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A problem example
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What is semi-supervised learning

Semi-supervised learning

Semi-supervised learning (SSL) is a class of machine learning techniques
that make use of both labeled and unlabeled data for training.

Supervised learning

Unsupervised learning
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Learning paradigms
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Types of semi-supervised learning

Semi-supervised Classification

Given l labeled instances, {(xi , yi )}li=1, and u unlabeled instances,
{xi}l+u

i=l+1 for training

Constrained clustering

Given unlabeled instances {xi}ni=1, and “supervised information”, e.g.,
must-links, cannot-links.
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Concepts

labeled

unlabeled

semi-supervised learning

Drawn from the same
distribution

Share the same label

Surveys: [Zhu, 2005], [Chapelle
et al., 2006]
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Why we need semi-supervised learning?

Unlabeled data are usually abundant

Unlabeled data are usually easy to get

Labeled data can be hard to get

Labels may require human efforts
Labels may require special devices

Results can also be good
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Why we need semi-supervised learning?

Some applications of SSL

Web page classification:

Easy to crawl web pages
Require human experts to label them, e.g., DMOZ

Telephone conversation transcription

400 hours annotation time for each hour of speech
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Semi-supervised learning vs, transductive learning

Inductive semi-supervised learning

Given {(xi , yi )}li=1 and {xi}l+u
i=l+1, learn a function f : X −→ Y so that f

is expected to be a good predictor on future data.

Transductive learning

Given {(xi , yi )}li=1 and {xi}l+u
i=l+1, learn a function f : X l+u −→ Y l+u so

that f is expected to be a good predictor on the unlabeled data {xi}l+u
i=l+1.
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How semi-supervised learning is helpful

SVM

SVM with unlabeled data

Semi-supervised SVM
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How semi-supervised learning is helpful

p(x) carries information that is helpful for the inference of p(y |x)
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Applications

Natural language processing

X: sentence
y: parse tree

Spam filtering

X: email
y: decision(spam or not spam)

Video surveillance

X: video frame
y: decision(spam or not spam)

Protein 3D structure prediction

X: DNA sequence
y: structure
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How semi-supervised learning is possible?

Assumptions or intuitions?

Cluster assumption (similarity)
Manifold assumption (structural)
Others

Which one is correct?
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Models

Self-training

Co-training

Probabilistic generative models

Graph-based models

Large margin based methods

Which one is good?
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Self-training

Maybe a simple way of using unlabeled data

Initialize L = {(xi , yi )}li=1 and U = {xj}ni=l+1

Repeat
1 Train f from L using supervised learning
2 Apply f to the unlabeled instances in U
3 Remove a subset S from U ; add {(x, f (x))|x ∈ S} to L

Until U = φ
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Self-training

A wrapper method

The choice of learner for f in step 3 is open

Good for many real world tasks, e.g., natural language processing

But mistake in choosing the f can reinforce itself
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A simple example of generative model

Gaussian mixture model (GMM)

Model parameters:
θ = {π, µ,Σ}, π:class priors,
µ:Gaussian means, Σ:covariance
matrices

Joint distribution

p(x, y|θ) = p(y|θ)p(x|y, θ)

= πiN (x;µi ,Σi )

Classification:

p(y|x, θ) =
p(x , y |θ)∑K

i=1 p(x, yi |θ)
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Effect of unlabeled data in GMM

P(Xl ,Yl |θ) P(Xl ,Yl ,Xu|θ)
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Generative model for semi-supervised learning

Assumption: knowledge of P(x, y|θ)

Joint and marginal distribution

p(Xl ,Yl ,Xu|θ) =
∑
Yu

p(Xl ,Yl ,Xu,Yu|θ)

Objective: find the maximum likelihood estimate (MLE) of θ, the
maximum a posteriori (MAP) estimate, or be Bayesian

Optimization: Expectation Maximization (EM)

Applications:

Mixture of Gaussian distributions (GMM): image classification
Mixture of multinomial distributions (Näıve Bayes): text categorization
Hidden Markov Models (HMM): speech recognition
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Classification with GMM using MLE

With only labeled data (the supervised case)

log p(Xl ,Yl |θ) =
∑l

i=1 log p(yi |θ)p(xi |yi , θ)
MLE for θ trivial (sample mean and covariance)

With both labeled and unlabeled data (the semi-supervised case)

log p(Xl ,Yl ,Xu|θ) =∑l
i=1 log p(yi |θ)p(xi |yi , θ) +

∑l+u
i=l+1 log

(∑
y p(y |θ)p(xi |y , θ)

)
MLE for θ not easy (hidden variables): EM
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EM for GMM

1 Initialize θ0 = {π, µ,Σ} on (Xl ,Yl),
2 The E-step:

for all x ∈ Xu, compute the expected label

p(y|x, θ) =
p(x , y |θ)∑K
i=1 p(x, yi |θ)

label all x ∈ Xu according with p(y|x, θ)

3 The M-step: update MLE θ with both Xl and Xu
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The assumption of mixture models

The assumption of mixture models

Data actually comes from the mixture model, where the number of
components, prior p(y), and conditional p(x|y) are all correct.

This assumption could be WRONG!

Which one is correct?
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The assumption of mixture models

Heuristics

Carefully construct the generative model, e.g., multiple Gaussian
distributions per class

Down-weight the unlabeled data 0 ≤ λ < 1

log p(Xl ,Yl ,Xu|θ) =
l∑

i=1

log p(yi |θ)p(xi |yi , θ)

+ λ

l+u∑
i=l+1

log

(∑
y

p(y |θ)p(xi |y , θ)

)
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Summary

Assume a distribution for data

Unlabeled data are used to help to identify parameters in
P(Xl ,Yl ,Xu|θ)

Incorrect assumption would degrade performance

Prior knowledge on data distribution is necessary

Would be helpful to combine with discriminative models
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Two views

Two views for email classification:

Title
Body
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Two views

Classify web pages into category for students and category for
professors
Two views of web page

Content: I am currently the second year Ph.D. student
Hyperlinks: My advisor is Prof. ...
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Why co-training?

Learners can learn from each other

Implied agreement between two learners
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Co-training algorithm

Input:

Labeled data (Xl ,Yl), unlabeled data Xu

Each instance has two views x = [x(1), x(2)]

A learning speed k

Algorithm:

1 let L1 = L2 = (Xl ,Yl).
2 Repeat until unlabeled data U = ∅:

1 Train view-1 f (1) from L1, view-2 f (2) from L2.
2 Classify unlabeled data with f (1) and f (2) separately
3 Add f (1)s top k most-confident predictions (x, f (1)(x)) to L2

4 Add f (2)s top k most-confident predictions (x, f (2)(x)) to L1

5 Remove these 2k instances from the unlabeled data U.

King & Xu (CUHK & MPI Inf) Semi-supervised Learning WCCI 2010 30 / 83



Basics of Semi-supervised Learning Co-training

Schematic of a co-training algorithm
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Illustration of co-training

1 Train a content-based classifier using
labeled examples

2 Label the unlabeled examples that are
confidently classified

3 Train a hyperlink-based classifier

4 Label the unlabeled examples that are
confidently classified

5 Next iteration
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Assumptions of co-training

Assumptions of co-training

Each view alone is sufficient to make good classifications

The two views are conditionally independently given the class label
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Summary

Key idea

Augment training examples of one view by exploiting the classifier of
the other view

Extension to multiple views

Problem: how to find equivalent views
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Graph-based semi-supervised learning

Introduction

Label propagation

Graph partition

Harmonic function

Manifold regularization
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Graph-based semi-supervised learning

Key idea

Construct a graph with nodes being instances and edges being
similarity measures among instances

Look for some techniques to cut the graph

Labeled instances
Some heuristics, e.g., minimum cut
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Graph-based semi-supervised learning

Graph construction

G =< V, E >, where V = {xi}ni=1

Build adjacency graph using a heuristic

ε-NN. ε ∈ R+. Nodes xi and xj are connected if dist(xi , xj) ≤ ε
k-NN. k ∈ N+. Nodes xi and xj are connected if xi is among the k
nearest neighbors of xj .

Graph weighting

Heat kernel. If xi and xj are connected, the weight Wij = exp−
dist(xi ,xj )

t ,
where t ∈ R+.
Simple-minded. Wij = 1 if xi and xj are connected.
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Graph-based semi-supervised learning

G =< V, E >
Wij : weights on edge (xi , xj)

Dii =
∑n

j=1 Wij

Graph Laplacian: L = D−W

Weighted graph Laplacian:

L = D−
1
2 (D−W)D−

1
2
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Label propagation

1 Supervised case: not consider the data
distribution

2 How to include unlabeled data into
the prediction of class labels?

3 Connect the data points that are close
to each other

4 Propagate the class labels over the
connected graph
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Label propagation

Input:

Given adjacency matrix W , degree
matrix D = diag(d1, . . . , dn),
di =

∑
j 6=i Wij

or normalized adjacency matrix:
D−1/2WD−1/2

labels Yl

decay parameter: α
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Label Propagation

Initial class assignments ŷ = {−1, 0,+1}n

ŷi =

{
1 ∀xi ∈ Xl

0 ∀xi ∈ Xu

Predicted class assignments
1 Predict the confidence scores f = (f1, . . . , fn)
2 Predict the class assignments yi = sign (fi )
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Label propagation

One round of propagation

fi =

{
ŷi ∀xi ∈ Xl

α
∑n

j=1 Wij ŷi ∀xi ∈ Xu

f(1) = ŷ + αW ŷ
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Label propagation

Two rounds of propagation

f(2) = f(1) + αW f(1)

= ŷ + αW ŷ + α2W 2ŷ
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Label propagation

Any rounds of propagation

f(t) = ŷ +
t∑

k=1

αkW k ŷ
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Label propagation

Infinite rounds of propagation

f(∞) = ŷ +
∞∑

k=1

αkW k ŷ

Or equivalently

f(∞) = (I− αW )−1ŷ
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Graph partition

Key idea

Classification as graph partitioning

Search for a classification boundary

Consistent with labeled examples
Partition with small graph cut
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Min-cuts

V+ : source, V−: sink

Infinite weights connecting sinks and sources
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Min-cuts

Fix fl , search for fu to minimize
∑n

i=1

∑n
j=1 Wij(fi − fj)

2

Equivalently, solve

C(f ) =
n∑

i=1

n∑
j=1

Wij(fi − fj)
2

4
+∞

l∑
i=1

(fi − yi )
2

Loss function: ∞
∑l

i=1(fi − yi )
2 (constraint)

Combinatorial problem, but have polynomial time solution
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Harmonic Function

Weight matrix W

membership function

fi =

{
+1 ∀xi ∈ A
−1 ∀xi ∈ B

Graph cut (energy function)

C(f ) =
n∑

i=1

n∑
j=1

Wij(fi − fj)
2

4

=
1

4
f>(D−W)f =

1

4
f>Lf

Graph Laplacian L = D−W
Pairwise relationships among data
Mainfold geometry of data

King & Xu (CUHK & MPI Inf) Semi-supervised Learning WCCI 2010 47 / 83



Basics of Semi-supervised Learning Graph-based Semi-supervised Learning

Harmonic Function

min
f∈{−1,+1}n

C(f) =
1

4
f>Lf

s. t. fi = yi , i = 1, . . . , l

Challenge: combinatorial optimization?
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Harmonic Function

Relaxation to continuous space

min
f∈Rn

C(f) =
1

4
f>Lf

s. t. fi = yi , i = 1, . . . , l

f (xi ) = yi for i = 1, . . . , l

f minimizes the energy function∑n
i=1

∑n
j=1

Wij (fi−fj )
2

4

average of neighbors

f (xi ) =
P

j∼i Wij f (xj )P
j∼i Wij
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Harmonic Function

An alternative algorithm

1 Fix f (xi ) = yi for xi ∈ Xl and initialize
f (xi ) = 0 for xi ∈ Xu

2 Repeat until convergence

f (xi ) =
P

j∼i Wij f (xj )P
j∼i Wij

for xi ∈ Xu
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Harmonic Function

Analytical solution from the optimization
perspective

fu = L−1
u,uLu,lyl where

L =

[
Ll ,l Ll ,u

Lu,l Lu,u

]
f = (fl , fu)
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Harmonic function

Connection to label propagation (learning with local and global
consistency)
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Manifold regularization

Manifold regularization is inductive

Define a function in a RKHS: f (x) = h(x) + b, h(x) ∈ Hk

Flexible loss function: e.g., the hinge loss

Regularizer prefers low energy f>Lf

min
f

l∑
i=1

(1− yi f (xi ))+ + λ1‖h‖Hk
+ λ2f

>Lf

where

λ1 and λ2 are non-negative tradeoff constants
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Application

Label propagation (learning with local and global consistency)

[Zhou et al., NIPS 2003]

20-newsgroups: autos,
motorcycles, baseball, and
hockey under rec

Pre-processing: stemming,
remove stopwords & rare words,
and skip header

#Docs: 3970, #word: 8014
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Application

Label propagation (learning with local and global consistency)

[Wang et al., ACM MM 2004]

5,000 images

Relevance feedback for the top
20 ranked images

Classification problem

Relevant or not?
f (x): degree of relevance
Learning

SVM vs. Label propagation
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Summary of graph-based methods

Construct a graph using pairwise similarity

Key quantity: graph Laplacian

Captures the geometry of the graph

Decision boundary is consistent

Graph structure
Labeled examples

Parameters related to graph structure are important
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Semi-supervised SVM

SVM

SVM with unlabeled data

Semi-supervised SVM
(S3VM)
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Assumptions of semi-supervised SVM

Low Density Separation Assumption

The decision boundary should lie in a low-density region, that is the
decision boundary does not cut through dense unlabeled data.

Also known as cluster assumption
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Semi-supervised SVM

S3VM: yu for unlabeled data as a free variable

S3VM

min
w,b,ξ

min
yu∈{−1,+1}n

‖w‖2
2 + C

n∑
i=1

ξi

s. t. yi (w
>xi + b) ≥ 1− ξi , i = 1, . . . , l

yi (w
>xi + b) ≥ 1− ξi , i = l + 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

No longer convex optimization problem

Alternating optimization
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Semi-supervised SVM

Equivalently, unconstrained form:

S3VM

min
f

min
yu

‖w‖2
2 + Cl

l∑
i=1

(1− yi f (xi ))+ + Cu

l+u∑
i=l+1

(1− yi f (xi ))+

where (1− yi f (xi ))+ = max(0, 1− yi f (xi ))

Optimize over yu = (yu
l+1, . . . , y

u
n ), we have

min
yu
i

(1− yi f (xi ))+ = (1− sign (f (xi ))f (xi ))+ = (1− |f (xi )|)+
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Semi-supervised SVM

S3VM objective

min
f

‖w‖2
2 + Cl

l∑
i=1

(1− yi f (xi ))+ + Cu

l+u∑
i=l+1

(1− |f (xi )|)+

Non-convex problem

Optimization methods?
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Representative optimization methods for S3VM

label-switch-retraining [Joachims, 1999]

gradient descent [Chapelle and Zien, 2005]

continuation [Chapelle et al., 2006]

concave-convex procedure [Collobert et al, 2006]

semi-definite programming [Bie and Cristiannini, 2004; Xu et al.,
2004; Xu et al., 2007]

deterministic annealing [Sindhwani et al., 2006]

branch-and-bound [Chapelle et al., 2006]

non-differentiable method [Astorino and Fuduli, 2007]
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Experiments

Experimental data

Figure: Data sets.

Data and results are from [Chapelle et al., 2008]
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Quality of performance

Quality of minimization

Figure: Average objective values.

Quality of prediction

Figure: Errors on unlabeled data.
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Combine with graph-based methods

Figure: Errors on unlabeled data.

Seem to have better performance
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Summary

Semi-supervised SVM

Based on maximum margin principle

Low density assumption

Extend SVM by pushing the decision boundary traversing low density
regions

Classification margin is decided by

Class labels assigned to unlabeled data
Labeled examples

Problem: non-convex optimization

Solvers: ∆S3VM, SVMlight, CCCP, etc
No one is the best?
Sensitive to data

King & Xu (CUHK & MPI Inf) Semi-supervised Learning WCCI 2010 62 / 83



Advanced Topics

Outline

1 Basics of Semi-supervised Learning
Semi-supervised Learning
Probabilistic Methods
Co-training
Graph-based Semi-supervised Learning
Semi-supervised Support Vector Machine

2 Advanced Topics

3 An Empirical Example

4 Conclusion
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Advanced Topics

Theory of semi-supervised learning

PAC bound analysis of SSL (Balcan & Blum, 2008)

Which assumption to take (Manifold or low density)? (Lafferty &
Wasserman, 2007)

Whether unlabeled data can help? (Singh, Nowak, & Zhu, 2008)
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Advanced Topics

New directions of semi-supervised learning

Probabilistic methods: hybrids of generative models and
discriminative models (Lasserre et. al, 2006; Fujino et. al, 2008)

Variants of multiview learning: view disagreement, structured output,
information theoretic framework

Graph-based methods: how to construct the graph?

Semi-supervised SVM: new optimization methods?
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Large scale semi-supervised learning

Perspective:

Efficient algorithms

Online learning

Examples arrive sequentially, no need to store them all

Online semi-supervised learning: Repeat

1 At time t, adversary picks xt ∈ X , yt ∈ Y shows xt

2 Learner builds a classifier ft : X → R, and predicts ft(xt)

3 With small probability, adversary reveals yt

4 Learner updates to ft+1 based on xt and yt (if given)
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Online manifold regularization

Bach mode manifold regularization

J (f ) =
1

l
δ(yt)`(f (xt , yt)) +

λ1

2
‖f ‖2
H

+
λ

2T

T∑
i=1

T∑
j=1

(f (xi )− f (xj))2Wij

δ(yt): indicator of whether xt is labeled

Instantaneous risk

Jt(f ) =
T

l
δ(yt)`(f (xt , yt)) +

λ1

2
‖f ‖2
H

+λ2

T∑
i=1

(f (xi )− f (xt))2Wij

Involves graph edges between xt and all previous examples

J (f ) =
∑T

t=1 Jt(f )
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Online manifold regularization

Use gradient descent to update

ft+1 = ft − ηt
∂Jt(f )

∂f
| ft

ηt = 1/
√

(t)
Iteratively update

1 ft =
∑t−1

i=1 α
(t)
i K (xi , )̇

2 update α(t+1) by

α
(t+1)
i = (1− ηtλ1)α

(t)
i − 2ηtλ2(ft(xi )− ft(xt))Wi,t , i = 1, . . . , t − 1

α
(t+1)
t = 2ηtλ2

t−1∑
i=1

(ft(xi )− ft(xt))Wi,t − ηt
T

l
δ(yt)`′(f (xt , yt))

Space O(T ): stores all previous examples

Time O(T 2): each new instance connects to all previous ones

Can be further reduced by approximation techniques
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Advanced Topics

Summary

Theory: analyzing generalization error bounds

Understanding the assumptions

Cluster assumption vs. manifold assumption

Scalable algorithms

Online learning, e.g., online manifold regularization
Efficient optimization algorithms, like CCCP

Variants of algorithms

When the training data and test data are not generated from the same
distribution?
Data with structured output
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Privacy exposure in social networks

Number of users in Facebook
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Privacy exposure in social networks
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An Empirical Example

Privacy exposure in social networks

User profiles are not complete
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An Empirical Example

Privacy exposure in social networks

Friends (linked persons) may share similar property

Information of friends may expose his information

⇓
How much of these context information can be exposed?

⇓
Semi-supervised methods seem to suite our scenario
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An Empirical Example

Experiment

Objective: to expose which university a user comes from

Methods: SSL framework

Datasets: real-world data from Facebook and StudiVZ
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Experiment
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Experiment
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An Empirical Example

Experiment

Feature Selection

Users’ profile: top 3 completeness
Relational information

Data Translation

Missing Value: average value
Similarity: cosine similarity
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Experiment
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An Empirical Example

Summary

Learn hidden users’ attributes based on relational information and
profile similarity among users

SSL predicts sensitive information more accurately than supervised
learning

Users’ security is never secure and protections are needed
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Conclusion

Conclusion

Presented

A brief introduction to semi-supervised learning

Generative models
Co-training
Graph-based methods
Semi-supervised support vector machine

Advance topics in semi-supervised learning

An empirical evaluation of semi-supervised learning in online social
network analysis
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Conclusion

QA

Thanks for your attention!
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