the confidence of the
predicted value is con ¼ coni. When SðuÞ ¼ ; ^ SðiÞ ¼ ;,
since there are no similar users or items for the missing
value ru;i, we do not predict the missing value in the user-
item matrix. The prediction of P ðru;iÞ is defined as

P ðru;iÞ ¼ null: ð15Þ

By the above design, instead of predicting all the missing
values in the user-item training matrix, we only predict the
missing values, which have similar users or similar items.

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 143

The consideration is that no prediction is better than bad
prediction, since the user-item matrix will be involved for
predicting QoS values for the active users and bad
prediction will decrease the prediction accuracy for the
active users. We also propose confidence weights (conu and
coni) to balance the user-based prediction and the item-
based prediction automatically. Moreover, a parameter � is
employed to enhance the feasibility of our method to
different data sets. These designs are different from all other
existing prediction methods and the experimental results in
Section 5 show that these designs can significantly enhance
the QoS value prediction accuracy of Web services.

4.3 Prediction for Active Users

After predicting missing values in the user-item matrix, we
apply the matrix for predicting QoS values for active users.
The prediction procedures are similar to the missing value
prediction in Section 4.2. The only difference is that when
SðuÞ ¼ ; ^ SðiÞ ¼ ;, we predict the QoS values by employ-
ing the user-mean (UMEAN) and item-mean (IMEAN),
where UMEAN is a vector of average QoS values of
different Web services observed by the service user a and
IMEAN is a vector of average QoS values of the Web service
item i observed by different service users. The prediction
formula is defined as

P ðra;iÞ ¼ wu � ra þ wi � ri; ð16Þ

where ra is the UMEAN and ri is the IMEAN. In this case,
the confidence of the predicted value is con ¼ 0.

4.4 Web Service Recommendation

After predicting the QoS values of Web services for an
active user, the predicted QoS values can be employed by
the following ways: 1) For a set of functionally equivalent
Web services, the optimal one can be selected out based on
their predicted QoS performance and the prediction
confidence. 2) For the Web services with different
functionalities, the top k best performing Web services
can be recommended to the service users to help them
discover potential good performing Web services. 3) The
top k active service users, who have good predicted QoS
values on a Web service, can be recommended to the
corresponding service provider to help the provider find its
potential customers.

Different from all other existing prediction methods, our
method not only provides the predicted QoS values for the
active users, but also includes the prediction confidences,
which can be employed by the service users for better Web
service selection.

4.5 Computational Complexity Analysis

This section discusses the upper bound on the worst-case
computational complexity of the QoS value prediction
algorithms. We assume there are m service users and n
Web services in the training matrix.

4.5.1 Complexity of Similarity Computation

In Section 3, the computational complexity of Simða; uÞ is
OðnÞ, since there are at most n intersecting Web services
between service user a and service user u. The computa-
tional complexity of Simði; jÞ is OðmÞ, since there are at

most m intersecting service users between Web service i
and Web service j.

4.5.2 Complexity of UPCC

When predicting the missing values for an active user
employing user-based PCC algorithm (7), we need to
compute similarities of the active user with all the m
training users in the training matrix (totally m similarity
computations). As discussed in Section 4.5.1, the computa-
tional complexity of each similarity computation is OðnÞ.
Therefore, the computational complexity of similarity
computation is OðmnÞ.

The computational complexity of each missing value
prediction for the active user is OðmÞ, since at most
m similar users will be employed for the prediction. There
are at most n missing values in an active user, so the
computational complexity of the value prediction for an
active user is OðmnÞ. Therefore, the total computational
complexity of UPCC (including similarity computation and
value prediction) is OðmnÞ.

4.5.3 Complexity of IPCC

When predicting the missing values for an active Web service
employing item-based PCC algorithm (8), we need to
compute similarities of the current Web service with all the
n Web services in the training matrix (totally n similarity
computations). As discussed in Section 4.5.1, the computa-
tional complexity of each similarity computation is OðmÞ.
Therefore, the computational complexity of similarity com-
putation is OðmnÞ.

After the similarity computation, for each missing value
of an active Web service, the value prediction computa-
tional complexity is OðnÞ, since at most n similar Web
services will be employed for the value prediction. There
are at most m missing values in an active Web service, so
the computational complexity of value prediction for an
active Web service is OðmnÞ. Therefore, the same as UPCC,
the computational complexity of IPCC is also OðmnÞ.

4.5.4 Complexity of Training Matrix Prediction

In Section 4.2, we predict the missing values in the training
matrix. When employing UPCC approach, the computa-
tional complexity is Oðm2nÞ since there are at most m rows
(users) to be predicted. When employing IPCC approach,
the computational complexity is Oðmn2Þ because there are
at most n columns (Web services) to be predicted.

Since our approach is a linear combination of the UPCC
and IPCC approaches, the computational complexity of our
approach is Oðm2nþmn2Þ. Because the value prediction for
the training matrix can be precomputed and recomputation
is required only when the training matrix is updated, it will
not influence the real-time prediction performance for
active users.

4.5.5 Complexity of Active User Prediction

As discussed in Section 4.5.2, the computational complexity
of UPCC for predicting values of an active user is OðmnÞ.
When employing IPCC, the similarities of different columns
(Web services) can be precomputed and there are at most
n missing values in the active user. For the prediction of
each missing value, the computational complexity is OðnÞ,

144 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

since at most n similar Web services will be employed for

the prediction. Therefore, the computational complexity of

IPCC for an active user is Oðn2Þ.
Since our QoS value prediction approach is a linear

combination of UPCC and IPCC, the computational com-

plexity of our approach for an active user is Oðmnþ n2Þ.

5 IMPLEMENTATION AND EXPERIMENTS

5.1 Implementation

A prototype named WSRec [40] is implemented with JDK,

Eclipse, Axis2,6 and Apache Tomcat. In our prototype

design, WSRec controls a number of distributed computers

in different countries from Planet-lab7 for monitoring the

publicly available real-world Web services and collecting

their QoS performance data. These collected real-world Web

service QoS data are employed for studying the performance

of our prediction approach. Fig. 2 shows the architecture of

WSRec, which includes the following components

. The Input Handler receives and processes the Web
service QoS values provided by an active service
user.

. The Find Similar Users module finds similar users
from the training users of WSRec for the active user.

. The Predict Missing Data module predicts the
missing QoS values for the active user using our
approach and saves the predicted values.

. The Recommender module employs the predicted
QoS values to recommend optimal Web services to
the active user. This module also returns all
predicted values to the active user.

. The Test Case Generator generates test cases for the Web
service evaluations. Axis2 is employed for generating
test cases automatically in our implementation.

. The Training Data stores the collected Web service
QoS values, which will be employed for predicting
missing values of the active user.

. The Test Result Handler collects the Web service
evaluation results from the distributed computers.

. The Web Service Monitor controls a set of distributed
computers to monitor the Web services and record
their QoS performance.

To obtain information of real-world Web services from the
Internet, crawling programs are implemented. Totally 21,197
publicly available Web services are obtained by crawling
Web service information from: 1) Well-known companies
(e.g., Google, Amazon, etc.), 2) portal Websites that list publicly
available Web services (e.g., xmethods.net, webservicex.net,
etc.), and 3) Web service searching engines (e.g., seekda.com,
esynaps.com, etc.). We successfully generate client stub classes
for 18,102 Web services using the WSDL2Java tool from the
Axis2 package. A total of 343,917 Java Classes are generated.
The Web services which fail during the client stub generation
are mainly due to network connection problems (e.g., connec-
tion timeout, HTTP 400, 401, 403, 500, 502, and 503),
FileNotFoundException and InvalidWSDLFiles.

Since it is difficult to monitor all the Web services at the
same time, we randomly select 100 Web services which are
located in 22 countries for our experiments. Some of the
initially selected Web services have to be replaced due to:
1) authentication required, 2) permanent invocation failure
(e.g., the Web service is shutdown), and 3) too long
processing duration. One hundred and fifty computers in
24 countries from Planet-Lab [6] are employed to monitor
and collect QoS information on the selected Web services.
About 1.5 millions Web service invocations are executed
and the test results are collected.

By processing the experimental results, we obtain a
150� 100 user-item matrix, where each entry in the matrix
is a vector including two QoS values, i.e., response time and
failure rate. Response time represents the time duration
between the client sending a request and receiving a
response, while failure rate represents the ratio between
the number of invocation failures and the total number of
invocations. In our experiments, each service user invokes
each Web service for 100 times. Figs. 3a and 3b show the
value distributions of response time and failure rate of the
15,000 entries in the matrix, respectively. Fig. 3a shows that
the means of response times of most entries are smaller than
5,000 milliseconds and different Web service invocations
contain large variances in real environment. Fig. 3b shows
that failure probabilities of most entries (85.68 percent) are
smaller than 1 percent, while failure probabilities of a small
part of entries (8.34 percent) are larger than 16 percent.

In the following sections, the unit of response time is
milliseconds. Comprehensive analysis of the experimental
results will be reported and more experimental raw data
(e.g., the distributed computer nodes and Web services, the
QoS user-item matrix, all the 1.5 millions invocation results,
etc.) are provided online.8

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 145

Fig. 2. Architecture of WSRec.

Fig. 3. Value distributions of the user-item matrix.

6. http://ws.apache.org/axis2.
7. http://www.planet-lab.org. 8. http://www.wsdream.net.

5.2 Experimental Setup

We divide the 150 service users into two parts, one part as

training users and the other part as active users. For the

training matrix, we randomly remove entries to make the

matrix sparser with different density (e.g., 10, 20 percent,

etc.). For an active user, we also randomly remove different

number of entries and name the number of remaining

entries as given number, which denotes the number of entries

(QoS values) provided by the active user. Different methods

are employed for predicting the QoS values of the removed

entries. The original values of the removed entries are used

as the expected values to study the prediction accuracy. The

experimental parameters and their descriptions are sum-

marized in Table 1.
We use Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) metrics to measure the prediction

quality of our method in comparison with other collabora-

tive filtering methods. MAE is defined as

MAE ¼
P

i;j jri;j � bri;jj
N

ð17Þ

and RMSE is defined as

RMSE ¼

ffiP
i;jðri;j � bri;jÞ2

N

s
; ð18Þ

where ri;j denotes the expected QoS value of Web service j
observed by user i, bri;j is the predicted QoS value, and N is
the number of predicted values.

5.3 Performance Comparison

To study the prediction performance, we compare our
approach (named as WSRec) with four other well-known
approaches: user-mean, item-mean, user-based prediction
algorithm using PCC (UPCC) [2], and item-based algorithm
using PCC (IPCC) [24]. UMEAN employs the average QoS
performance of the current service user on other Web
services to predict the QoS performance of other Web
services, while IMEAN employs the average QoS perfor-
mance of the Web service observed by other service users to
predict the QoS performance for the current active user.
UPCC only employs similar users for the QoS performance
prediction by employing (7), while IPCC only employs
similar Web services for the prediction by employing (8).

Table 2 shows the MAE and RMSE results of different
prediction methods on response time and failure rate employ-
ing 10, 20, and 30 percent densities of the training matrix,
respectively. For the active users, we vary the number of
provided QoS values (given number) as 10, 20, and 30 by
randomly removing entries (named as G10, G20, and G30,

146 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

TABLE 1
Experimental Parameter Descriptions

TABLE 2
MAE and RMSE Comparison with Basic Approaches (a Smaller MAE or RMSE Value Means a Better Performance)

respectively, in Table 2). We also vary the number of
training users as 100 and 140. We set � ¼ 0:1, since the item-
based approach achieves better prediction accuracy than
the user-based approach in our Web service QoS data set.
The detailed investigation of the � value setting will be
shown in Section 5.8. Each experiment is run for 50 times
and the average MAE and RMSE values are reported. We
did not report the confidence interval of the experiments
since those values are very small.

The experimental results of Table 2 shows that:

. Under all experimental settings, our WSRec method
obtains smaller MAE and RMSE values consistently,
which indicates better prediction accuracy.

. The MAE and RMSE values of WSRec become
smaller with the increase of the given number from
10 to 30, indicating that the prediction accuracy can
be improved by providing more QoS values.

. With the increase of the training user number from
100 to 140, and with the increase of the training
matrix density from 10 to 30 percent, the prediction
accuracy also achieve significant enhancement, since
larger and denser training matrix provides more
information for the prediction.

. The item-based approaches (IMEAN, IPCC) outper-
form the user-based approaches (UMEAN, UPCC).
This observation indicates that similar Web services
provide more information than similar users for the
prediction in our user-item matrix.

In order to compare the Web service QoS value
prediction performance of our approach with other state-
of-the-art memory-based collaborative filtering approaches,
extensive experiments are conducted. We compare with the
following algorithms: Personalized QoS Prediction (PQP)
[25], and Similarity Fusion (SF) [30]. PQP [25] predicts
missing values by employing QoS data from similar users,
while SF [30] predicts missing values by fusing the
predictions from three sources, i.e., predictions based on
ratings of the same item by other users, predictions based
on different item ratings made by the same user, and
predictions based on data from similar users on similar
items. Tables 3 and 4 summarize our experimental results.
As shown in these tables, our method outperforms the
competitive approaches in various experimental settings.

5.4 Impact of the Missing Value Prediction

The missing value prediction in Section 4.2 makes use of the
similar users and similar items to predict the missing values
of the training matrix to make it more denser. Our WSRec
method alleviates the potential negative influences of bad
prediction on the missing data by not predicting the
missing value if it has neither similar users nor similar
items. To study the impact of the missing value prediction, we
implement two versions of WSRec. One version employs
missing value prediction while the other version does not.
In the experiments, we vary the given number of the active
users from 5 to 50 with a step value of 5 and vary the values
of training users from 20 to 140 with a step value of 20. In
reality, the training matrix is usually very sparse, therefore,
we set the density ¼ 10 percent to make the training matrix
sparser. We also set Top-K = 10, which means that the top 10
similar neighbors will be employed for value prediction.

Fig. 4 shows the experimental results, where Figs. 4a, 4b,
4c, and 4d show the experimental results of response time
and Figs. 4e 4f, 4g, and 4h show the experimental results of
failure rate. Fig. 4 indicates that:

. WSRec with missing value prediction outperforms
WSRec without missing value prediction consistently in
all experimental settings, indicating that by predict-
ing missing values for the training matrix, we are able
to obtain more accurate prediction results.

. The prediction accuracies of both the two versions of
WSRec enhance with the increase of given number
and training user number. Since more QoS values
and a larger training matrix provide more informa-
tion for the missing value prediction.

. The same as the results shown in Table 2, the results
of RMSE is following the same trend of MAE. Due to
space limitation, in the following experiments, we
only report the experimental results of MAE.

5.5 Impact of the Significance Weight

Significance weight makes the similarity computation more
reasonable in practice by devaluing the similarities which
look similar but are actually not. To study the impact of the
significance weight, we implement two versions of WSRec,
one version employs significance weight for the similarity
computation, while the other version does not. In the

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 147

TABLE 3
MAE Comparison on Response Time (Smaller Value Means Better Performance)

TABLE 4
MAE Comparison on Failure Rate (Smaller Value Means Better Performance)

experiment, we set given number ¼ 5, � ¼ 0:1, and training
users ¼ 140. We vary the density of the training matrix
from 5 to 50 percent with a step value of 5 percent. We do
not study the density value of 0, since in that case the
training matrix contains no information and cannot be
employed for the QoS value prediction.

Figs. 5a and 5c employ Top-K ¼ 5, while Figs. 5b and 5d
employ Top-K ¼ 10. Fig. 5 shows that WSRec with sig-
nificance weight obtains better prediction accuracy consis-
tently than WSRec without significance weight. The
improvement is not significant since the improvement of
excluding dissimilar neighbors is alleviated by a lot of
normal cases. The cases of excluding dissimilar neighbors
do not happen very often comparing with the normal cases
in our experiments.

As shown in Fig. 5, when the training matrix density
increase, the prediction improvement of employing sig-
nificance weight becomes more significant. Since with denser
training matrix, more similar users will be found for the
current user and the influence of excluding dissimilar users
is thus becoming more significant.

5.6 Impact of the Confidence Weight

Confidence weight determines how to make use of the
predicted values from the user-based method and the
item-based method to achieve higher prediction accuracy

automatically. To study the impact of the confidence weight,
we also implement two versions of WSRec, one version
employs confidence weight, while the other version does not.
In the experiments, Top-K ¼ 10 and training users ¼ 140.
We also set � ¼ 0:5, so that how to combine the user-based
results and item-based results is not influenced by � and is
determined by the confidence weight alone.

Figs. 6a and 6c show the experimental results with given
number change, while Figs. 6b and 6d show the experi-
mental results with training matrix density change. As
shown in Fig. 6, WSRec with confidence weight outperforms
WSRec without confidence weight for both the response time
and failure rate. Fig. 6 also shows that the MAE values
become smaller with the increase of the given number and
the training matrix density, which is consistent with the
observation from Table 2.

5.7 Impact of Enhanced Top K

In our WSRec prediction method, we exclude dissimilar
users with negative PCC values from the Top-K similar
neighbors by using an enhanced Top-K algorithm. To study
the impact of our enhanced Top-K algorithm on the
prediction results, we implement two versions of WSRec.
One version employs enhanced Top-K, while the other does
not. Figs. 7a and 7c show the experimental results of
response time and failure rate with given number change

148 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

Fig. 5. Impact of the significance weight.

Fig. 4. Impact of the training matrix prediction.

under the experimental settings of density ¼ 10 percent,
training users ¼ 140, � ¼ 0:1, and Top-K ¼ 10. Figs. 7b
and 7d show the MAE values with top k value change
under the experimental settings of density ¼ 10 percent,
given number ¼ 5, and training users ¼ 140.

Fig. 7 shows that WSRec with the enhanced Top-K outper-
forms WSRec without the enhanced Top-K for both the response
time and failure rate. The prediction performance of WSRec
without the enhanced Top-K is not stable, since it may include
dissimilar neighbors, which will greatly influence the
prediction accuracy. Moreover, as shown in Figs. 7a and
7c, while the given number increases, differences of the two
WSRec versions in MAE decrease. Since with larger given
number, more similar users can be found for the current
active user, the probability of selecting dissimilar users with
negative PCC values as the top 10 similar user (Top-K ¼ 10
in the experiment) is small. Our enhanced Top-K algorithm
works only at situations that the number of similar users is
smaller than the value of Top-K. Fig. 7 shows that the
parameter Top-K can be set to be a large value for obtaining
optimal performance in our WSRec approach.

5.8 Impact of �

Different data sets may have different data correlation
characteristics. Parameter � makes our prediction method
more feasible and adaptable to different data sets. If � ¼ 1,

we only extract information from the similar users, and if
� ¼ 0, we only consider valuable information from the
similar items. In other cases, we fuse information from both
similar users and similar items based on the value of � to
predict the missing value for active users.

To study the impact of the parameter � to our
collaborative filtering method, we set Top-K ¼ 10 and
training users ¼ 140. We vary the value of � from 0 to 1
with a step value of 0.1. Figs. 8a and 8c show the results of
given number ¼ 10; 20, and 30 with 20 percent density
training matrix of response time and failure rate, respectively.
Figs. 8b and 8d show the results of density ¼ 10; 20, and
30 percent with given number ¼ 20 of response time and
failure rate, respectively.

Observing from Fig. 8, we draw the conclusion that the
value of � impacts the recommendation results significantly,
and a suitable � value will provide better prediction
accuracy. Another interesting observation is that, in Fig. 8a,
with the given number increasing from 10 to 30, the optimal
value of �, which obtains the minimal MAE values of the
curves in the figure, shifts from 0.1 to 0.3. This indicates that
the optimal � value is influenced by the given number.
Similar to the observation in Figs. 8a and 8c, the optimal value
of � for failure rate shifts from 0 to 0.7, indicating that the
optimal � value is influenced not only by the given number,
but also by the nature of data sets. For both the response time

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 149

Fig. 7. Impact of the enhanced Top K.

Fig. 8. Impact of the lambda.

Fig. 6. Impact of the confidence weight.

and failure rate, the similar items are more important than the
similar users when limited Web service QoS values are given
by the active users, while the similar users become more
important when more QoS values are available from
the active users. This observation is also confirmed by the
experimental results reported in Table 2, where the IPCC
outperforms the UPCC for all the given number ¼ 10, 20, and
30. This is reasonable, since with limited user-given QoS
values, the UMEAN prediction method, which employs the
mean of the user-given QoS values to predict the QoS values
of other Web services for this user, exhibits higher probability
to be inaccurate. This will influence the prediction perfor-
mance of UPCC, which is based on the value predicted by
UMEAN for the missing value prediction as shown in (7).

As shown in Figs. 8b and 8d, with the given number of
20, all the three curves (Density 10, 20, and 30 percent) of
response time and failure rate obtain the best prediction
performance with the same � value (� ¼ 0:2 for response time
and � ¼ 0 for failure rate), indicating that the optimal � value
is not influenced by the training matrix density.

6 RELATED WORK AND DISCUSSION

For presenting the nonfunctional characteristics of the Web
services, QoS models of Web services have been discussed
in a number of research investigations [13], [20], [21], [23],
[29]. Based on the QoS performance of Web services,
various approaches have been proposed for Web service
selection [1], [5], [9], [33], [36], which enables optimal Web
service to be identified from a set of functionally similar or
equivalent Web service candidates. To obtain the values of
the user-dependent QoS properties for a certain user, Web
service evaluations from the client side are usually required
[7], [18], [31]. To avoid the expensive real-world Web
service invocations, our work employs the information of
other similar service users as well as similar Web services to
predict the QoS values for the active users.

Collaborative filtering methods are widely adopted in
recommender systems [3], [17], [22]. Two types of colla-
borative filtering approaches are widely studied: memory
based and model based. The most analyzed examples of
memory-based collaborative filtering include user-based
approaches [2], [10], [14], item-based approaches [8], [16],
[24], and their fusion [30], [40]. User-based approaches
predict the ratings of active users based on the ratings of
their similar users, and item-based approaches predict the
ratings of active users based on the computed information
of items similar to those chosen by the active users. User-
based and item-based approaches often use the PCC
algorithm [22] and the VSS algorithm [2] as the similarity
computation methods. PCC-based collaborative filtering
generally can achieve higher performance than VSS, since it
considers the differences in the user rating style. Wang et al.
[30] combined user-based and item-based collaborative
filtering approaches for movie recommendation. Different
from Wang’s work which uses similarity fusion, our
approach considers the prediction confidence weights and
design a parameter � to determine how much our QoS
value prediction approach relies on the user-based method
and the item-based method. Moreover, our approach
predicts the missing values for the training matrix first
before the QoS value prediction for active users.

In the model-based collaborative filtering approaches,
training data sets are used to train a predefined model.
Examples of model-based approaches include the clustering
model [32], aspect models [11], [12], [26] and the latent
factor model [4]. Our collaborative filtering approach
focuses on the memory-based methods since they are more
intuitive to interpret the Web service recommendations.
More investigations on the model-based approaches and
imputation techniques for Web service QoS value predic-
tion will be conducted in our future work. Different from
the previous work [17], [22], [24] which mainly focuses on
movie recommendation, our work provides a comprehen-
sive study of how to provide accurate QoS value prediction
for Web services.

There is limited work in the literature employing
collaborative filtering methods for Web service QoS value
prediction. One of the most important reasons that obstruct
the research is that there is no large-scale real-world Web
service QoS data sets available for studying the prediction
accuracy. Without convincing and sufficient real-world
Web service QoS data, the characteristics of Web service
QoS information cannot be fully mined and the perfor-
mance of the proposed algorithms cannot be justified. Work
[15], [27] mention the idea of applying collaborative filtering
methods to Web service recommendation and employs the
MovieLens data set for experimental studies. However,
employing the movie rating data set for studying Web
service QoS value prediction is not convincing enough.
Shao et al. [25] propose a user-based personalized QoS
value prediction for Web services. In Section 5.3, we have
shown that our approach outperforms this approach under
different experimental settings.

Real-world Web service evaluations from distributed
locations is not an easy task. In our previous work [36], [37],
a real-world Web service evaluation has been conducted by
five service users on eight publicly accessible Web services.
Since the scale of this experiment is too small, the
experimental results are not scalable for future research.
In this paper, we conduct a large-scale real-world evalua-
tion by involving 150 service users and 100 real-world Web
services. 1.5 millions Web service invocation results are
collected. This is the largest scale of QoS data that have even
been collected for Web services. Our Web service QoS data
set is released to promote future research and make our
experimental study reproducible. This Web service QoS
data set not only be employed for investigating Web service
Qos value prediction, but also be employed for a lot of other
QoS driven research topics, such as service selection [33],
optimal service composition [34], fault tolerant Web
services [38], composite service reliability prediction [39],
Web service recommendation [40], and so on.

7 CONCLUSION

In this paper, we propose an approach for predicting QoS
values of Web services by systematically combining the
user-based PCC approach and the item-based PCC ap-
proach. Large-scale real-world experiments are conducted
and the comprehensive experimental results show the
effectiveness and feasibility of our approach.

Our ongoing research includes collecting QoS perfor-
mance of more real-world Web services from more service
users. More investigations will be conducted for QoS value

150 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

updates, since the QoS values of Web services are changing
from time to time in reality. In our Web service evaluations
reported in this paper, to reduce the effect of the Web
service invocations to the real-world Web services, we only
selected one operation from a Web service for making
evaluations and employ the performance of this operation
to present the performance of the Web service. More
investigations will be conducted on different operations of
the same Web service in our future work.

ACKNOWLEDGMENTS

The authors appreciate the reviewers for their extensive and
informative comments for the improvement of this manu-
script. The work described in this paper was fully
supported by grants from the Research Grants Council of
the Hong Kong Special Administrative Region, China
(Project No. CUHK4154/09E and CUHK4128/08E).

REFERENCES

[1] P.A. Bonatti and P. Festa, “On Optimal Service Selection,” Proc.
14th Int’l Conf. World Wide Web (WWW ’04), pp. 530-538, 2005.

[2] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering,” Proc. 14th Ann.
Conf. Uncertainty in Artificial Intelligence (UAI ’98), pp. 43-52, 1998.

[3] R. Burke, “Hybrid Recommender Systems: Survey and Experi-
ments,” User Modeling and User-Adapted Interaction, vol. 12, no. 4,
pp. 331-370, 2002.

[4] J. Canny, “Collaborative Filtering with Privacy via Factor
Analysis,” Proc. 25th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’02), pp. 238-245, 2002.

[5] V. Cardellini, E. Casalicchio, V. Grassi, and F.L. Presti, “Flow-
Based Service Selection for Web Service Composition Supporting
Multiple QoS Classes,” Proc. Fifth Int’l Conf. Web Services (ICWS
’07), pp. 743-750, 2007.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay Testbed
for Broad-Coverage Services,” ACM SIGCOMM Computer Comm.
Rev., vol. 33, no. 3, pp. 3-12, July 2003.

[7] V. Deora, J. Shao, W. Gray, and N. Fiddian, “A Quality of Service
Management Framework Based on User Expectations,” Proc. First
Int’l Conf. Service-Oriented Computing (ICSOC ’03), pp. 104-114,
2003.

[8] M. Deshpande and G. Karypis, “Item-Based Top-N Recommenda-
tion,” ACM Trans. Information System, vol. 22, no. 1, pp. 143-177,
2004.

[9] J.E. Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz, “Qos-
Driven Selection of Web Services for Transactional Composition,”
Proc. Sixth Int’l Conf. Web Services (ICWS ’08), pp. 653-660, 2008.

[10] J.L. Herlocker, J.A. Konstan, A. Borchers, and J. Riedl, “An
Algorithmic Framework for Performing Collaborative Filtering,”
Proc. 22nd Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’99), pp. 230-237, 1999.

[11] T. Hofmann, “Collaborative Filtering via Gaussian Probabilistic
Latent Semantic Analysis,” Proc. 26th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’03),
pp. 259-266, 2003.

[12] T. Hofmann, “Latent Semantic Models for Collaborative Filtering,”
ACM Trans. Information System, vol. 22, no. 1, pp. 89-115, 2004.

[13] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos Aggregation
for Web Service Composition Using Workflow Patterns,” Proc.
Eighth IEEE Int’l Enterprise Computing Conf., pp. 149-159, 2004.

[14] R. Jin, J.Y. Chai, and L. Si, “An Automatic Weighting Scheme for
Collaborative Filtering,” Proc. 27th Int’l ACM SIGIR Conf. Research
and Development in Information Retrieval (SIGIR ’04), pp. 337-344,
2004.

[15] K. Karta, “An Investigation on Personalized Collaborative Filter-
ing for Web Service Selection,” Honours Programme thesis, Univ.
of Western Australia, Brisbane, 2005.

[16] G. Linden, B. Smith, and J. York, “Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering,” IEEE Internet Comput-
ing, vol. 7, no. 1, pp. 76-80, Jan./Feb. 2003.

[17] H. Ma, I. King, and M.R. Lyu, “Effective Missing Data Prediction
for Collaborative Filtering,” Proc. 30th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’07),
pp. 39-46, 2007.

[18] E. Maximilien and M. Singh, “Conceptual Model of Web Service
Reputation,” ACM SIGMOD Record, vol. 31, no. 4, pp. 36-41, 2002.

[19] M.R. McLaughlin and J.L. Herlocker, “A Collaborative Filtering
Algorithm and Evaluation Metric that Accurately Model the User
Experience,” Proc. 27th Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’04), pp. 329-336, 2004.

[20] D.A. Menasce, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, Nov./Dec. 2002.

[21] M. Ouzzani and A. Bouguettaya, “Efficient Access to Web
Services,” IEEE Internet Computing, vol. 8, no. 2, pp. 34-44, Mar./
Apr. 2004.

[22] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An Open Architecture for Collaborative Filtering of
Netnews,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 175-186, 1994.

[23] S. Rosario, A. Benveniste, S. Haar, and C. Jard, “Probabilistic QoS
and Soft Contracts for Transaction-Based Web Services Orchestra-
tions,” IEEE Trans. Services Computing, vol. 1, no. 4, pp. 187-200,
Oct./Dec. 2008.

[24] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-Based
Collaborative Filtering Recommendation Algorithms,” Proc. 10th
Int’l Conf. World Wide Web (WWW ’01), pp. 285-295, 2001.

[25] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei,
“Personalized QoS Prediction for Web Services via Collaborative
Filtering,” Proc. Fifth Int’l Conf. Web Services (ICWS ’07), pp. 439-
446, 2007.

[26] L. Si and R. Jin, “Flexible Mixture Model for Collaborative
Filtering,” Proc. 20th Int’l Conf. Machine Learning (ICML ’03),
pp. 704-711, 2003.

[27] R.M. Sreenath and M.P. Singh, “Agent-Based Service Selection,”
J. Web Semantics, vol. 1, no. 3, pp. 261-279, 2003.

[28] X. Su, T.M. Khoshgoftaar, X. Zhu, and R. Greiner, “Imputation-
Boosted Collaborative Filtering Using Machine Learning Classi-
fiers,” Proc. ACM Symp. Applied Computing (SAC ’08), pp. 949-950,
2008.

[29] N. Thio and S. Karunasekera, “Automatic Measurement of a Qos
Metric for Web Service Recommendation,” Proc. Australian Soft-
ware Eng. Conf., pp. 202-211, 2005.

[30] J. Wang, A.P. de Vries, and M.J. Reinders, “Unifying User-Based
and Item-Based Collaborative Filtering Approaches by Similarity
Fusion,” Proc. 29th Int’l ACM SIGIR Conf. Research and Development
in Information Retrieval (SIGIR ’06), pp. 501-508, 2006.

[31] G. Wu, J. Wei, X. Qiao, and L. Li, “A Bayesian Network Based Qos
Assessment Model for Web Services,” Proc. IEEE Int’l Conf.
Services Computing (SCC ’07), pp. 498-505, 2007.

[32] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen,
“Scalable Collaborative Filtering Using Cluster-Based Smooth-
ing,” Proc. 28th Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’05), pp. 114-121, 2005.

[33] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End Qos Constraints,” ACM Trans.
Web, vol. 1, no. 1, pp. 1-26, 2007.

[34] L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-Aware Middleware for Web Services Composi-
tion,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-327, May
2004.

[35] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. Springer and
Tsinghua Univ., 2007.

[36] Z. Zheng and M.R. Lyu, “A Distributed Replication Strategy
Evaluation and Selection Framework for Fault Tolerant Web
Services,” Proc. Sixth Int’l Conf. Web Services (ICWS ’08), pp. 145-
152, 2008.

[37] Z. Zheng and M.R. Lyu, “Ws-Dream: A Distributed Reliability
Assessment Mechanism for Web Services,” Proc. 38th Int’l Conf.
Dependable Systems and Networks (DSN ’08), pp. 392-397, 2008.

[38] Z. Zheng and M.R. Lyu, “A Qos-Aware Fault Tolerant Middle-
ware for Dependable Service Composition,” Proc. 39th Int’l Conf.
Dependable Systems and Networks (DSN ’09), pp. 239-248, 2009.

[39] Z. Zheng and M.R. Lyu, “Collaborative Reliability Prediction for
Service-Oriented Systems,” Proc. IEEE/ACM 32nd Int’l Conf.
Software Eng. (ICSE ’10), 2010.

ZHENG ET AL.: QOS-AWARE WEB SERVICE RECOMMENDATION BY COLLABORATIVE FILTERING 151

[40] Z. Zheng, H. Ma, M.R. Lyu, and I. King, “Wsrec: A Collaborative
Filtering Based Web Service Recommender System,” Proc. Seventh
Int’l Conf. Web Services (ICWS ’09), pp. 437-444, 2009.

Zibin Zheng received the BEng and MPhil
degrees in computer science from Sun Yat-sen
University, Guangzhou, China, in 2005 and
2007, respectively. He is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, The Chi-
nese University of Hong Kong. He is serving as a
program committee member of the first IEEE
International Conference on Cloud Computing.
He has also served as reviewer for international

journals and conferences, e.g., the IEEE Transactions on Software
Engineering, the IEEE Transactions on Parallel and Distributed Systems,
the IEEE Transactions on Services Computing, WWW, DSN, ISSRE,
SCC, etc. His research interests include service computing, software/
service reliability engineering, and web technology. He is a student
member of the IEEE.

Hao Ma received the BEng and MEng degrees
from the School of Information Science and
Engineering, Central South University, in 2002
and 2005, respectively. He worked as a system
engineer at Intel Shanghai before joining the
Chinese University of Hong Kong as a PhD
student in Nov. 2006. He is currently working
toward the PhD degree in the Computer Science
and Engineering Department, Chinese Univer-
sity of Hong Kong. His research interests are in

information retrieval, data mining, machine learning, social network
analysis, and recommender systems.

Michael R. Lyu received the BS degree in
electrical engineering from National Taiwan
University, Taipei, ROC, in 1981; the MS degree
in computer engineering from the University of
California, Santa Barbara, in 1985; and the PhD
degree in computer science from the University
of California, Los Angeles, in 1988. He is
currently a professor in the Department of
Computer Science and Engineering, Chinese
University of Hong Kong. He is also the director

of the Video over Internet and Wireless (VIEW) Technologies
Laboratory. He was with the Jet Propulsion Laboratory as a technical
staff member from 1988 to 1990. From 1990 to 1992, he was with the
Department of Electrical and Computer Engineering, University of Iowa,
Iowa City, as an assistant professor. From 1992 to 1995, he was a
member of the technical staff in the applied research area of Bell
Communications Research (Bellcore), Morristown, New Jersey. From
1995 to 1997, he was a research member of the technical staff at Bell
Laboratories, Murray Hill, New Jersey. His research interests include
software reliability engineering, distributed systems, fault-tolerant
computing, mobile networks, web technologies, multimedia information
processing, and e-commerce systems. He has published more than 270
refereed journal and conference papers in these areas. He has
participated in more than 30 industrial projects and helped to develop
many commercial systems and software tools. He was the editor of two
book volumes, Software Fault Tolerance (Wiley, 1995) and The
Handbook of Software Reliability Engineering (IEEE and New
McGraw-Hill, 1996). He received Best Paper Awards at ISSRE 1998
and ISSRE 2003. He initiated the First International Symposium on
Software Reliability Engineering (ISSRE) in 1990. He was the program
chair for ISSRE 1996, the general chair for ISSRE 2001, the program
cochair for PRDC 1999, WWW 2010, SRDS 2005, and ICEBE 2007, the
general cochair for PRDC 2005, and a program committee member for
many other conferences including HASE, ICECCS, ISIT, FTCS, DSN,
ICDSN, EUROMICRO, APSEC, PRDC, PSAM, ICCCN, ISESE, and WI.
He is frequently invited as a keynote or tutorial speaker to conferences
and workshops in the US, Europe, and Asia. He has been on the
editorial boards of the IEEE Transactions on Knowledge and Data
Engineering, the IEEE Transactions on Reliability, the Journal of
Information Science and Engineering, and the Software Testing,
Verification & Reliability Journal. He is a fellow of the IEEE, AAAS,
and Croucher Senior Research.

Irwin King received the BSc degree in en-
gineering and applied science from the Califor-
nia Institute of Technology, Pasadena, in 1984.
He received the MSc and PhD degrees in
computer science from the University of South-
ern California, Los Angeles, in 1988 and 1993,
respectively. He joined the Chinese University of
Hong Kong in 1993. His research interests
include machine learning, information retrieval,
web intelligence and social computing, and

multimedia processing. In these research areas, he has published more
than 140 refereed journal (JMLR, ACM TOIS, IEEE TNN, IEEE BME,
PR, IEEE SMC, JAMC, JASIST, IJPRAI, NN, etc.) and conference
(NIPS, CIKM, SIGIR, IJCAI, ICML, IJCNN, ICONIP, ICDAR, WWW,
etc.) manuscripts. In addition, he has contributed more than 20 book
chapters and edited volumes and has more than 30 research and
applied grants. One notable system he developed is the CUPIDE
(Chinese University Plagiarism IDentification Engine) system, which
detects similar sentences and performs readability analysis of text-
based documents in both English and Chinese to promote academic
integrity and honesty. He is an associate editor of the IEEE Transactions
on Neural Networks (TNN). He is a member of the editorial boards of the
Open Information Systems Journal, Journal of Nonlinear Analysis and
Applied Mathematics, and Neural Information Processing Letters and
Reviews Journal (NIP-LR). He also served as a special issue guest
editor for Neurocomputing, the International Journal of Intelligent
Computing and Cybernetics (IJICC), the Journal of Intelligent Informa-
tion Systems (JIIS), and the International Journal of Computational
Intelligent Research (IJCIR). Currently, he is serving on the Neural
Network Technical Committee (NNTC) and the Data Mining Technical
Committee under the IEEE Computational Intelligence Society (formerly
the IEEE Neural Network Society). He is also a vice-president and
governing board member of the Asian Pacific Neural Network Assembly
(APNNA). He is serving or has served as a program and/or organizing
member in numerous top international conferences and workshops,
e.g., WWW, ACM MM, CIKM, ICME, ICASSP, IJCNN, ICONIP, ICPR,
etc. He has also served as reviewer for international conferences as well
as journals, e.g., Information Fusion, IEEE TCAS, SIGMOD, the IEEE
Transactions on Neural Networks, the IEEE Transactions on Pattern
Analysis and Machine Intelligence, the IEEE Transactions on Multi-
media, the IEEE Transactions on Knowledge and Data Engineering, the
IEEE Transactions on System, Man, and Cybernetics, Machine Vision
and Applications, the International Journal of Computer Vision, Real-
Time Imaging, the SPIE Journal of Electronic Imaging, the International
Journal of Pattern Recognition and Artifcial Intelligence, etc. He is a
member of the ACM, the IEEE Computer Society, the International
Neural Network Society (INNS), and the Asian Pacific Neural Network
Assembly (APNNA). He is a senior member of the IEEE.

152 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 2, APRIL-JUNE 2011

