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Abstract— In this paper, we address the problem of one-
class classification. Taking into account the fact that in some
applications, the given training samples are rather limited, we
attempt to utilize the advantages of Multi-task Learning (MTL),
where the data of related tasks may share similar structure and
helpful information. We then propose an MTL framework for
one-class classification. The framework derives from the one-
class ν-SVM and makes use of related tasks by constraining
them to have similar solutions. This formulation can be cast into
a second-order cone program, which achieves a global solution
and is solved efficiently. Further, the framework also maintains
the favorable property of the ν parameter in the ν-SVM, which
can control the fraction of outliers and support vectors, in one-
class classification. This framework also connects with several
existing models. Experimental results on both synthetic and
real-world datasets demonstrate the properties and advantages
of our proposed model.

I. INTRODUCTION

Multi-task learning (MTL, also known as inductive trans-
fer or learning to learn) has become a research topic of
renewed interest in machine learning, see [2], [4], [9], [10],
[11], [13], [15], [16] and references therein. One main insight
of multi-task learning techniques is that related tasks share
similar structure and information which may be useful for
improving the performance of these tasks [3], [14], [17], [21].
This is especially beneficial when the number of samples in
a specific task is limited. Incorporating other related useful
information and utilizing those “background data” efficiently
will actually help for the task-of-interest.

Currently, nearly all multi-task learning models focus on
supervised learning tasks [2], [5], [4], [10], [11], while only
few focus on semi-supervised learning task [18]. However,
there is no research touching on the employment of the
MTL in one-class classification problems. The problem of
one-class classification can be regarded as a special type
of classification problems. Usually, in solving one-class
classification problems, researchers are dealing with what
is really a two-class classification problem, where the two
classes are called the target class and the outlier class,
respectively [24], [25]. This problem is common in applica-
tions such as machine diagnostics, novelty detection, outlier
detection, disease detection, etc. [22], [24], [25]. In early
studies, a typical solution for this problem was to estimate
the probability density of the target data, then to assign
an object as an outlier when the object falls into a region
with density lower than a certain threshold [6]. Later on,
researchers developed one-class classification models based
on the Support Vector Machine (SVM), such as Support
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Vector Domain Description [25] and one-class ν-SVM [24],
[22]. These approaches follow Vapnik’s principle, one of the
key concepts in learning theory: never try to solve a problem
which is more general than the one that is actually interested
in [27].

For real applications, a very common problem is that the
labeled training samples are usually too few for a specific
task. This is ubiquitous in applications such as bioinformat-
ics, or related diagnostics tasks. There are several possible
solutions. For example, one may solve this problem by
restricting the function complexity using prior knowledge,
or by collecting more data. However, prior knowledge may
not exist or may be insufficient, while getting new data may
be too expensive or there may not exist further representative
samples for a solo task. However, it is often possible to
exploit relevant data from other related tasks. How to use
the partially representative data from relevant tasks is a key
issue.

In this paper, we aim to utilize the advantages provided by
the MTL and focus on the one-class classification problem.
By upper-bounding the distance between solutions of related
paired-tasks, we derive a ν-SVM style MTL framework
for one-class classification. The proposed model can be
transformed and solved by a second-order cone program
(SOCP). Further, its corresponding kernelized version can
be solved in a matrix-fractional program (MFP) [19], [7],
which is also an SOCP. Hence, the proposed model can attain
a global solution and can be solved efficiently. The MTL
framework not only takes the one-class ν-SVM as one special
case, maintaining the favorable property of the ν parameter,
but also connects to other related models. Experimental
comparisons on toy data and real-world datasets demonstrate
the validity and promise of the proposed MTL for one-class
classification in enhancing current existing one-class SVMs.

The paper is organized as follows: Section II reviews
some current work on one-class support vector machines.
Section III defines and formulates the MTL framework for
one-class classification. Section IV derives its kernelized
version and a corresponding solution. Section V discusses the
properties of the MTL framework in one-class classification.
Section VI details our experiment and the results. Finally,
the paper is concluded in Section VII.

II. RELATED WORK

In this section, we introduce current related work for one-
class classification.

In one-class classification, the only given information are
N samples of the same class in a data set {xi} ⊆ X , with
X ⊆ Rd, the data space, from a certain distribution. The task
is to find a separating boundary between the data set and the
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rest of the feature space by utilizing the provided one kind
of labeled data only.

Following Vapnik’s principle mentioned in Section I, there
are two kinds of SVM derivatives to solve the one-class clas-
sification problem. One idea is the Support Vector Domain
Description (SVDD): it maps the data into a feature space
and seeks a sphere with minimum volume containing all or
most of the samples in the target class [25]. When a future
point falls in the ball, it is deemed to be a “target” object;
otherwise, it is an outlier object. Another idea is the ν-SVM:
this model maps the data into a feature space and aims to
separate the given data from the origin with a maximum
margin. The algorithm returns a decision function f taking
the value +1 in a “small” region capturing most of the data
points in the target class, and −1 elsewhere [24]. The latter
approach introduces a favorable parameter ν ∈ (0, 1], which
can control the fraction of outliers and the fraction of support
vectors [22]. This model is termed as one-class ν-SVM. The
above two approaches can be transformed and represented
in a kernel form and the SVDD also can be introduced by
the ν parameter [22]. In the following, we only introduce the
one-class ν-SVM.

The idea of a one-class ν-SVM can be solved by the
following quadratic program:

min
w,ξ,ρ

1
2
‖w‖2 +

1
νN

N∑
i=1

ξi − ρ (1)

s. t. w>φ(xi) ≥ ρ− ξi, i = 1, . . . , N,

w ∈ Rf , ξ ∈ RN
+ , ρ ∈ R

where φ : Rd → Rf , is a function mapping the data in the
original space to a new feature space, and ν ∈ (0, 1) is an
introduced parameter which can control the faction of outliers
and the faction of support vectors.

The optimal boundary is then determined by the support
vectors expansion:

f(x) = sign

(
N∑

i=1

αiK(xi,x)− ρ

)
,

where α is the solution of the dual form of the above
quadratic program and training samples xi with non-zero
αi are support vectors. The kernel matrix K is defined by
the inner product of mapping features and needs to satisfy
Mercer’s condition [27], [23].

III. FORMULATION

In this section, we consider one-class classification in the
MTL frmaework.

Suppose there are T tasks, all sharing the common data
space X and there are N samples in a data set {xi} ⊆ X ,
where each sample belongs to one and only one task. Let
Tt be the t-th task, consisting of its related samples. Hence,∑T

t=1 |Tt| = N and Tk ∩ Tl = ∅, ∀k 6= l. Next, suppose
there is a task relation network indicating the relationships
among tasks. The task relation network can be represented
by a graph, where each node denotes a task and two nodes

are connected by an edge if these two tasks are related to
each other. The edge set in this network can be denoted by
E = {(im, jm)M

m=1}.
Similar to the idea of separating target data from the origin

with maximum margin in the one-class ν-SVM, we seek the
decision boundary corresponding to the t-th task as

ft(x) = sign
(
w>

t φ(x)− ρt

)
,

wt ∈ Rf , ρt ∈ R, t = 1, . . . , T

by making each task separates its target data from the origin
with maximum margin and setting the solutions of related
tasks are close to each other.

The first objective is similar to the optimal solution in (1).
The second objective can be fulfilled by upper-bounding each
difference between the solutions of related task pairs by a
positive scalar η as [15]:

1
2
‖wim

−wjm
‖2 ≤ η, ∀ (im, jm) ∈ E .

This constraint is described as a local constraint in [26], and
it makes the structure of related tasks close to each other.
Hence, by imposing this constraint, the number of target
training samples will be increased implicitly compared to
training a task individually and the related tasks will share
common information partially.

Hence, we formulate the multi-task learning framework
for one-class classification (MTL–OC) as follows:

min
w,ξ,ρ,η

1
2T

T∑
t=1

‖wt‖2 +
1
N

T∑
t=1

1
νt

∑
i∈Tt

ξi

−
T∑

t=1

ρt + Cηη , (2)

s. t. w>
t φ(xi) ≥ ρt − ξi, ∀ i ∈ Tt, t = 1, . . . , T,

1
2
‖wim

−wjm
‖2 ≤ η, ∀ (im, jm) ∈ E ,

w ∈ Rf×T , ξ ∈ RN
+ , ρ ∈ RT , η ∈ R+

where w ≡ [w1, . . . ,wT ] and ξ ≡ [ξ1, . . . , ξN ]>. Here, we
introduce parameters νT ≡ [ν1, . . . , νT ], where νt ∈ (0, 1]
for the corresponding task. The advantage of νt is similar
to that in the ν-SVM; we will analyze its properties in
Section V. Cη is another positive trade-off parameter for the
upper bound of related tasks. Different Cη values will affect
the weights of the related tasks. More detailed properties of
Cη are discussed in Section V.

IV. KERNEL VERSION

In the following, we give the dual formulation for the
problem of MTL–OC (2) in kernel form and cast it into an
SOCP problem, more specially, through a matrix-fractional
program (MFP) [19].

A. Duality

First, we define some notations for the kernels. Let Kfea

be the feature kernel matrix whose (i, j)-th element is
the inner product of feature vectors φ(xi) and φ(xj), i.e.,
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Kfea
i j = φ(xi)>φ(xj). Hence, this feature kernel matrix is

a positive semidefinite matrix. Through defining different
feature kernels, Kfea, the data domain information can be
mapped correspondingly.

The second kernel matrix is the task relationship matrix
with an M -dimensional non-negative parameter vector β ∈
RM

+ :

Ktask(β) =
(

1
T

IT +Mβ

)−1

(3)

where β are dual variables corresponding to the first con-
straints in (2). IT ∈ RT×T is an identity matrix, Mβ =∑M

m=1 βmMm, where Mm = Eimim
+ Ejmjm

−Eimjm
−

Ejmim
, and Eij ∈ RT×T is a sparse matrix whose (i, j)-

element is one and all the others are zero. This gives a graph
Laplacian kernel, where the m-th edge is weighted by the
factor βm.

Now, let Z ∈ NT×N be the indicator of a task and a
sample such that Zt,i = 1, if i ∈ Tt, and Zt,i = 0, otherwise.
Then the information about the tasks is presented by an
N × N matrix Z>Ktask(β)Z. These two kernel matrices
are combined together as

Kcom(β) = Kfea ◦ (Z>Ktask(β)Z),

where ◦ is the Hadamard product, or element-wise product.
This parameterized matrix Kcom(β) is guaranteed to be
positive semidefinite [12].

To solve the primal problem of the MTL–OC in (2), we
can use the Lagrange multipliers method and obtain its dual
problem as follows:

min
α, β

1
2
α>Kcom(β)α, (4)

s. t. 0 ≤ αi ≤ 1
N νi

, if i ∈ Tt, νi = νt,

Zα = 1,
1>Mβ ≤ Cη,

α ∈ RN
+ , β ∈ RM

+ ,

where α and β are Lagrange multipliers corresponding to the
first and the second kinds of constraints in (2); and 1k ∈ Rk

is a k-dimensional vector with all element values equal to 1.
In the test stage, a new sample x in the k-th task can be

determined by

fk(x) = sign

(
N∑

i=1

T∑
t=1

αiKfea(xi,x)Ktask(t, k)Zt,i−ρk

)
,

where Kfea(· , ·) and Ktask(· , ·) are the kernel functions
over features and tasks, respectively.

B. SOCP Transformation

In the following, we will solve the optimization in (4)
using the standard procedure in [7, ch. 4].

Now, suppose the feature kernel matrix Kfea has rank r
and can be decomposed as Kfea = UfeaUfea>, where Ufea ∈
RN×r. Let Ufea ≡ [f1, . . . , fr] ∈ RN×r and matrices G` ≡

Zdiag (f`), for ` = 1, . . . , r. Using these representations, the
objective function in (4) can be rewritten as

Jr(α,β) =
1
2

r∑
`=1

α>G>
`

(
1
T

IT +Mβ

)−1

G`α

The above formulation is a combination of r MFPs.
Next, let qm ∈ RT for each edge, i.e., we can denote

the task relatedness: q = eim
− ejm

, where eim
is a unit

vector with the im-th element being one. Again, let Q be
a matrix consisting of q as: Q = [q1, . . . ,qM ] ∈ RT×M .
Thus, the graph Lagrangian matrix of task relatedness can
be expressed by Mβ = Qdiag (β)Q>. Hence, the objective
function in (4), i.e., Jr(α,β), is cast into the following MFP
problem:

min
α,β

1
2

r∑
`=1

α>G>
`

(
1
T

IT + Qdiag (β)Q>
)−1

G`α (5)

subject to the same constraints in (4).
Hence, we obtain a standard MFP form of (5). We can

easily transform it into the following SOCP problem:

min
v0, v, α, β, t0, tm

1
2

r∑
`=1

(
t0,` +

M∑
m=1

tm,`

)
(6)

s. t. α ≤ 1
νN

1N , Zα = 1T ,

1>β ≤ Cη,

1√
T

v0,` + Qv` = G`α, ∀`∥∥∥∥[ 2v0,`

t0,` − 1

]∥∥∥∥
2

≤ t0,` + 1 , ∀`∥∥∥∥[ 2vm,`

βm − tm,`

]∥∥∥∥
2

≤ βm + tm,` , ∀m,∀`

v0 ∈ RT×r, v ∈ RM×r, α ∈ RN
+ ,

β ∈ RM
+ , t0 ∈ Rr, tm ∈ Rr,

` = 1, . . . , r, m = 1, . . . ,M .

Hence, we transform the problem of kernelized MTL–
OC into a new SOCP problem. Based on the computational
complexity analysis of SOCP problems in [19], we can
summarize the result as follows:

Theorem 1: The dual problem of MTL in one-class clas-
sification of (4) can be cast as an SOCP problem in (6) and
be solved in O((M r)2((M + T ) r + N)).
Hence, the optimization of the kernelized MTL–OC can be
solved by the SOCP in (6), which attains a global optimal
solution. To solve an SOCP problem, one can adopt different
methods, e.g., interior-point methods, barrier methods, etc.
and use some standard solvers, e.g., SeDuMi, SDPT, etc.
Here, we use the cvx toolbox [7] to solve our model.

Further, for our model, if the above time complexity is
dominated by N , the bound of the time for our model is
linear to N , which should be very efficient. However, in an
actual computation, the time complexity is not dominated by
N . A further study is to consider how to speed it up and
extend the scalability.
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Fig. 1. Toy example with two tasks demonstrates the proposed model.

V. DISCUSSION

In the following, we discuss the properties of our proposed
MTL for one-class classification.

• Connection to one-class ν-SVM
The one-class ν-SVM [22], [24] is a special case of our
proposed MTL model. Actually, when the number of
tasks is one, the optimization in (2) is reduced to the
one-class ν-SVM.
In addition, if we set Cη = 0, i.e., we discard the control
of the closeness of the weights in related tasks, then our
MTL framework for one-class classification corresponds
to training each individual one-class ν-SVM.

• Relation to MTL via Conic Programming
Our proposed MTL model focuses on the problem
of one-class classification. When it employs the label
information in a binary classification paradigm, it can be
considered as a ν trick of the MTL via conic program-
ming, which distinguishes itself from the formulation
in [15].

• Proposition of νs
Similar to the property in one-class ν-SVM [24], we
have the following proposition:
Proposition 2: Suppose the solution of (2) satisfies
ρt 6= 0 for the t-th task. The following statements hold:

1) νt is an upper bound on the fraction of outliers for
the t-th task.

2) νt is a lower bound on the fraction of support
vectors for the t-th task.

3) Suppose the data of the t-th task were generated
independently from a distribution P (x) without
discrete components and the kernel is analytic and
non-constant. With probability 1, asymptotically,
νt equals both the fraction of support vectors and
outliers for the t-th task.

The above proposition can be proved based on the
constraints of the dual problem and the fact that outliers
must have Lagrange multipliers at the upper bound.
For practical applications, we can use a global ν, where
νt is proportional to the number of the training samples

in the related t-th task, as νt = ν |T |t
N . So we can use

a single global parameter ν to control the fraction of
support vectors and outliers consistently.

VI. EXPERIMENTS

In this section, we demonstrate the validity and advantage
of the proposed method through experiments.

A. Models and Measurement

In the experiment, we compare three methods: our pro-
posed MTL–OC model; individually learned SVM (IL–
SVM) and One–SVM. For the MTL–OC model, data for
all tasks and the information of their tasks relationships are
fed into the model to get the boundaries for different tasks.
For IL–SVM, data for each individual task are trained in
a one-class ν-SVM individually. The decision boundary for
each task is obtained correspondingly. For the One–SVM, all
samples in the multiple tasks are considered as one big task
and they are trained by the one-class ν-SVM.

For all three models, the gaussian kernel, k(x,y) =
exp(−γ‖x− y‖2), is used as the feature kernel. The corre-
sponding parameters are expressed in detail in the following
subsection. For real-world datasets, the values of the pa-
rameters Cη and νT for the MTL–OC model and related
parameters for IL–SVM and One–SVM are tuned by cross-
validation over the training set.

A good one-class classifier will try to minimize two types
of errors, namely the fraction of false positives (FP) and
the fraction of false negatives (FN). For a classifier, by
varying the threshold, these two errors can be obtained corre-
spondingly, and a Receiver Operating Characteristics (ROC)
curve [20] is then obtained. Usually, the area under the ROC
curve, AUC, can be used to measure the performance of a
one-class classifier [8]. The larger the AUC, the better the
one-class classifier. In the experiment, the AUC of the ROC
is calculated by the trapezoid area.
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B. USPS Dataset

The U.S. Postal Service (USPS) database 1 is a handwritten
digits database containing 9298 digit images of size 16 ×
16 = 256 pixels, of which the last 2007 comprise the test
set. Pixel values in each image are scaled to the range of
−1.0 and 1.0.

Here, we create two fake but related tasks from this
USPS database to mimic the application of recognizing some
noisy images with the help of clear and related images. We
choose digit ‘4’ as the target object and create two additional
mask patterns with random noises which are generated from
uniform distribution: one is with thin noise and the other
one is with thick noise. We then add these two masks to
the images of digit ‘4’ in the original training set of the
USPS database. Figure 2 shows some samples of the final
images on both the training and test datasets. The objective
of this experiment is to show how clean data can be used for
improving the performance of outlier detection on the noisy
related data.

In the training procedure, data in the created fake and
related tasks are fed into the corresponding models to get
the decision boundaries. The parameter, γ, of the feature
kernel is set to 1

0.5·256 as in [22]. To test the effect of using
different numbers of training samples, we randomly select
5, 10, 20 and 40 samples from the training data for each
task. In the test procedure, we only use the test set (2007
samples) of the USPS database and vary the threshold to get
the corresponding ROC curve on the test set. We repeat the
above procedure 20 times and average their AUCs.

Table I reports the result on this task. Since there is only
one test set for the target object, we average the AUCs of the
IL–SVM and the MTL–OC as the final AUCs. It is obvious
that our proposed MTL–OC model shows significant im-
provement over the IL–SVM and the One–SVM. For the IL–
SVM, its performance reduces largely when training on the
samples with thick noise. Moreover, its performance reduces
as the number of training samples decreases for the thick
noise case. This means that the more noise samples used
in the training, the worse decision boundary may distract
from the true one. On the contrary, our proposed MTL–
OC can overcome the problem of the IL–SVM. Comparing
our MTL–OC with the IL–SVM on the thick noise case,
the performance of our model improves greatly. Overall, our
model achieves the best performance in terms of the average
AUCs. Although the performance of our MTL–OC training
on the samples with thick noise does not beat that of the
One–SVM on all samples, the corresponding performance of
our MTL–OC is very close to that of the One–SVM and we
achieve an overall better performance. Another observation
is that as the number of training samples increases, the
AUC increases correspondingly for the One–SVM and our
MTL–OC. In the test, when the number of training samples
increases from 20 to 40, there is no significant improvement
on the performance. This means that when the number of

1http://www-stat.stanford.edu/˜tibs/
ElemStatLearn/data.html

training samples achieves a certain value, it will not improve
the performance for our MTL–OC.

This experiment also gives us an illumination of how to
detect outliers when the given one-class samples are noisy.
For that case, we may try to collect some clean data and
incorporate them in the training procedure to improve the
detecting performance.

C. Protein Super-Family Dataset

In the following, we test the one-class classification on
a real-world protein super-family dataset [1]. Table II gives
a structural view of the dataset and the task relationships
performed in the experiments. We will interpret it in the
following.

The data from the SCOP database is the same as that
of [15]: 20 kinds of amino acids consist of 400 features. In
this dataset, there are four super-classes which are termed
as folds [15]: DNA/RNA binding fold, Flavodoxin fold,
OB-fold and SH3 fold. Each fold is divided into several
super-families [15]. The DNA/RNA binding fold contains
three super-families and we denote them as d1, d2 and
d3, respectively. The Flavodoxin fold contains four super-
families and we denote them as f1, f2, f3, and f4, respectively.
The OB-fold contains three super-families and we denote
them as o1, o2 and o3, respectively. There are two super-
families in the SH3 fold and are denoted as s1 and s2,
respectively.

The tasks’ relationships are constructed as follows: clas-
sifying a super-family is considered as one task for the one-
class classification. If two one-class classification tasks are in
the same fold, we set them as related tasks and connect them
by an edge. For an isolated task without any edge connection,
our formulation of MTL–OC will define it as an independent
task and its solution is consistent with that solved by the IL–
SVM. Hence, we can perform the experiments on each fold
respectively. The effect of the number of training samples is
also tested on this dataset. We randomly choose N samples,
where N equals 5, 10, and 20, from each super-family, in
training for each task. The parameter of the feature kernel,
γ = 1

2σ2 , where σ2 is set to the average of the squared
distances to the fifth nearest neighbors, as [15]. We then
train on these samples to obtain the corresponding decision
boundaries for all three models and calculate their AUCs
correspondingly. The above procedure is repeated ten times
and we average the results of the AUCs.

The average results are shown in Fig. 3 and Fig. 4. From
the results, we clearly see that the MTL–OC outperforms the
IL–SVM and One–SVM mothods. It is interesting to note
that the results of One–SVM are substantially worse than
those of the IL–SVM. An exception exists for the subtask
of the super-family f1. We guess this may be due to the
skewness of the data. It is also noted that the AUCs are very
small for the Flavonoid fold in all three models. Through
experimental observations, there are very high false positive
errors for three models in this fold. Overall, this dataset
again demonstrates the advantage of our proposed MTL–OC
model.
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(a) Training Samples (b) Test Samples

Fig. 2. Samples in the USPS dataset.

TABLE I

THE PERFORMANCE (AUC) OF EACH METHOD FOR THE USPS DATASET (%).

# IL–SVM One–SVM MTL–OC
thin thick average average thin thick average

5 82.2±5.1 57.6±3.1 69.9±3.9 81.7±5.1 83.9±5.1 81.2±5.2 82.6±5.2
10 86.2±2.7 56.3±2.3 71.2±2.3 82.8±2.9 86.2±2.9 82.8±2.4 84.5±2.6
20 87.2±1.9 55.7±2.1 71.4±1.8 83.3±1.2 87.2±1.3 83.1±1.6 85.1±1.4
40 87.3±1.3 53.8±1.5 70.5±1.2 84.1±1.1 87.2±1.1 83.1±1.5 85.2±1.3

TABLE II

DESCRIPTION OF THE PROTEIN SUPER-FAMILY DATASET.

Item Content
Folds DNA/RNA Flavodoxin OB SH3
Super
-families d1 d2 d3 f1 f2 f3 f4 o1 o2 o3 s1 s2

IL–SVM
One–SVM
MTL–OC

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new multi-task learning
framework for one-class classification. The framework is
to extend the one-class ν-SVM and to bound the distance
between solutions of the related paired-tasks. The formu-
lation is cast into a second-order cone program and is
solved efficiently with a global optimal solution. We also
demonstrated the advantage of our proposed model in the
experiments on toy data, USPS digit data and a protein super-
family dataset.

There are still several promising directions on the work.

1) Our framework is derived from the ν-SVM. It is
interesting to derive a similar framework from the
support vector domain description.

2) Our method exploits the information from related task
through model structure assumption, but there are still
other methods making use of the information inherent
in multi-tasks through other kinds of knowledge, e. g.,
common features. How to utilize other kinds of inher-
ent knowledge in related tasks is also an interesting

problem.
3) The effectiveness of our model has been demonstrated

through experimental comparison. It is important and
valuable to derive a framework to provide more the-
oretical justification of our model, e.g., analyzing the
generalization error bound of the one-class classifica-
tion in the MTL framework.

4) Now we have used standard toolboxes with standard
methods, interior point method, to solve the SOCP
problem. Standard methods contain the problem of
scalability. Based on the specific form of our formula-
tion, we believe there are still other methods to speed
up the procedure of solving SOCP problem. How to
speed it up and extend the scalability of our model is
a promising research problem.
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Fig. 3. The performance (AUC) of each method on the d1, d2, d3, o1, o2, o3 data of the protein super-family dataset (%).

5 10 20
48

48.5

49

49.5

50

# training samples

A
U

C
 (

%
)

f1

 

 

IL−SVM
One−SVM
MTL−OC

(a) f1

5 10 20
10

15

20

25

# training samples

A
U

C
 (

%
)

f2

 

 

IL−SVM
One−SVM
MTL−OC

(b) f2

5 10 20
20

22

24

26

28

# training samples

A
U

C
 (

%
)

f3

 

 

IL−SVM
One−SVM
MTL−OC

(c) f3

5 10 20
20

25

30

35

40

# training samples

A
U

C
 (

%
)

f4

 

 

IL−SVM
One−SVM
MTL−OC

(d) f4

5 10 20
80

82

84

86

# training samples

A
U

C
 (

%
)

s1

 

 

IL−SVM
One−SVM
MTL−OC

(e) s1

5 10 20
61

61.5

62

62.5

63

# training samples

A
U

C
 (

%
)

s2

 

 

IL−SVM
One−SVM
MTL−OC

(f) s2

Fig. 4. The performance (AUC) of each method on the f1, f2, f3, f4, s1, s2 data of the protein super-family dataset (%).
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