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Supervised Self-taught Learning:
Actively Transferring Knowledge from Unlabeled Data

Kaizhu Huang, Zenglin Xu, Irwin King, Michael R. Lyu, and Colin Campbell

Abstract— We consider the task of Self-taught Learning
(STL) from unlabeled data. In contrast to semi-supervised
learning, which requires unlabeled data to have the same set of
class labels as labeled data, STL can transfer knowledge from
different types of unlabeled data. STL uses a three-step strategy:
(1) learning high-level representations from unlabeled data only,
(2) re-constructing the labeled data via such representations and
(3) building a classifier over the re-constructed labeled data.
However, the high-level representations which are exclusively
determined by the unlabeled data, may be inappropriate or even
misleading for the latter classifier training process. In this paper,
we propose a novel Supervised Self-taught Learning (SSTL)
framework that successfully integrates the three isolated steps
of STL into a single optimization problem. Benefiting from the
interaction between the classifier optimization and the process
of choosing high-level representations, the proposed model is
able to select those discriminative representations which are
more appropriate for classification. One important feature of
our novel framework is that the final optimization can be
iteratively solved with convergence guaranteed. We evaluate
our novel framework on various data sets. The experimental
results show that the proposed SSTL can outperform STL and
traditional supervised learning methods in certain instances.

I. I NTRODUCTION

SELF-TAUGHT LEARNING (STL) utilizes information
from unlabeled data and it has been a subject of ac-

tive interest recently [18], [12]. The use of unlabeled data
has been actively considered within the context of semi-
supervised learning (SSL) [3], [24], [26]. However, SSL has
the usual requirement that the unlabeled data shares the same
distribution as the labeled data. In particular, the unlabeled
data should contain the same implicit set of labels as those of
the labeled data. Unfortunately, unlabeled data which shares
the same label distribution as the limited labeled data may
be difficult to obtain. Instead, a huge amount of seemingly
irrelevant unlabeled data could be available and might be
relevant to the learning task of interest. Self-taught learning
has been proposed to deal with this learning scenario.

As an example we consider the automated classification
of images of rare insects in the natural world. In this task,
the number of labeled training samples may be limited and
it may be difficult obtaining unlabeled images of the same
insects. Both supervised learning and SSL potentially fail
to solve this problem due to the limited amount of labeled
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and unlabeled images. In contrast, STL might improve the
classification performance by utilizing a huge corpus of
unlabeled images of different insects. These samples look
seemingly irrelevant but can be easily obtained [18]. The
motivation for STL is that this huge corpus of randomly
chosen images may contain basic visual patterns, such as
edges and colors which might be similar to those in images
of interest. Another example would be that handwritten
digits from other languages may help in the recognition of
English characters, since these digits contain strokes that are
similar to those in the English characters, although they have
different labels. Studies by Raina [18] have demonstrated
that STL could be promising for the types of tasks mentioned
above and can indeed improve classification accuracy in
some cases.

The learning procedure in STL can be divided into three
separate stages. In the first stage, the high level representa-
tions (or basis), such as edges in the images or strokes in
handwritten characters, are learned from available unlabeled
data which are not from the same distribution class as labeled
objects. In the second stage, STL represents the labeled data
as a linear combination of these high level features or basis
obtained from the first stage. Coefficients from the basis are
then treated as input features for the next stage. In the third
stage, we exploit traditional supervised learning algorithms,
such as Support Vector Machines (SVM) [23], [21], to learn
a decision function based on these coefficients.

One problem with the framework described above is that
the first stage is pursued in an ad hoc manner. Specifically,
the learned high-level features in this step is determined by
the unlabeled data only and this data could be very different
from the labeled data. The learned representation might be
unsuitable or even misleading for classifying the labeled data
in the following two stages. To illustrate this shortcoming, we
consider another example involving the classification of the
two digits “1” and “7”. Suppose that we have a huge number
of other unlabeled uppercase English characters “I”, “M”,
and “N”. Obviously, the vertical strokes dominates the other
strokes and no explicit horizontal stokes occur in these three
characters. Hence, the feature of the horizontal stroke may
not even appear in the final high-level features learned from
the unlabeled data. However, to separate “1” and “7”, the
most discriminate feature is the horizontal stroke. Figure 1(a)
visually shows the50 high-level features extracted by STL
from 200 “I”, “M”, “N” characters. As observed, almost no
horizontal stroke patterns are extracted.

To solve this problem, we propose a novel Supervised
Self-taught Learning (SSTL) model which manages to find
the most appropriate high-level features or representations
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(a) Patterns learned by STL (b) Patterns learned by our proposed framework

Fig. 1. High-level visual features extracted by STL and SSTL when classifying digits “1” and “7” with capital letters “I”, “M”, “N” as unlabeled samples.
(a) and (b) presents the patterns learned by STL and SSTL respectively. In (a), STL fail to extract the discriminative features, i.e., horizontal stroke patterns.
In (b), SSTL manages to learn many horizontal stroke patterns.

from the unlabeled data undersupervisionoffered by the
labeled training data. We attempt to learn from unlabeled
data with the target input-output mapping in mind rather
than to achieve this in an ad hoc manner. Specifically,
the optimization is not performed in separate stages as
in the original formulation of self-taught learning. Instead,
the three stages of basis learning, coefficient optimization,
and the classifier construction are integrated into a single
optimization task. Thus the representations, the coefficients,
and the classifier are optimized simultaneously. By inter-
acting classifier optimization with choosing the high-level
representations, the proposed model is able to select those
discriminant features or representations, which are most
appropriate for classification. Figure 1(b) demonstrates the
high-level basis obtained by our SSTL framework in the
“1” and “7” classification problem. As observed, the most
discriminative features, the horizontal strokes, are indeed
extracted.

To our knowledge, this is the first study that performs
the Self-taught Learning in a supervised way. The under-
lying knowledge embedded in the unlabeled data can be
transferred to the classification task actively and efficiently.
In addition, one important feature of our framework is
that the final optimization can be solved iteratively with a
convergence guarantee. Moreover, we show that the proposed
discriminative framework can even be formulated into a
single optimization problem for the multi-class tasks. With
these two advantages, the proposed framework can be easily
applied in practice on many applications.

In the following, we first present the task and notation
used throughout the paper. We then briefly review Self-taught
Learning algorithm. We then present our novel Supervised
Self-taught Learning framework. In Section V, we provide a
series of experiments to verify the proposed framework. In
Section VI, we discuss some issues raised by our study.

II. PROBLEM FORMALISM

We consider a labeled training data setD =
{(x1, y1), (x2, y2), . . . , (xl, yl)}, consisting ofl labeled sam-
ples drawn i.i.d. from a particular distributionS. Here

x
i ∈ R

n (i = 1, 2, . . . , l) describes an input feature vector,
and yi ∈ {1, 2, . . . , q} is the category label forxi. In
addition, assume thatm (m � l) unlabeled data samples
{xl+1,xl+2, . . . ,xl+m} are also available. The basic task of
STL and SSTL can be described as seeking a hypothesish :
R

n → {1, 2, . . . q} that can predict the labely ∈ {1, 2, . . . q}
for the future input data samplez ∈ R

n by appropriately
exploiting both the labeled data and unlabeled data not drawn
from the same distribution.

Remarks. The above problem is very different from the
SSL. SSL requires that the unlabeled data should be sampled
from the same distribution of the labeled data. However,
here we relax this requirement and the unlabeled samples
do not satisfy this constraint. Thus these unlabeled samples
might share labels different from those of the labeled data.
The problem is also very different from Transfer Learning
(TL)[22], [4], [19] in that the latter framework requires the
auxiliary data to be already labeled.

III. SELF-TAUGHT LEARNING BY SPARSECODING

STL solves the above task in three separate stages. We
describe these three stages below:

A. Stage I: Learning Representations

In the first stage, high-level representations are learned
from the unlabeled data. For instance, edges could be learned
from images or strokes could be learned from alternative
handwritten characters even if our purpose is to classify
English handwritten digits. These high-level representations
can be learned by using sparse coding (SC). SC is a powerful
technique that has received much interest recently. It can
learn an over-complete basis from data. We refer interested
readers to [20], [15], [12], [16]. The formulation is as
follows:

min
a,b

l+m∑

i=l+1

‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 + β‖a(i)‖,

s. t. ‖bj‖
2
2 ≤ 1, j = 1, . . . , p .

b = {b1,b2, . . . ,bp} is called a set ofbasis with each
basisbj as ann-dimensional vector.a(i)

j is the activation
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coefficient associated with the basisbj for the samplexi.
Hencea

(i) (i = l + 1, l + 2, . . . , l + m) is a set of activa-
tion coefficients for the unlabeled samplexi with respect
to all the basisb. We denotea as a matrix defined as
(a(l+1),a(l+2), . . . ,a(l+m)).

The above optimization problem tries to represent the
unlabeled data in terms ofb. In more details, the first term in
the optimization function describes the reconstruction error,
while the second term with theL1-norm forces the activation
vector to be sparse. It is noted that the above optimization
resembles Principal Component Analysis (PCA) [6] if the
second term is omitted. However, SC enjoys several advan-
tages over PCA. First, PCA can only generate a limited
number of basis components (fewer thann), while SC could
generate a large number of basis components whose number
might be far larger thann. Second, PCA only results in linear
feature extraction, while SC can deliver non-linear represen-
tations as imposed by theL1-norm. With such advantages,
SC outperforms PCA in many cases and is actively adopted
to learn over-complete representations from data [20], [15].

B. Stage II: Feature Construction from the Basis

In the second stage, STL tries to represent the labeled
data with respect to the basisb. This stage is formulated as
follows:

min
aL

l∑

i=1

‖xi −

p∑

j=1

aL
(i)
j bj‖

2
2 + β‖a

(i)
L ‖ .

In this stage, the features or the activation coefficientsaL

for the labeled data are learned over the basisb, which
are obtained from the first stage. Similarly, the second term
enforces sparsity in the coefficient vector.

C. Stage III: Learning a Classifier from Features

In the third stage, an SVM or other classifier can be
exploited to learn the decision functionh = w · az + c (az,
where w is the coefficient vector of the future samplez)
from the features constructed in Stage II. This is described
in the following:

min
w,c

l∑

i=1

εi + γ‖w‖22 ,

s. t. yk(w.a
(k)
L + c) ≥ 1− εk,

εk ≥ 0, k = 1, . . . , l .

Clearly, this optimization problem is the standardL2-norm
Support Vector Machine, except that the input features are the
coefficients obtained in the second stage. In real applications,
L1-norm SVM [25] can also be adopted.

As observed from the above optimization, STL extracts
the high-level representations from the unlabeled data only.
However, these high-level representations may be inappropri-
ate or even misleading for the latter classifier construction.
The discriminative information, that proves critical for clas-
sification performance, may be discarded in this stage. In the

next section, we propose the Supervised Self-taught Learning
framework that successfully integrates the above three stages
into one optimization problem. In the new framework, the
high-level representation optimization is supervised by the
classifier learning. The derived representations would be
those discriminative patterns that will greatly benefit the
classification performance.

IV. SUPERVISEDSELF-TAUGHT LEARNING FRAMEWORK

In this section, we present our novel Supervised Self-
taught Learning framework. For the purpose of clarity, we
first describe the framework in the binary setting. We then
present an extension the framework to multi-class classifica-
tion.

A. Two-class Model

The binary SSTL model is formulated as the following
optimization problem:

min

l+m∑

i=1

‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 + β‖a(i)‖+ λ

l∑

i=1

εi + γ‖w‖22 ,

s. t. ‖bj‖
2
2 ≤ 1, j = 1, . . . , p ,

yk(w · a(k) + c) ≥ 1− εk, εk ≥ 0, k = 1, . . . , l .

In the above,bj , j = 1 . . . , p representsp basis extracted
from the unlabeled data under the supervision of the labeled
data.a(i)

j is the weight or the coefficient for the data point
x

i with respect to the basisbj . {w, c} defines the classifier
boundary1.

The optimization not only minimizes the reconstruction
error among both the labeled data and unlabeled data given
by

∑l+m

i=1 ‖x
i−

∑p

j=1 a
(i)
j bj‖

2
2, but also minimizes the error∑l

i=1 εi caused by the classifier on the labeled data. AnL1-
norm and anL2-norm is exploited as the regularization terms
for a andw, respectively. One could also use theL1-norm
for w. The basisb and the classifier{w, c} are optimized
simultaneously. This is very different from the original self-
taught framework using sparse coding, where the high-level
features, determined exclusively by the unlabeled data, might
be misleading and detract from classification performance.

In similar fashion to the original sparse coding scheme,
the above optimization problem is not convex. However,
it is convex in a (while holding {b, w, c, ε} fixed) and
also convex in{b,w, c, ε} (while holding a fixed). In the
following, we show how to solve the optimization problem
iteratively in two steps.

B. Optimization Method

We propose the following iterative algorithm to perform
the optimization. Whenb,w, c, ε are fixed, it is easy to verify
that the optimization problem of findinga is reduced to the
following two sub-problems.
Problem I(a):

min
a(i)

‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 + β‖a(i)‖, i = l + 1, . . . , l + m .

1For binary problems, we modify the class labels as{-1,+1}.
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Problem I(b):

min
a(i)

‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 + β‖a(i)‖, i = 1, . . . , l,

s. t. yi(w · a(i) + c) ≥ 1− εi, εi ≥ 0 .

Problem I(a) describes the optimization over unlabeled
data, while I(b) presents the optimization over the labeled
data points. Problem I(a) is equivalent to a regularized least
squares problem. I(b) is similar except that it has a linear
constraint. Both problems can be solved by many methods,
for example, feature-sign search algorithm [12], the interior
point method [14] or a generic convex programming solver
(CVX)2.

Similarly, whena is fixed, the optimization problem of
finding b,w, c, ε is altered to the following two sub prob-
lems.
Problem II(a):

min
w,c,ε

γ‖w‖22 + λ

l∑

k=1

εk,

s. t. yk(w · a(k) + c) ≥ 1− εk, εk ≥ 0, k = 1, . . . , l .

Problem II(b):

min
b

l+m∑

i=1

‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 ,

s. t. ‖bj‖
2
2 ≤ 1, j = 1, 2, . . . p .

Problem II(a) and II(b) are typical quadratic programming
problems. More specifically, II(a) is the standardL2-norm
SVM optimization problem. II(b) is a Quadratically Con-
strained Quadratic Programming problem (QCQP) [1], [13],
[2]. They can be solved either by the SMO algorithm [17]
or the dual algorithm proposed in [12].

Since the value of the optimization objectivef(a,b,w, ε)
will be decreased after solving each problem, solving the
above two problems alternatively will guarantee a conver-
gence to a fixed point. As a summary, we present the
optimization algorithm in Algorithm 1.

C. Multi-class Model

In this section we provide details for a one-against-others
strategy to extend SSTL to multi-class tasks.

Before we present the problem definition for the multi-
class model, we define some notations in the following. Let
Io be a diagonal matrix with the element1 at (0, 0) and all
the other diagonal elements being−1. Assume that{wo, co}
is the decision function associated with theo-th class (1 ≤
o ≤ q, i.e., there areq classes) . We further defineW =
(w1,w2, . . . ,wq) andc = (c0, . . . , cq)

T .

2The matlab source codes of the CVX package can be downloaded from
http://www.stanford.edu/ boyd/cvx/.

The multi-category SSTL model is defined as follows:

min

l+m∑

i=1

{‖xi −

p∑

j=1

a
(i)
j bj‖

2
2 + β‖a(i)‖}

+ λ

l∑

i=1

q∑

o=1

εi
o + γ

q∑

o=1

‖wo‖
2
2 (1)

s. t. ‖bj‖
2 ≤ 1, j = 1, . . . , p ,

Io(W
T
a

(k) + c) ≥ e− εk,

εk ≥ 0, k = 1, . . . , l .

In the above,εk represents aq-dimensional slack vector for
thek-th labeled data sample. Each element ofεk, i.e.,εk

o (1 ≤
o ≤ q) represents the hinge loss incurred by the classifier
{wo, co} with respect toxk. εk ≥ 0 means each element of
εk is not less than 0.e is a vector with all the elements set
to one. Other variables are similarly defined to those in the
binary case.

Input : Labeled data{(xi, yi)}
l
i=1; unlabeled data

{(xi, yi)}
l+m
i=l+1

Step 1. Initializea(0); set∆ to a small positive value;
set the number of iterationst = 1.
Step 2. Compute{w(t), c(t), ε(t),b}.

a. Calculate{w(t), c(t), ε(t)} by solving Problem
II(a).

b. Calculateb(t) by solving Problem II(b).

Step 3. Compute{a(i)
(t)}

l+m
i=1 .

a. Calculate{a(i)
(t)}

l+m
i=l+1 by solving Problem I(a).

b. Calculate{a(i)
(t)}

l
i=1 by solving Problem I(b).

Step 4. Ift < TMAX (e.g.,TMAX = 100)
and ||f(t)(a,b,w, ε)− f(t−1)(a,b,w, ε)|| > ∆, then
t← t + 1; go to Step 2; otherwise stop.
Output : The classifier{w, c} ← {w(t), c(t)}

Algorithm 1 : Supervised Self-taught Learning Via
Sparse Coding

In the following we will focus on interpreting the above
multi-class model. First, in binary classification, each la-
beled sample is used only once. However, in multi-class
classification, each labeled sample will be usedq times,
since there areq classifiers. Hence the hinge loss for each
labeled sample is not a scale variable anymore. Instead, it is
a q-dimensional vector. Second, the key point of multi-class
classification using Sparse Coding is to derive a common set
of basis components for all theq classifiers involved. This
requires that the single optimization task be formulated forq

classifiers. Our model successfully achieves this goal. Finally,
as observed from the above model, the optimization can still
be optimized in two steps. Moreover, each step is easily
verified to be convex as well. Hence it can be solved using
a method similar to that presented in the previous section.
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V. EXPERIMENTS

In this section, we evaluate our proposed Supervised Self-
taught Learning algorithm on various datasets. Specifically,
we evaluate the SSTL framework on web text categorization
tasks. We adopt four subsets of text documents for the
evaluation from three benchmark text collections, namely
WebKB 3, Reuters-21578 4, and Ohsumed5. The selected
data sets,coursevs. non-course, which are obtained from
the WebKB corpus, contain course web pages and non-
course web pages from several universities. Thebacter-
ial vs. virus data and themalevs. femaledata are extracted
from the Ohsumed database that is a set of references
from MEDLINE, the on-line medical information database,
consisting of titles and/or abstracts from medical journals.
Thegrain vs. wheatdata set is from the Reuters-21578 Text
Categorization Collection, which is a collection of documents
that appeared on Reuters newswire in1987. The description
of the four selected data sets can be found in Table I.

TABLE I

DESCRIPTIONS FOR THE WEB TEXT DOCUMENTS DATA

Corpus Labeled Data # Documents

WebKB coursevs. non-course 1051
Ohsumed bacterial vs. virus 581

malevs. female 871
Reuters grain vs. wheat 865

We conducted two sets of experiments. In the first set of
experiments, we randomly select4 labeled documents from
each data set to form the training set, and used the remaining
documents as the test set. In the second set of experiments,10
labeled documents are randomly selected to form the training
set. In order to generate the unlabeled data for self-taught
learning algorithms, we first select the keywords from the
given training data and then mine the Internet to get a set of
unlabeled web pages using the keywords as the query terms.
Here Google is used as the search engine and we select the
top 1000 returned web pages as the unlabeled data for each
dataset. We then represent each document by a vector of term
frequency. We select500 most informative features according
to their correlation to the text categories. Note that, due to
both the inaccuracy of query keywords and the ambiguity of
the searching engines, the returned web pages contain many
irrelevant documents. SSL cannot be directly applied in this
task. The parameters are selected based on cross validation.
And the final results are the average over10 runs using the
above training and testing procedure.

The experimental results are listed in Table II. As observed
from the presented results, STL indeed increases the recog-
nition accuracies of supervised learning in some datasets,
e.g. male vs. femalewhen the training size is equal to4.
However, in many cases, STL demonstrates much worse

3http://www.cs.cmu.edu/∼webkb/
4http://www.daviddlewis.com/resources/testcollections/
5ftp://medir.ohsu.edu/pub/ohsumed

performance than purely supervised learning, e.g. incourse
vs. non-courseandgrain vs. wheatwhen the training size is
equal to4. Because web documents are usually of both high-
dimension and of high sparsity, without supervision from the
labeled data, it is very likely that STL extracts non-important
or even noisy basis components from the unlabeled data.
This explains why STL sometimes degrades performance.
In comparison, our proposed SSTL successfully avoids this
problem. SSTL attempts to detect the most discriminative
patterns as the basis by supervising the self-taught learning
process via the labeled data. As clearly seen in Table II,
SSTL is consistently better than or equivalent to STL and
SVM in all the four data sets. The difference between SSTL
and the other two algorithms is more distinct in thecoursevs.
non-coursedata set: the accuracy of SSTL is almost double
that of SVM, and is also significantly higher than STL. The
experimental results clearly demonstrate the advantages of
our proposed learning framework.

VI. D ISCUSSION

We now discuss some issues raised by this project in this
section. First, the Self-taught Learning framework is very
different from other current learning paradigms. The core
idea of STL is to boost classification performance when the
labeled data is limited by appropriately transferring knowl-
edge from seemingly irrelevant unlabeled data. This is very
different from the semi-supervised learning algorithms in that
SSL requires the unlabeled data to follow the same distrib-
ution as the labeled data. It is also different from Transfer
Leaning algorithms in that TL only transfers knowledge from
labeled data. Our proposed Supervised Self-taught Learning
algorithm is still positioned within the self-taught learning
paradigm, but it focuses on transferring the knowledge from
unlabeled data in a supervised or discriminative way. In other
words, SSTL proposes to extract “useful” information from
unlabeled data which could improve classification perfor-
mance. This is very different from the original Self-taught
Learning algorithm in that STL transfers knowledge from
unlabeled data in an unstructured fashion.

Second, it is standard to combine discriminative learning
algorithms with generative or unsupervised learning meth-
ods [11], [8], [7], [10], [9], [5]. Our proposed SSTL is also
motivated by this idea. However, these methods are still
supervised learning algorithms because they perform such
hybrid learning only for the labeled data. In contrast, our
proposed algorithm tries to learn discriminative information
from unlabeled data. This is the major difference between
our algorithm and these hybrid methods. In addition, we be-
lieve the hybrid techniques specially designed for supervised
learning could also be applied in the SSTL framework. More
specifically, we notice that the discriminative sparse coding
algorithm proposed in [7] might be used to further improve
the classification accuracy. We leave this topic as future work.

Third, we only focus on studying the Supervised Self-
taught Learning framework by applying the sparse coding
algorithm. Obviously, there are a lot of other algorithms
that could be applied to this new learning framework. It is
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TABLE II

COMPARISONS ON WEB TEXT CATEGORIZATION TASKS. STL PERFORMS WORSE THANSVM DUE TO INAPPROPRIATE HIGH-LEVEL

REPRESENTATIONS. SSTLPRESENTS THE BEST RESULTS CONSISTENTLY BY INCORPORATING KNOWLEDGE SELECTIVELY AND DISCRIMINATIVELY.

Training Size= 4 Training Size= 10
Data Set SVM STL SSTL SVM STL SSTL

coursevs. non-course 39.48 34.39 78.19 45.18 87.48 91.21

bacterial vs. virus 61.82 53.42 62.49 73.14 72.79 73.14

malevs. female 52.49 64.70 65.52 63.41 53.66 68.25

grain vs. wheat 57.63 51.93 61.52 65.39 67.02 69.38

interesting to investigate how other existing algorithms can
be adapted to the SSTL framework.

Finally, although we have successfully integrated the three
isolated optimization problems of STL into a single optimiza-
tion task, it introduces several extra parameters in order to
balance the reconstruction errors in the unlabeled data and
the optimization values contributed by the classifier learning.
Currently, these parameters are tuned manually or by cross
validation. It is preferable to devise a more efficient algorithm
to speed up the parameter selection process. We leave this
task as an open problem.

VII. C ONCLUSION

In this paper, we have presented a study on a Super-
vised Self-taught Learning framework, which can transfer
knowledge from unlabeled data actively. This framework suc-
cessfully integrates the three-step optimization into a single
optimization problem. By integrating classifier optimization
with choosing the high-level representations, the proposed
model is able to select those discriminant features or rep-
resentations, which are more appropriate for classification.
Hence this may benefit the classification performance greatly.
To our knowledge, this is the first work that performs Self-
taught Learning in a supervised way. We have demonstrated
that the novel framework reduces to solving four sub opti-
mization problems iteratively, each of them being convex.
Moreover, the final optimization can be iteratively solved
with convergence guaranteed. Extensive evaluations on web
data have shown that our proposed algorithm can improve
the classification performance against the original Self-taught
Learning algorithm and a purely supervised learning algo-
rithm when the amount of labeled data is limited.
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