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Abstract—This paper presents a new self-creating model of a
neural network in which a branching mechanism is incorporated
with competitive learning. Unlike other self-creating models, the
proposed scheme, called branching competitive learning (BCL),
adopts a special node-splitting criterion, which is based mainly
on the geometrical measurements of the movement of the synaptic
vectors in the weight space. Compared with other self-creating and
nonself-creating competitive learning models, the BCL network is
more efficient to capture the spatial distribution of the input data
and, therefore, tends to give better clustering or quantization re-
sults. We demonstrate the ability of the BCL model to appropri-
ately estimate the cluster number in a data distribution, show its
adaptability to nonstationary data inputs and, moreover, present a
scheme leading to a multiresolution data clustering. Extensive ex-
periments on vector quantization of image compression are given
to illustrate the effectiveness of the BCL algorithm.

Index Terms—Competitive learning, self-creating neural net-
work, vector quantization.

I. INTRODUCTION

COMPETITIVE learning neural networks have been
developed for applications such as data clustering and

vector quantization [1]–[6]. Compared to the conventional
clustering algorithms, e.g., the -mean algorithm, sometimes
known as the generalized Lloyd algorithm (GLA) [7]–[9], the
algorithms based on competitive learning of neural networks
offer the advantages of online operation and require very little
storage. However, like the -mean algorithm, most competitive
learning neural networks, such as the self-organizing feature
map (SOFM) [10] and frequency sensitive competitive learning
(FSCL) [1], [11], need to assume a network with a fixed number
of nodes, which means that the cluster number of the input data
set must be pre-specified in advance. In the situation where
there is no a priori information available about the underlying
data distribution, it is very difficult to appropriately estimate
the cluster number in a data set. As a result, it is often realized
only at the end of the experiment that a different cluster number
setting might be more appropriate.
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An attractive way to deal with this problem is including a
self-creating mechanism in the competitive learning process so
that the network can adaptively determine its size. Some self-
creating models have been proposed in the literature [12]–[14].
Self-creating and organizing neural network (SCONN) [12]
employs an adaptively modified error threshold to control the
network’s self growth. Fritzke’s growing cell structures (GCS)
[13] assigns each node with a local variable, which can dy-
namically increase or decrease during the competitive learning.
After a period of learning, the node with the largest value of the
local variable gets the right to generate a new node. Based on
the GCS model, Fritzke has proposed the growing neural gas
(GNG) model [15], [16], which employs a more delicate crite-
rion to insert and delete nodes. It has been shown in [15] that
the GNG and its modification are good at learning topologies
and the recently modified GNG, the growing neural gas with
utility criterion (GNG_U) [16], is able to track nonstationary
data input.

In this paper, we present a new self-creating model of neural
network, called the branching competitive learning (BCL)
network. Unlike other self-creating models, e.g., the SCONN,
GCS, and GNG, the proposed model employs a special node-
splitting criterion, based mainly on the geometrical mea-
surements of the movement of the synaptic vectors in the
weight space. The basic idea behind adopting the geometrical
measurements is that the learning tracks of the synaptic vectors
in the weight space can help in probing the spatial distribution
of the input data, from which the network knows as to when
or where to split its nodes is appropriate. In the BCL, each
of the nodes from its birth is assigned a local value, called
activation level, to measure the intensity of its corresponding
synaptic vector’s oscillatory behavior in the weight space.
For a data presentation, if the measurements of the winner’s
movement surpass the pre-specified thresholds, this activation
is viewed as a valid activation, and an increment is added to
the winner’s activation level; otherwise, not only the activation
levels of the losers, but also that of the winner is decreased with
a “forgetting” factor . As a node’s activation level becomes
large enough, a new node is generated from it, whereas, the
nodes with low winning chance are deleted. In this way, the
BCL network, starting from one node in the output layer, dy-
namically splits and prunes its nodes along with the competitive
learning and, finally, presents a good clustering result with an
appropriate number of nodes. Compared with the other self-
creating models, the BCL network is more sophisticated to
capture the spatial distribution of the input data and, therefore,
usually provides a better clustering or quantization results.
Besides, in the BCL algorithm, the feature of being able to
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easily control the resolution can make it simple to implement a
multiresolution data clustering.

Simulations are carried out to show the ability of the BCL
to appropriately estimate the cluster number in a data distri-
bution, the adaptability of the BCL for handling nonstationary
data input, and how the BCL can give rise to a multiresolu-
tion data clustering. Moreover, to test the effectiveness of the
BCL model and compare it with other models, extensive exper-
iments of vector quantization for image data compression are
conducted by using the BCL, GLA and other learning vector
quantization algorithms.

The paper is organized as follows. In Section II, we review
some conventional competitive learning models, including the
self-creating and nonself-creating models. In Section III, we de-
scribe in detail the branching competitive learning model and
the BCL algorithm. In Section IV, we present some simulation
results on synthetic data sets to illustrate the performance of the
BCL for estimating the cluster number in a data set, dealing
with the so-called stability-plasticity dilemma [12], and clus-
tering data in a multiresolution fashion. Experiments on vector
quantization design and the comparison results are given in Sec-
tion V. Finally, Section VI concludes the paper by highlighting
the contribution of this study.

II. DATA CLUSTERING AND COMPETITIVE

LEARNING NETWORKS

Assume there are data vectors in -dimensional space,
and , and the cluster number is pre-speci-

fied. Then, the process of data clustering can be defined as fol-
lows:

Find in to minimize the average distortion or the
mean squared error (MSE) given by

(1)

where is the number of data in cluster , represents the
data point in cluster ( ), , and

is the norm.
Competitive learning networks are known to be effective for

the task of data clustering [17]. The simple competitive learning
(SCL) model is a winner-take-all scheme, whose algorithm can
be described as

(2)

where is a randomly selected input data point, represents
the current step of competitive learning, denotes the synaptic
vectors corresponding to the th neural unit (for simplicity,
also is used to represent the th neural unit or node), and is
the learning rate. In practice, to guarantee the convergence of
the learning procedure, a gradually decreasing learning rate is
often adopted

(3)

where is the initial learning rate, and denotes a pre-spec-
ified number of iterations.

The simple competitive learning algorithm is very easy to
implement. However, it suffers from the so called dead unit
problem, which means that some nodes may never be activated
by the competition. To deal with this problem, some modified
schemes have been developed. Kohonen’s SOFM [10] employs
a winner-take-quota strategy to alleviate the dead unit problem.
In SOFM, not only the winner, but also the winner’s neighbors
can learn from the competition

(4)

where denotes the neighborhood centered at the winner
and is the neighbors’ learning rate. Usually, , and

, and all decrease along with the competitive learning
procedure. Although SOFM can alleviate the dead unit problem
to some extent, it cannot eliminate the dead unit completely.
Besides, its performance is greatly affected by the selection
of the neighborhood function; ill-adjusted neighborhoods may
lead SOFM to perform poorly.

Another modification of SCL is FSCL [1], [11]. The com-
petitive learning of the FSCL is different from that of the SCL
simply in that a winning frequency term is added to avoid the
situation that some units always fail in the competition

(5)

where is the frequency that has won the competition up
to current competition step; that is and is the
cumulative number of winning the competition. Obviously,
when the winning frequency of a unit becomes large enough, the
chance that it continues to win will become small. On the con-
trary, as the winning rate of a unit becomes small enough, the
probability of it winning the next competition becomes large. In
this way, the FSCL achieves a nearly equal node utilization and,
therefore, avoids the dead units. However, many experiments
show that the competitive learning aiming at equally or “fairly”
utilizing each node cannot generally result in a better data clus-
tering or vector quantization than GLA and SCL.

The above competitive learning algorithms have one thing in
common: the network size must be pre-specified; that is, the
cluster number for the input data set need to be pre-speci-
fied. Because there is usually no a priori information available
to appropriately estimate the cluster number, we have to try dif-
ferent values of to obtain a better clustering result. An at-
tractive way to deal with this problem is to add a self-creating
mechanism to the neural network so that the network can auto-
matically increase its size to an appropriate level according to
the input data distribution.

There are some self-creating models in the literature
[12]–[15]. The self-creating and organizing neural network
(SCONN) [12] employs an adaptively modified error threshold
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to control the network’s self-growth. It is shown in [12] that
SCONN could represent the data structure more efficiently than
the SOFM. Another important self-creating model is Fritzke’s
GCS [13], which can be viewed as a modification of SOFM by
including a node-insertion mechanism. Each node in GCS is
assigned with a local variable called “signal counter.” For a data
presentation, following the winner-take-quota procedure that
the winner and its neighbors learn from the competition, the
winner’s signal counter increases with a constant increment

as and then, the signal counters of all
the nodes decay with a “forgetting” factor as ,
where , denoting the node number at
time , and . After a fixed number of data presen-
tations ( , as recommended in [13]), a new node is
inserted between the node with the largest value of the signal
counter and its farthest neighbor. In GCS, network occasionally
needs to delete the so-called superfluous node, whose synaptic
vector is located in a region with a very low probability density.
For the sake of simplicity, nodes with signal counter being less
than a specified threshold or nodes that never win during a
complete iteration are regarded as the superfluous nodes and
removed. Besides the GCS model, Fritzke also proposed some
state-of-the-art self-creating models such as the GNG [15] and
GNG_U [16], which employ more delicate criteria to insert
and delete nodes.

III. BRANCHING COMPETITIVE LEARNING NETWORK

We approach the self-creating mechanism with a different cri-
terion which is based on two geometrical measurements of the
synaptic vectors’ competitive movements in the weight space.
Some basic ideas can be found in a previous work [18].

A. The Branching Criterion and the BCL Algorithm

Intuitively, in the process of competitive learning, when a
synaptic vector exhibits an intensively oscillatory movement in
the weight space, it usually means that the vector is “attracted”
by two or more different data clusters. At this moment, splitting
the synaptic vector is appropriate to decrease the clustering dis-
tortion substantially. Geometrically, the larger the change in the
moving direction of a winner and the longer its movements in
two consecutive activations, the more intense is the winner’s os-
cillation. Thus, in the weight space, as shown in Fig. 1, the angle
between two consecutive moving directions, i.e.,

and the minimum value of two consecutive
moving distances, i.e., can
be used to measure the intensity of a winner’s oscillatory be-
havior.

In our BCL scheme, each node (or synaptic vector) is asso-
ciated with a local variable, called activation level, to estimate
the intensity of the synaptic vector’s oscillatory behavior. When
a node is activated by a competition (or wins a competition),
we check if this is a valid activation meaning that the two geo-
metrical measurements of the winner’s movement in the weight
space surpass the pre-specified thresholds

(6)

Fig. 1. An illustration of a valid activation, where ' > ' and
min(kd k; kd k) > d .

where denotes a winner in the current competition, and
represent the two data presentations in two consecutive

activations of , denotes the current competition step,
represents the previous activated step, and and denote
the angle and distance thresholds pre-specified to control the
branching process. Usually, the threshold in (6) is set to 90
and, therefore, the first condition of a valid activation becomes

(7)

For a data presentation , assume that is the winner of
the current competition. Let

when leads to a valid activation of
otherwise

where , and is the node number at time
. The activation level of at the current step is updated by

where is a pre-specified constant increment of the activation
level and denotes a “forgetting” factor . When
the value of a winner’s activation becomes large enough, i.e.,

greater than a pre-specified threshold, , a new node
is generated from as

Meanwhile, the activation levels of the “mother” and “son” are
set as and .

In practice, the BCL may sporadically generate a few dead
nodes that are no longer or seldom activated by the competitive
learning. To avoid this situation, we simply employ a threshold

called pruning rate, to delete the dead nodes: if , then
delete from the set of nodes, where denotes the frequency
that has won the competition from its birth to the current com-
petition step. We now formulate the BCL algorithm in Fig. 2.

In step 6 of the BCL algorithm, “dynamical equilibrium”
means that the fluctuation of the network size remains relatively
small for a long period of learning. We can use a simple cri-
terion such as the one given in Section V-B to decide if the
network size has reached its dynamical equilibrium point. Al-
though the BCL network with a reasonable parameter setting
always reaches the dynamical equilibrium, in some classical
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Fig. 2. The BCL algorithm.

Fig. 3. A uniform data set and the quantization results using the BCL algorithm for different values of d . (a) A uniform data set. (b) Quantization result with
d = 1:0. (b) Quantization result with d = 0:5. (d) Quantization result with d = 0:25.

applications such as vector quantization for image coding, the
codebook size, i.e., the network size, is usually pre-specified.
In this case, we do not need to find the dynamical equilibrium
point. Once the network size reaches the pre-specified number,
we simply let the network stop growing, and then the network
just follows the simple competitive learning procedure. So, the
entire BCL algorithm can be divided into two phases: growing
phase and data clustering phase. In the first phase, the network
keeps growing until its size reaches a dynamical equilibrium or
a pre-specified value. Following this, the network will simply
modify the synaptic vectors to approximate the cluster centroids
and no further split occurs.

B. Parameter and Multiresolution Clustering

There are seven parameters in the above BCL algorithm: ,
, , , , , and . Optimization of these parameters is

a difficult or even an impossible task, since the optimization of
some of the parameters is related to the input data distribution.
However, experimentally, the BCL algorithm is not sensitive to
parameter tuning. We usually set , , and the
“forgetting” factor is often adopted in the form of , where

denotes the sample number in the data set.
Among the parameters, the distance threshold is of

great importance to control the branching process. Generally
speaking, represents the resolution level at which the BCL

partitions the data set. It can also be viewed as the error bound
that we can tolerate when we say two data samples belong
to the same data cluster. With a large value of , the BCL
network will give a clustering result under a coarse resolution.
On the other hand, a relatively small value of means that
the BCL network “views” the data set under a fine resolution.
This feature of being able to easily control the resolution
is very useful for applications such as the multiresolution
data compression and multiscale data visualization. Fig. 3(a)
shows 2000 uniform data in square field [0,4] [0.4] and
Fig. 3(b)–(d), respectively show the quantization results by
using the BCL network with , 0.5, and 0.25.

From a multiresolution point of view, the estimation of the
cluster number in a data set is resolution-dependent and, more-
over, data clustering can also be viewed as a problem of mul-
tiresolution spatial partition. For example, from the viewpoint
of a coarse resolution [Fig. 4(a)], we can say that the data set just
has four clusters. However, when we view the same data set in a
relatively fine resolution [Fig. 4(b)], we find four small clusters
in each cluster. Hence, the cluster number along with the data
clustering itself is resolution-dependent. In the BCL model, the
parameter represents the resolution level at which the BCL
clusters or “views” the data set. With different values of , it
is reasonable that we obtain different estimations of the cluster
number (see Fig. 3).
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Fig. 4. A multiresolution data set.

There are many hierarchical techniques in the literature [20]
to implement a tree-structured data clustering. However, most of
them involve intensive computation. In the BCL scheme, using
an appropriately decreasing sequence of , we can easily im-
plement a multiresolution data clustering in a hierarchical struc-
ture, as given below.

1. Select a sequence of ( ).
2. Under the resolution level ,
implement BCL clustering on data
set , which clusters into
subsets: , and

, .
3. Under the resolution level , repeat
the clustering in each subset . Con-
tinue the process under all the resolution
levels.

IV. SIMULATIONS ON SYNTHETIC DATA SETS

In this section, we conduct three sets of experiments on syn-
thetic data sets in order to: 1) examine the ability of the BCL to
appropriately estimate the cluster number in a data set according
to the given resolution level; 2) show the validity of the multires-
olution data clustering by the BCL network; and 3) compare the
adaptability of the BCL with other competitive learning models
in handling nonstantionary input.

In practice, apart from the situation that the final cluster
number is pre-specified, we usually consider the BCL network
to have reached its dynamical equilibrium when the cluster
number remains unchanged for quite a long period of time,
e.g., (10 iterations), where denotes the total number of
samples in the input data set.

A. Cluster Number Estimation

In the first simulation study, we use two sets of two-dimen-
sional data, as shown in Figs. 5(a) and 6(a). Data set 1 contains
four clusters of Gaussian data with , and the four clusters
have 200, 250, 200, and 350 samples, respectively. Obviously,
there is some overlapping between the clusters. Fig. 5(b) and
(c) shows the learning and branching traces of the synaptic vec-
tors under the “seed” initialized by the point [20,20] [Fig. 5(b)],
or by the origin [Fig. 5(c)]. Data set 2 consists of five Gaussian
clusters ( ) and the five clusters contain 200, 250, 200, 350,
and 500 samples, respectively. Like data set 1, we can see that
there is some overlapping between these clusters. The learning
and branching traces are shown in Fig. 6(b) with the “seed” ini-
tialized by the point [25,25], and in Fig. 6(c) with the “seed”
initialized by the origin.

In the experiments, we fix the learning rate with .
The threshold of the angle and the distance in the branching
criterion are set as and ; the other
parameters are set as , , and . We
adopt the “forgetting” factor in the form of , where
denotes the sample number in the data set. From the learning
traces, it can be seen that the BCL can appropriately estimate
the cluster number in the data distribution, even in the case when
there are some overlapping between the clusters.

B. Multiresolution Data Clustering

In the second simulation study, the data set, as shown in Fig. 7,
consists of 16 Gaussian distributions with standard variance

. Each cluster contains 200 samples, and the total number of
samples is 3200.

A two-level multiresolution clustering is conducted. In level
1, we set the distance threshold as , while in
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Fig. 5. Data set 1 and the learning branching traces of the synaptic vectors. (a) Data set. (b) Learning trace from (20,20). (c) Learning trace from (0,0). (d) Final
estimated centroids of (c).

Fig. 6. Data set 2 and the learning branching traces of the synaptic vectors. (a) Data set. (b) Learning trace from (25,25). (c) Learning trace from (0,0). (d) Final
estimated centroids of (c).

Fig. 7. A two-level multiresolution clustering by using the BCL network. (a) Resolution level 1. (b) Resolution level 2. (c) The estimated centroids and true
centroids.

level 2 the distance threshold is set as . The
other parameters are set to the same values in both the levels:

, , and . The learning rate is fixed
with , and the “seed” or the original synaptic vector is
initialized by the point (0,0).

The results are shown in Fig. 7. Fig. 7(a) shows the learning
traces of the synaptic vectors in level 1. We can see that in the
resolution level 1, the data points are divided into four clusters
and the convergent synaptic vectors are correctly located at the

centroids of each clusters. Fig. 7(b) shows the learning traces of
the further branching in the resolution level 2. We can see that
the final estimated cluster number has an exact value of 16, the
actual cluster number. Fig. 7(c) shows the difference between
the estimated centroids and the actual data centroids.

C. Handling Nonstationary Data Input

Most competitive learning models suffer from the so-called
stability-plasticity dilemma [12], [14], i.e., the synaptic vectors
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Fig. 8. (a) Nonstationary data input and the vector quantization results by using (b) SCL, (c) SOFM, and (d) FSCL, respectively.

Fig. 9. Handling nonstationary input by the GNG, after (a) 20 000, (b) 40 000, (c) 80 000, and (d) 90 000 data presentations. The network size (or the cluster
number) at the end of the data presentation is (a) S = 40, (b) S = 64, (c) S = 64, or (d) S = 64, respectively.

cannot adapt to the case of nonstationary data input. To demon-
strate the difference between the BCL model and other compet-
itive learning models in dealing with a nonstationary input, we
conduct a third simulation on the data set as in [14] and [21].
In order to simulate a nonstationary input, for , we
let all the input data come from a Gaussian data set with

, ; however, for , all the input
data are randomly selected from another Gaussian data distribu-
tion with the parameters as , .
The two data distributions are shown in Fig. 8(a). Each of these
contains 1000 samples.

To avoid the node’s “freezing” caused by the gradually
decreasing learning rate given by (3), we fix the value of
the learning rate at 0.02, and the synaptic vectors are first
initialized by a set of randomly selected points in a square
field [0,200] [0,200]. Fig. 8(b)–(d), respectively, shows the
learning quantization results after 40 000 data presentations,
20 iterations, by using the SCL, SOFM, and FSCL models
(cluster number or codebook size is pre-specified as 64). We
can see that, besides many dead nodes, there are very few
nodes that can successfully move to the new data distribution
after for the SCL and SOFM models. As for the
FSCL, although the situation is improved considerablely, its
performance in dealing with nonstationary data input is still
unacceptable.

We examine the performance of the GNG model in dealing
with the nonstationary input problem. The parameters of the
GNG model (see [15] for details) are set as: , ,

, , , and . The“age”

increment of all the “edges” emanating from the winner in each
competition is set to 1.0. Fig. 9(a)–(d), respectively, shows the
quantization results of the GNG network after 20 000, 40 000,
80 000, and 90 000 data presentations, where the symbol de-
notes the network size (or codebook size) at the end of the data
presentation. For the BCL model, the first synaptic vector is
initialized by a random point in the square [0,200] [0,200],
and the learning rate is also fixed at 0.02. The other parame-
ters are set as , , , ,
and , where denotes the sample number in the data
set. Fig. 10(a)–(d), respectively, show the experimental results
after 20 000, 40 000, 80 000, and 90 000 data presentations. In
the simulations for these two models, the maximum network
size is set to 64.

It can be seen that both the GNG and BCL models can
adapt to the input distribution change, but the nodes of the
GNG model located in the upper-circle region remain almost
unchanged after 40 000 data presentations. On the contrary, due
to the pruning mechanism in the BCL, the nodes in the BCL
model can continue adapting after 40 000 data presentations.
Hence, compared with the GNG model, the BCL model is more
adaptive in dealing with the nonstationary input.

We also compare the BCL model with a recently modified
GNG model, namely, the GNG_U [16], in handling nonsta-
tionary inputs. For this purpose, we implement the GNG_U al-
gorithm using the same parameter values as in [16]: ,

, , (that means
), , and . Figs. 11 and 12 show the

simulation results (see [16] for details about the input data set).
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Fig. 10. Handling nonstationary input by the BCL, after (a) 20 000, (b) 40 000, (c) 80 000, and (d) 90 000 data presentations. The network size (or the cluster
number) at the end of the data presentation is (a) S = 40, (b) S = 64, (c) S = 43, or (d) S = 26, respectively.

Fig. 11. Handling nonstationary input by the GNG_U after (a) 20 000, (b) 30 000, and (c) 40 000 data presentations.

Fig. 12. Handling nonstationary input by the BCL after (a) 20 000, (b) 40 000, and (c) 60 000 data presentations.

We see that, although both the algorithms can track the non-
stationary input, the GNG_U shows more adaptability to the
changes in the input statistics.

V. CODEBOOK DESIGN USING THE BCL NETWORK

In this section, we compare the performance of the BCL
algorithm with some conventional algorithms, such as the

GLA, SCL, FSCL, and SOFM, on the application of code-
book design for image compression. We also compare the
BCL network with some self-creating models, namely, the
SCONN2 [12], the modified GCS [14], [21], GNG [15], and
the GNG_U [16]. Two sets of images are used as the training
data sets.

1) Set-I: Lena, Boat, Baboon, Pepper, and one of the Brodatz
texture images, each used separately as in [23].



XIONG et al.: BRANCHING COMPETITIVE LEARNING NETWORK 425

Fig. 13. Training images in Set-II.

2) Set-II: A single data set consisting of eight images, as
shown in Fig. 13. In this case, the test images are selected
from the training image set.

All images have been taken from the USC-SIPI Image
Database (http://sipi.usc.edu/services/database/) and are of
size 256 256 with 256 gray levels. Each image is divided
into 4096 disjoint image blocks with 4 4 pixels and these
image blocks make up a 16-dimension data set. The problem of
codebook design here requires that these 4096 blocks data for
Set-I or 32 768 blocks data for Set-II be quantized by blocks
data, where , the codebook size, is either pre-specified or
adaptively determined according to image data distribution. As
usual, we use the MSE criterion to evaluate all the codebooks,

, where refers to
the original image, and to the reconstructed image.

A. Codebook Design With Fixed Book Size

1) Comparison With Some Conventional Algorithms: In the
first experiment, for Set-I, the codebook size is set to 64,
128, 256, 512, or 1024, respectively; while for Set-II, is
set to 256, 512, 1024, 2048, or 4096, repectively. To obtain
relatively better results, we adopt a piecewise random scheme
to initialize the codebooks of SCL, FSCL, and SOFM; that
is, we first uniformly divide the data into segments, then
randomly select a data sample from each segment to construct
the initial codebook. Experimental results show that a better
codebook can be obtained by initializing the code vectors with
the piecewise random scheme than with randomly selected
points in the weight spaces. For GLA, the code vectors are
initialized by two schemes: the first one, denoted by GLA1,
is the piecewise random scheme; the other one, denoted by
GLA2, is the splitting scheme as in [7]. As for the BCL, we
always initialize the first code vector or the “seed” by the origin
point.

In all of the algorithms based on competitive learning,
the winner’s learning rates decrease according to (3) with

, while the neighbors’ learning rate for SOFM
also decreases according to (3), but with . The
neighbor function of SOFM is adopted as ,
where represents the current competition and denotes a
pre-specified total number of data presentations. As in [7], we
adopt the “fractional drop of distortion” in two consecutive
iterations as the convergence indicator for the GLA algorithm,

i.e., if , then stop the iterations of
the GLA, and being the two values of the MSE in the
previous and the current iterations. For other algorithms, we
simply stop the competitive learning when the total number of
data presentations reaches a pre-specified value. The pre-speci-
fied number is in the form of , where , called the “epoch”
is a positive integer and denotes the total number of samples
in the data set. In our experiments, the epoch is always set to
20. For the BCL, the distance threshold is set as ,
when the codebook size and as , when

. The activation level threshold are set as

The other parameters are set as , , and
. Experimental results of the average MSE and the average

CPU (Pentium III 800) running time in ten consecutive trials are
shown in Table I for the Lena image of Set-I. Fig. 14 shows the
comparisons of the BCL with other algorithms in term of the
average MSE for the Boat and Pepper images. Table II shows
the experimental results for Set-II, where the test images are the
Baboon and the Pepper.

From these experimental results, we can see that the BCL al-
gorithm always provides a better codebook with a lower MSE
than the other algorithms (especially for a relatively large code-
book), and it, at the same time, requires a computation time no
more than that of the SOFM algorithm. As a byproduct, we find
that, with the first codebook initialized by the piecewise random
scheme, the performance of the SCL is often better than those
of the FSCL and SOFM. This seems to conflict with the gen-
eral proposition that the FSCL or SOFM outperforms the SCL
in competitive learning. This proposition is absolutely true, if
the codebook is initialized by a set of randomly selected points
from the weight space, due to the problem of dead units. How-
ever, if we properly initialize the codebook, e.g., the scheme in
[22], the SCL often performs better than the FSCL.

2) Comparison With Other Self-Creating Models: In this
section, we compare the BCL model with three other self-cre-
ating models, the SCONN2 [12], the modified GCS [21], the
GNG [15], and the GNG_U [16], for the task of codebook
design. According to the study in [21], the GCS has the best
performance when the forgetting factor is set to zero and the
so-called “ -free” node removal scheme is adopted, i.e., nodes
that never win during a complete “epoch” should be deleted.
Besides, some modifications in the original GCS scheme [13]
are required for applying it to vector quantization.

1) Replacing the constant increment with the input square
error when updating the winner’s signal
counter.

2) Relaxing the structural consistency requirement to allow
isolated nodes.

As in [21], we denote the modified GCS scheme by GCS_2
and set the parameters with , , , and

, where and are respectively the winner’s and neigh-
bors’ learning rates. For the SCONN2, except for the winner’s
learning rate, which is now set to 0.24 for fairness, the other
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Fig. 14. Comparison of the BCL with other algorithms in term of average MSE. (a) For the Pepper image. (b) For the Baboon image.

TABLE I
PERFORMANCE COMPARISON FOR CODE BOOK DESIGN (FOR LENA IMAGE)

TABLE II
PERFORMANCE COMPARISON IN TERMS OF MSE FOR CODE BOOK DESIGN

USING IMAGE DATA SET-II

parameters are set to the same values as in [12]. For the GNG
and GNG_U, we set their common parameters as: ,

, , , and . The
“age” increment for all the “edges” emanating from the winner
is also set to 1.0. As for the parameter of the GNG_U, we
use a value such that it can make the network size reach the
pre-specified values of the codebook size. Specifically, we set

to 30 when the codebook size is 64, and to 117 when the the
codebook size is 256. For the BCL, all of the parameters take the
same value as in the Section V-A.I apart from the initial learning
rate, which is now set to 0.24.

Tables III and IV show the average results in ten consecutive
experiments on the Lena, Baboon and Pepper images, when the
codebook size is set as and , respectively. We
can see that the BCL model outperforms all the other self-cre-
ating models, including the GNG_U, in producing better code
vectors with a much lower MSE.

B. Adaptive Determination of the Codebook Size

In this section we introduce an adaptive vector quantization,
in which the codebook size is not pre-specified, but is adap-
tively determined by the image data distribution. In the exper-
iment, the learning rate in the BCL is fixed at in
the growing phase, during which the network keeps on growing
until its size reaches a dynamical equilibrium. We employ a
simple criterion to decide if the network size reaches the dy-
namical equilibrium: when the fluctuation of the network size

satisfies in three consecu-
tive “epochs,” we consider the network size to have reached its
dynamical equilibrium, where and denote the two
values of the codebook size at end of two consecutive “epochs.”
Following this, the network simply modifies the code vectors
to approximate cluster centroids. In this procedure, the learning
rate is adopted according to (3) with . The distance
threshold is set as , the activation level threshold
is set at 15.0, and the other parameters are set as in Section V-A,
including the GNG and GNG_U.

Fig. 15(a) shows three images with different visual com-
plexity. Fig. 15(b)–(d) presents the growing phase of the BCL
network, it is seen that the final values of the codebook size
determined by the BCL is in conformity with the expectation
that the higher the visual complexity of the images, the larger
the size of the codebook, and Fig. 15(e) shows the reconstructed
or decoded images under different codebook size.
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TABLE III
COMPARISON OF SELF-CREATING MODELS FOR CODEBOOK DESIGN (CODEBOOK SIZE S = 64)

TABLE IV
COMPARISON OF SELF-CREATING MODELS FOR CODEBOOK DESIGN (CODEBOOK SIZE S = 256)

Fig. 15. Adaptively determined codebook size and the reconstructed images.
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VI. CONCLUSION

In this paper, we have presented a new self-creating model
of competitive learning neural network by adding a special
branching mechanism to the simple competitive learning model.
Unlike other self-creating models, the BCL model adopts a
different branching criterion, which is mainly based on two
geometrical measurements of the synaptic vectors’ movement
in the weight space. Due to the special branching criterion, the
BCL network is more efficient to capture the spatial distribution
of the input data, and therefore, tends to present better clustering
or quantization results. Besides, the BCL network can appropri-
ately estimate the cluster number in a data set, adaptively respond
to nonstationary data inputs, and easily lead to a multiresolution
data clustering. Experimental results for vector quantization of
image coding demonstrate its effectiveness and adaptability in
comparison with other codebook design schemes.
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