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Abstract— Minimax Probability Machine (MPM), learning
a decision function by minimizing the maximum probability
of misclassification, has demonstrated very promising perfor-
mance in classification and regression. However, MPM is often
challenged for its slow training and test procedures. Aiming
to solve this problem, we propose an efficient model named
Minimax Clustering Probability Machine (MCPM). Following
many traditional methods, we represent training data points by
several clusters. Different from these methods, a Generalized
Probability Product Kernel is appropriately defined to grasp the
inner distributional information over the clusters. Incorporating
clustering information via a non-linear kernel, MCPM can
fast train and test in classification problem with promising
performance. Another appealing property of the proposed
approach is that MCPM can still derive an explicit worst-case
accuracy bound for the decision boundary. Experimental results
on synthetic and real data validate the effectiveness of MCPM
for classification while attaining high accuracy.

[. INTRODUCTION

INIMAX PROBABILITY MACHINE (MPM) is a

recently proposed learning model and has demon-
strated advantages in solving classification problem in the
literature [10]. By minimizing the maximum probability of
misclassification of future data points, MPM has shown
competitive classification accuracy against the state-of-the-
art classifier, Support Vector Machine (SVM). One appealing
feature of MPM is that it can derive an explicit worst-case
accuracy bound for the decision boundary. Following the idea
of MPM, there have been many important extensions, e.g.,
the worst-case optimal Bayesian classification model [7], its
regression extension [19], the Biased Minimax Probability
Machine for imbalanced classification [5] and Medical Di-
agnosis [6].

However, MPM and its extensions are often challenged for
the time-consuming training and test procedures. The training
of MPM is equivalent to solving a Second Order Cone Pro-
gramming (SOCP) problem, whose worst-case complexity
is O(n3) (n is the number of the training samples for the
kernelized MPM). The test complexity of the kernelized
MPM is also related to the number of training samples.
This makes the MPM-based models inefficient for classifying
large datasets.
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In solving large-scale classification problems, the state-
of-the-art classifier, Support Vector Machine, also faces the
same problem. Although various improvements, e.g., Se-
quential Minimal Optimization [16], [9], Parallel method [2],
[4], have been made to speed up the training procedure in
the SVMs, the training complexity of SVMs is still high
when the number of training samples is large. To solve
this problem, clustering-based SVMs, e.g., CB-SVMs [20],
Support Clustering Machine (SCM) [21], [12], have been
proposed to select representative quanta, e.g., typical points
or clusters, for the SVMs training, so as to reduce the training
complexity.

Motivated by the idea of clustering-based SVMs, we pro-
pose the Minimax Clustering Probability Machine (MCPM)
to extend MPM for large-scale classification problems. The
main idea of MCPM is as follows. The training samples
are clustered in advance to output many generative models.
Then the obtained clusters described by certain distributions
are input as the training units, while the test samples are
explained as special clusters centered on each specific data
point. Instead of applying the probability product kernel to
measure the similarity as used in [12], we define a novel
generalized probability product kernel, especially, Radial
Basis Functions on probability product kernel to measure
the similarity either between any clusters (in training) or
between a cluster and a test vector (in test). Finally, the
decision function can be constructed in a kernel form, which
is only related to the training clusters. Experiments on both
synthetic and real data show that the proposed MCPM reduce
the computational costs both in the training phase and the test
phase, while preserving the classification accuracies.

The proposed novel generalized probability product kernel
has a lot of advantages over the traditional probability
product kernel as used in SCM [12]. First, as we show
in the paper, the traditional probability product kernel is
actually a linear kernel defined in the probability space, while
our generalized kernel describes a non-linear kernel which
can generate more complex similarity measures. Second,
numerical problems such as the large variance in kernel
matrix sometimes occur when the traditional probability
product kernel is employed. These numerical problems often
require careful data adaptation, e.g., scaling up the kernel
matrix, making the training sometimes not as straightforward
as expected. In contrast, the proposed generalized probability
product kernel avoids such problems by projecting the prob-
ability into a non-linear space. The whole learning process
is easy to implement and requires no data adaptation. Third,
the generalized probability product kernel is more flexible in
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measuring the similarity. This is analogous to the case that
non-linear RBF kernels can usually outperform the linear
kernel. Hence the proposed generalized kernel defined over
probabilities is often more accurate than the standard kernel.
Empirical evidence on real data also support this statement
as later seen in experiments.

The contributions of the paper are summarized as follows.
(1) The proposed MCPM largely reduces both the compu-
tational and spatial costs for both training and test, while
keeping the classification accuracy; (2) MCPM keeps the
statistical information of training samples by presenting them
in generative models; (3) by defining Radial Basis Functions
on the probability product kernel, the similarity measurement
could deliver more information for classification; (4) MCPM
provides a worst-case accuracy bound for classifying future
data points; (5) MCPM can be implemented easily by using
the generalized kernel.

The rest of this paper is organized as follows. Section II
derives the MCPM under a probability framework similar to
that of the original MPM. Section III defines the probability
product kernel and introduces a generalized probability prod-
uct kernel to measure the similarity either between a pair of
clusters or between a cluster and a test sample. Section IV
reports the experimental setup and results on both synthetic
dataset and real datasets. Finally, the paper is concluded in
Section V.

II. CLASSIFICATION MODEL

In this section, we first give a sketch introduction to the
MPM. We then formulate the MCPM in subsection II-B.

A. Minimax Probability Machine for Binary Classification

Considering a binary classification problem, suppose the
data are generated from two classes of data, x and y. And
data of class x are drawn from a class of distributions with
mean and covariance matrices as {X, X }, while data of class
y are from another class of distributions with mean and
covariance matrices as {y,X,}, where X, y, X, ¥ € R4,
and ¥y, Yy € Réxd,

Assuming {X, X}, {y, Xy} for two classes of data are re-
liable, MPM attempts to determine the hyperplane H(a, b) =
{z|a"z =b} (a € RN\{0}, and b € R, and the superscript
T denotes the transpose) by separating two classes of data
with the maximal probability. The formulation of the MPM
model is written as follows:

max «a S.t. inf Pr{a'x>0b}>a, (1)
«,a#0,b x~{X,5x
inf Pr{a'y <b}>a,
yN{)_’sEy} { Y= } -

where o represents the worst-case accuracy of classifying
future data points. Future points z when a’z > b are then
classified as belonging to the class associated with x, other-
wise they are judged as belonging to the class associated with
y. This derived decision hyperplane is claimed to minimize
the worst-case (maximal) probability of misclassification, or
the worst-case error rate, of future data.
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Further, applying the generalization of Marshall and
Olkin’s result [14], [17], the optimization of MPM can be
transformed to a Second Order Cone Programming (SOCP)
problem as follows [13], [15]:

min |3 als + |52 Tx-y)=1 @

The worst complexity of solving the optimization problem
of MPM, i.e., solving the SOCP problem, in Eq. (2), is
O(n?), where n is the number of training samples for the
kernelized MPM. In the test phase, the complexity of the
kernelized MPM also depends on the number of training
samples. This high computational complexity is a main
problem of applying MPM to real applications.

alls st a

B. Minimax Clustering Probability Machine

Aiming at reducing the computation complexity of MPM,
we propose the Minimax Clustering Probability Machine
(MCPM). The idea is as follows. The training samples of
class x and training samples of class y are clustered into
M., training clusters and M, training clusters, respectively.
Following the Gaussian distribution assumption, we could
denote the training clusters as generative models, i.e., ¢; =
(Pj, pj, X5), where Pj, pj;, ¥j is the prior (weight), the
mean, and the covariance matrix, of the j-th cluster. For the
positive clusters, j ranges from 1 to M, . For the negative
clusters, j ranges from 1 to M. Hence, the total number
of training clusters is M = M., + M, .

In the following, we denote the space of generative models
as R = R x R% x R%*4, Therefore, the problem becomes to
find a linear decision boundary H(c,b) = {z € RY|cTz =
bl(c € R9\{0},b € R). We then transform the above
generative models, c;, j = 1,..., M, from RY to a feature
space, R/, via a mapping ¢ : RY — R/. Therefore, a linear
decision boundary H(c,b) = {#(z) € Rf|c'¢(z) = b}
in the feature space RS corresponds to a nonlinear decision
decision boundary D(c,b) = {z € RY |c"¢(z) = b} in the
space of RY (c € Rf\{0} and b € R).

Now, let the training clusters be mapped as

ex = dlex) ~ {dlex), Boen )y
Cy — ¢(Cy) ~ {d)(cy)v Z45((:;,)}'

A nonlinear decision boundary in RY can then be obtained
by solving the minimax probability decision problem of
Eq. (1), in a feature space R/:

max « s.t. inf Pr{c"¢(cx) > b} > a,
ae#0,b $lex)~{b(ex) o (o) }
inf Pr{cT¢(Cy) <b}>a.

‘?(Cy)"‘{¢<cy>wz(p(0y)}
Similar to the optimization of Eq. (1), the above optimiza-
tion can be solved by

1 1/2

=

ol + Sy, ell2
st. el (¢ex) — dley)) = 1.

By adopting the kernel trick similar to that in [11], [7], we
can write ¢ as a linear combination of the training clusters

= min[Zy,
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and then find the coefﬁ01ents Without loss of generality, ¢
can be written as ¢ = E °1" vigp(cxi) + Z 7 wid(cy;) .
Let {t;}?{, denote the set of all M = M., + M.,
training clusters as t; = cy;,j = 1,2,.. Mcx, and t; =
Cyj—Mey>J = Me, +1, M, +2,..., M.
The Gram matrix G can be defined as

Gij = G(o(ty), (t;)), i,j=1,2,....,M.  (3)

Denote the first M, rows and the last M., rows of G as
G, and G, respectively, we get G = [Ge,; G, |-

The block-row-averaged Gram matrix K is then obtained
by setting the row average of the G, -block and the Ge, -
block equal to zero:

g (Gl ki _ [ VMoK, )
G — ].MCy kcy M, yI( cy ’

where 1,, is a column vector of ones of dimension n. The
row average chx and kCTy are M-dimensional row vectors
given by

( . ZK(CXJ7
( cy) M ;K Cyj: ti

Hence, the objective of MCPM becomes

1 .
— =min [[Ke,vll2 +[Ke, vl Q)
st. vi(ke, —ke,) =1
where v = [1/17 2 T 1/1\/[%(,(4}1,0.)27 e ,onucy}T.
The decision function of MCPM is then calculated by

fucpm(ca) = Y viK(cs cxi) &)
Me,,
+ EVM +iK(ez,¢yi) = byopm
and the bias term is obtained by by,;cpas = v ke, —

T KeVllz = v* ke, + 77 Ke, V2.

From the 0pt1mlzat10n of Eq. (4), we can see that the
optimization is similar to the kernelized MPM. However, the
number of training samples is reduced largely to the number
of training clusters.

III. GENERALIZED PROBABILITY PRODUCT KERNEL

In solving Eq. (4), we still need a suitable distance
definition to measure the similarity between two clusters in
the training phase or the similarity between a cluster and a
sample vector in the test phase. In the following, we will
first introduce general kernels in the feature space. We then
derive the generalized probability product kernel. After that,
we present how to apply the generalized probability product
kernel, more specially, the linear probability product kernel
and the radial basis function on probability product kernel,
to real applications.
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A. Kernel in Feature Space

The kernel is defined in Eq. (3). Considering a linear kernel
in the feature space, we can define it as

GL(p(t:), d(t;5)) = d(t:) T p(t;). (6)

Similarly, we can define a RBF kernel in the feature space:

Grer((t:), 6(t;)) = exp{—7[lp(t:) — ¢(t;)*} (7

We can also extend the kernel in the feature space to general
forms by other functions, e.g., the polynomial kernel and the
hyperbolic tangent kernel [18]. This can attain generalized
kernels in the feature space.

B. Probability Product Kernel

Here we still need to define the inner product of two
vectors in the feature space. Considering the property of
the generative models we have obtained, we turn to the
probability product kernel [8]. The probability product kernel
defines the similarity between two distribution pj and p; by

K(pe,p1) = /dpiplpdm (®)
R

where K (pg,pi) is positive definite, and the exponential p
will derive a set of candidate kernels. When p = 1, it leads
to the expected likelihood kernel [8].

When pj and p; are both Gaussian distributions, i.e.,
P = Pep(z|pe, Xx) and pp = Pip(z |, Xp), K(pr,pi1)
can be written as a function of two generative models, i.e.,
K(cg,c;). Further, K(cg,c;) can be computed directly by
using the corresponding parameters of two generative models
to avoid integrating the probability distributions in the entire
input space. Hence, when p = 1, we have

K(ck, c) = o(t;) T (t;) ©)
= Pkpl(27r)7%|(2k71 + 2171)71|%\2k|7%|21|7%

1 _ e
exp{*g (NkT-Zk Y+ ST e — TS 1u)}

where X1 = (2, 742, L and = B, 3,

C. Practical Solution

For real classification problems, in order to avoid com-
puting the inverse matrices in Eq. (9), we simplify the
kernel calculation by only using the diagonal entries of the

covariance matrices, i.e., 3 = diag((o7, ..., (07 ). Thus,
the kernel becomes
K(cx, @) = o(ck) " ¢ler) <10)

PP, (,uk i — i)
= exp{ —= )
) { Z + Ul i

H?:1 2”(“1%@ + ‘712.,1 Uk ¢

In the test phase, a test sample z is considered as the
extreme case of a Gaussian distribution, where only one
point in the distribution with fixed prior and all elements
of the covariance matrix vanishing, i.e., ¢, = (P, = 1, s =
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z,Y, = 0). Hence, the similarity between a training cluster
and a test vector is defined by

K(cz, €1) = ¢(cz) T d(cr)
d 1 1 (z — )2

i=1

1)

Hence, we term the calculation of Eq. (10) and Eq. (11)
as linear probability product kernels (LPPK) for calculating
similarity between clusters in training phase and that between
a cluster and a test vector in test phase. After plugging
Eq. (10) and Eq. (11) into the RBF form of Eq. (7), we
therefore define the Radial Basis Function on probability
product kernel (RBF-PPK). Similarly, by defining other mea-
surements in the feature space, e.g., Polynomial functions, or
Hyperbolic tangent, we can extend and obtain a generalized
probability product kernel.

Comparing the linear kernel in Eq. (6) and the RBF kernel
in Eq. (7), we can see that the RBF kernel has the advantage
of containing unit value when two inputs are the same, while
the linear kernel has no such property. For real applications,
data are usually in high dimensional space. This makes the
calculation values of Eq. (10) and Eq. (7) very small and
appear in different scales. It would incur the difficulty of
tuning parameters to get good results. However, the RBF-
PPK has the ability of normalizing the kernel matrix and
hence avoids the problems of the linear PPK.

IV. EXPERIMENTS

We carry out experiments on a two-class toy dataset and
two benchmark datasets to demonstrate the effectiveness of
MCPM. In the toy dataset, 2,000 data points, 1,000 points
for each class, were randomly generated from a mixture
of Gaussian distribution in order to visualize the learning
results of the MCPM in the 2-D space. The real datasets
used are the two benchmark binary classification datasets,
the Pima indians diabetes dataset and the Twonorm dataset,
from the machine learning repository [1], [11], [7]. The Pima
indians diabetes dataset consists of 768 instances with 8
attributes. The twonorm dataset, consisting of 7,400 samples
with 20 attributes, was generated from a multivariate normal
distribution [1], [11].

A. Toy Data
B. Experimental Setup and Model Selection

In the experiment, each dataset is partitioned into 90%
training and 10% test sets. The final results are the average
results over 10 random partitions. Comparisons are per-
formed on MCPM, Support Clustering Machine (SCM) [12]
(both in LPPK and RBF-PPK), and the MPM. For fair com-
parisons, we adopt the Threshold Order Dependent (TOD)
algorithm [3], the same clustering method as used in [12].
The experiments are performed on a PC with a 2.13GHz
Intel Core 2 CPU and 1G RAM. We use Matlab 7.1 to
conduct the comparisons.
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Several parameters need to be tuned in training different
models. For the kernelized MPM, we use the Gaussian ker-
nel, e~ 1X=¥1°/7  with parameter o. For SCM, the parameters
are the trade-off parameter C' and the width parameter y
when the RBF-PPK is used. For the MCPM with RBF-PPK,
only the width parameter v needs to be tuned. All these
parameters are chosen via cross-validation on the training
dataset.

2,000 data points, generated from a mixture of Gaussian
distribution, are plotted in Fig. 1(a). The TOD algorithm is
applied to group the x-class data into 15 positive clusters
and to group the y-class samples into 15 negative clusters,
respectively. As shown in Fig. 1(b), the training clusters are
denoted by ellipses, where the weights are proportional to
the sizes of clusters. In the experiment, the obtained weights
(priors), means, and covariance matrices of training clusters
are used as the input for SCM and MCPM.

Table I reports the average training time, test time and ac-
curacies obtained by the kernelized MPM, SCM and MCPM
with LPPK and RBF-PPK. We can see that the time cost of
MCPM is largely reduced when compared to that of MPM,
while the accuracy is just slightly decreased. Especially, the
training time of the kernelized MPM is reduced from 660.7
to 0.1460, which is over 4, 500 times reduction. Meanwhile,
there is over 30 times reduction in the test time. The training
and test time for SCM and MCPM are nearly the same
for LPPK and RBF-PPK, while the SCM and MCPM with
RBF-PPK outperforms the SCM and MCPM with LPPK
respectively in terms of the accuracy. This shows that the
generalized non-linear probability product kernel, i.e., RBF-
PPK, is superior to the linear PPK in the toy data. Moreover,
different from SCM, both MPM and MCMP can generate
an explicit worst-case accuracy bound «. Furthermore, the
bound of MCPM with RBF-PPK is tighter than those of
MPM and MCPM with LPPK. This again demonstrates the
superiority of the MCPM using the generalized PPK over
other methods.

C. Benchmark Datasets

We compare the performance of the proposed MCPM with
other methods on two benchmark datasets in this section.
Table II reports the average training time, test time, worst-
case accuracy bounds, and accuracies on the Pima indians
diabetes dataset; while Table III reports the average results
on the Twonorm dataset. From table II and table III, we have
the following observations:

o Although the kernelized MPM has better accuracy than
the linear MPM, it costs too much time on the training
procedure.

o The MCPM overcomes the shortcoming of the kernel-
ized MPM: it reduces the training time largely, over
10,000 times reduction, while maintaining a compara-
ble accuracy to that of the kernelized MPM for both
datasets.

o The MCPM can also output a worst-case accuracy
bound «. The bound is once again tighter than that of
the MPM.
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(a) Samples

Fig. 1.

Toydata classification results

SCM (LPPK)
~ = SCM (RBF-PPK)
MPM

MCPM (LPPK)
= = = MCPM (RBF-PPK)

(b) Results of SCM, MPM and MCPM

Kernelized MPM, SCM and MCPM with LPPK and RBF-PPK in a 2-D space. Training data are indicated with blue +s for class x and red

Os for class y. Test samples are indicated with black X s for class x and green os for class y. The training clusters are represented by ellipses with size
proportional to the priors, blue ellipses for class cx and red ellipses for class cy . The decision boundaries constructed by the SCM with LPPK (thin green
dotted line), the SCM with RBF-PPK (thick red dash-dot line), the MPM (thin blue solid line), the MCPM with LPPK (thick magenta solid line), and the
MCPM with RBF-PPK (thick black dash line) are shown. Notice that SCM and MCPM with RBF-PPK improve the test set performance compared to the

SCM and MCPM with LPPK.

TABLE 1
AVERAGE RESULTS ON THE SYNTHETIC DATASET.

Methods Training (s) Test (s) a (%) Accuracy (%)
SCM (LPPK) 0.1418 £ 0.0021  0.0019 + 0.0001 - 96.6 + 0.8
SCM (RBF-PPK) 0.1419 £ 0.0015  0.0020 % 0.0001 — 97.1+0.6
MPM 660.7 + 10.1 0.0681 £+ 0.0001 82.6 +£0.8 98.1+1.0
MCPM (LPPK) 0.1460 £+ 0.0015 0.0020 £ 0.0001 81.7+ 1.2 97.4 + 0.9
MCPM (RBF-PPK) 0.1461 4+ 0.0015 0.0020 £ 0.0001 83.1+1.1 97.8 + 0.8

TABLE 11
AVERAGE RESULTS ON THE PIMA INDIANS DIABETES DATASET.

Methods Training (s) Test (s) a (%) Accuracy (%)
SCM (LPPK) 0.0034 + 0.0001  0.0006 £ 0.0001 - 66.5 + 1.6
SCM (RBF-PPK) 0.0035 4+ 0.0001  0.0006 £ 0.0001 — 74.1+1.6
MPM (Linear) 0.0041 + 0.0015  0.0010 £ 0.0002 32.3+0.5 73.5+0.9
MPM (Kernel) 240.8 + 28.5 0.0118 4+ 0.0001 33.2+0.8 74.5 + 0.8
MCPM LPPK 0.0030 + 0.0001  0.0007 £0.0001  35.1+1.5 65.1+1.4
MCPM RBF-PPK 0.0031 + 0.0001 0.0007 £ 0.0001 40.2+1.4 74.5+ 1.5

o The proposed generalized probability product kernel,
i.e., the RBF-PPK can largely improve the accuracy of
the traditional probability product kernel, i.e., the LPPK,
in both SCM and MCPM.

The above observations validate the advantages of our
proposed method and show that both the training and the test
time can be reduced greatly by our MCPM method while
the accuracy can be maintained. Moreover, the proposed
generalized probability kernel can deliver better accuracies
than the traditional probability product kernel.

In order to examine the performance when different cluster
numbers are chosen, we show the average test error rates of
SCM and MCPM using LPPK and RBF-PPK with respect
to the number of training clusters in Fig. 2. From this
figure, we have the following observations. First, the best
results of SCM and MCPM with LPPK and RBF-PPK
are obtained in different number of training clusters. This
shows that the number of clusters could indeed influence the
overall accuracy. In order to obtain the best performance,
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we may need to choose this parameter carefully. Second,
in all the cases, the learning algorithms using the RBF-
PPK consistently outperform those using the LPPK. This
clearly demonstrates the advantages of the proposed non-
linear generalized PPK.

V. CONCLUSION

In this paper, we have proposed an efficient Minimax Clus-
tering Probability Machine model. This model can elegantly
incorporate cluster information into the learning process so
as to reduce the training and test time complexity greatly. We
have proposed a generalized probability product kernel. This
kernel has demonstrated desirable properties in measuring
the similarity defined either between a pair of clusters or
a cluster and a test vector. Experimental results on both
synthetic and real data show that the proposed algorithm
can reduce the training and test time significantly while
preserving the accuracy. Moreover, the proposed generalized
probability product kernel has been shown to outperform the
traditional linear probability product kernel consistently.
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TABLE III
AVERAGE RESULTS ON THE TWONORM DATASET.

Methods Training (s) Test (s) a (%) Accuracy (%)
SCM (LPPK) 0.1528 £ 0.0001  0.0031 + 0.0001 - 88.1+1.7
SCM (RBF-PPK) 0.1529 £ 0.0001  0.0031 + 0.0001 - 96.8 + 1.5
MPM (Linear) 0.2263 £+ 0.0001  0.0052 £ 0.0001 81.3+0.2 96.2 + 0.5
MPM (Kernel) 25893.1 &+ 13.5 0.1112 +£0.0001 85.4+0.5 97.9 + 0.5
MCPM (LPPK) 0.1531 £ 0.0001  0.0030 £ 0.0001 86.1 0.6 89.5+ 1.5
MCPM (RBF-PPK)  0.1532 £+ 0.0001  0.0031 4+ 0.0001 89.2 +0.7 97.2+ 1.2

Average Error Rates of SCM and MCPM on Pima Dataset

035

Error rates

CM (RBF-PPK)
ICPM (LPPK)
MCPM (RBF-PPK)|

5 6 9 10 1

7 8
No. of clusters

(a) Pima Dataset

Fig. 2.

Several important issues deserve our attentions in the
future. First, the clustering and the classifier learning are
currently implemented in two separate steps. It remains
interesting whether these two steps can be unified in one step.
Second, although both theoretical justification and empirical
verification has demonstrated the advantages of the proposed
generalized probability product kernel, further explorations
on its mathematic properties are still important research
topics. Third, we mainly evaluate our algorithm on two-class
data in this paper for simplicity. Extensive investigations on
large-scale multi-class real data are also necessary. Finally,
how to choose the optimal cluster number is also an impor-
tant research topic in the future.
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