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Abstract—Semi-supervised kernel learning is attracting in-
creasing research interests recently. It works by learning an
embedding of data from the input space to a Hilbert space
using both labeled data and unlabeled data, and then searching
for relations among the embedded data points. One of the most
well-known semi-supervised kernel learning approaches is the
spectral kernel learning methodology which usually tunes the
spectral empirically or through optimizing some generalized
performance measures. However, the kernel designing process
does not involve the bias of a kernel-based learning algorithm,
the deduced kernel matrix cannot necessarily facilitate a specific
learning algorithm. To supplement the spectral kernel learning
methods, this paper proposes a novel approach, which not
only learns a kernel matrix by maximizing another generalized
performance measure, the margin between two classes of data,
but also leads directly to a convex optimization method for
learning the margin parameters in support vector machines.
Moreover, experimental results demonstrate that our proposed
spectral kernel learning method achieves promising results
against other spectral kernel learning methods.

I. INTRODUCTION

Kernel methods provide a new learning framework in
machine learning for their conceptual simplicity and good
performance on many tasks [20], [21]. They work by em-
bedding data from the input space to a Hilbert space, and
then searching for relations among the embedded data points.
Semi-supervised learning has been actively studied in the
machine learning communities [6], which can take advantage
of the unlabeled data.
The graph Laplacians method [29], [27], [26] is one of

the most well-known kernel-based semi-supervised learning
approach. In this family of semi-supervised kernel learning
methods, kernels are usually constructed by transforming the
spectrum of a “local similarity” graph over both labeled
and unlabeled data. During learning such a kernel, Zhu et
al. [29] propose to learn coefficients corresponding to smooth
eigenvectors of a spectral graph [8] via maximizing the kernel
target alignment [9] which measures the similarity between
the feature space induced by a kernel matrix and the feature
space induced by labels. Later, Hoi et. al [10] extend the
work in [29] through equipping the kernel matrix with a
faster spectral decay rate.
However, the kernel designing process does not involve

the bias of a kernel-based learning algorithm, the deduced
kernel matrix cannot necessarily facilitate a specific learn-
ing algorithm. It is known that different kernel methods
try to utilize different prior knowledge in order to derive
the separating hyperplane. For example, SVM maximizes
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the boundary between two classes of data in the kernel-
induced feature space; Kernel Fisher Discriminant Analysis
(KFDA) [17] maximizes the between-class covariance while
minimizes the within covariance; and Minimax Probability
Machine (MPM) [15], [11] finds a hyperplane in the feature
space, which minimizes the maximum Mahalanobis distances
to two classes. Therefore, it is necessary to incorporate the
bias or the prior of a learning algorithm into the kernel
designing process in order to make a classifier adequately
utilize the prior information underlying the labeled data and
the unlabeled data.
To supplement the spectral kernel learning methods, this

paper proposes a novel approach, which not only learns a ker-
nel matrix by maximizing another generalized performance
measure, the margin between two classes of data, but also
leads directly to a convex optimization method for learning
the margin parameters in SVMs. More specifically, our semi-
supervised spectral kernel learning approach learns a kernel
matrix with a fast spectral decay rate, which utilizes the
labels of the training set as well as the underlying distribution
of the whole data to maximize the soft margin between
different classes.
To understand the characteristics of the proposed spectral

kernel learning method, we employ two synthetic data sets
with a cluster structure as examples. Relevance is a data
set where only one dimension of the data is relevant to
separate the data. Twocircles is composed by two circles with
the same center. Figure 1 draws the decision boundaries of
different algorithms. The unlabeled data including the data
over a grid, are utilized to draw the decision boundaries.
It indicates that generalization ability can be strengthened
through utilizing the information of unlabeled data to learn
a kernel matrix. Therefore, the performance of the classifier
can be improved, and it is especially significant in the case
that the kernel matrix is learned by maximizing the margins.
The rest of this paper is organized as follows. Section

2 reviews the related work in kernel learning. In Section
3, we derives the proposed kernel learning approach which
maximizes a generalized performance measure and optimizes
the margin parameters in SVM. Section 4 describes the
experimental results of the proposed kernel learning approach
as well the baseline methods. Section 5 sets out our conclu-
sion and discusses future work.
We use the following notations. Let X denotes the original

input space, which is an arbitrary subset of Rd where d
is a positive number. Let C = {1, 2, ...,m} be the set of
labels where m is the number of classes. Let l be the
number of labeled data points and n be the amount of labeled
data and unlabeled data. A kernel function is defined as a
symmetric function κ, such that κ(xi,xj) = 〈Φ(xi), Φ(xj)〉
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(a) Relevance (b) Twocircles
Fig. 1. The decision boundaries on Relevance and Twocircles. The points represented by squares (in black) and circles (in green) are the labeled
data. Those represented by pluses (in magenta) and asterisks (in blue) are unlabeled data. SVMs equipped with RBF kernels are used as the classifiers.
The separating lines were obtained by projecting test data over a grid. The lines in black (dark), magenta (doted), and cyan (dashed) represent decision
boundaries of kernel SVM with a regular RBF kernel, a fast-decay spectral kernel attained by maximizing the kernel target alignment, a fast-decay spectral
kernel attained by maximizing the margin, respectively.

for all xi,xj ∈ X , where Φ is a mapping from X to a
feature space H. The form of kernel function κ could be
a linear kernel function, κ(xi,xj) = xi · xj, or a Gaussian
RBF kernel function, κ(xi,xj) = exp(−|xi − xj‖22/σ), or a
polynomial kernel function, κ(xi,xj) = (xi · xj + 1)p, for
some σ and p respectively. A standard kernel matrix or Gram
matrix K ∈ Rn×n is a positive semidefinite matrix such
that Kij = κ(xi,xj) for any x1, . . . ,xn ∈ X . We denote
the eigenvalues and eigenvectors of a kernel matrix as λ and
φ, such that K =

∑n
i=1 λiφiφT

i . Note that except that it is
specified clearly, the eigenvectors are sorted according to the
decreasing order of eigenvalues.

II. RELATED WORK

Kernel-based learning algorithms have been widely studied
in machine learning (see, for example, [20], [21]). They work
by embedding the data from the input space to a Hilbert
space, and then searching for relations among the embedded
data points. The embedding implicitly defines the geometry
of the feature space and induces a notion of similarity in
the input space. According to Mercer’s Theorem [20], any
kernel function κ implicitly maps data in the input space to
a high dimensional Hilbert space H through the mapping
function Φ : X → H. Therefore, it is important to learn a
kernel matrix corresponding to the entire data set. Lanckriet
et. al proposes Semi-definite Programming (SDP) algorithms
to learn a combination of different kernel matrices [14]. Note
that in [14], two performance measures, the kernel target
alignment and the margin between two classes of data are
utilized. Other optimal kernel learning algorithms in machine
learning can be found in [5], [12], [16], [2], [9].
On the other hand, spectral graph theory [8] has attracted

the focus of semi-supervised kernel learning [27], [22]. Sev-
eral semi-supervised learning algorithms have been proposed
based on Spectral Graph Theory, for example, diffusion
kernels [13], Gaussian fields [28], and the order-constrained

spectral kernel [29]. Typically, a graph is constructed where
the nodes are the data instances and the edges define the
“local similarity” measures among data points. For example,
the local similarity measure can be the Euclidean distance
and the edge can be constructed by the node’s k nearest
neighbors. The edge between two data points suggests that
they may share the same label. In general, it is believed
that smaller eigenvalues correspond to smoother eigenvectors
over the graph. Thus smaller eigenvalues and corresponding
eigenvectors are used to compose the initial graph Laplacian
which is further employed to maximizes the alignment be-
tween the learned kernel matrix and the target kernel in order
to learn a new kernel matrix. In [29], the experimental results
imply that the order-constrained spectral kernel achieves
better performance than the diffusion kernel and the Gaussian
field kernel. Moreover, Hoi et. al [10] still optimize the kernel
target alignment, and extend the spectral kernel learning
method by specifying a fast spectral decay rate.
Some recent theoretical work builds the connection be-

tween spectral graph theory and kernel learning. Smola and
Condor [22] show some theoretical understanding between
kernel and regularization based on the graph theory. In
addition, Berkin et al. develop a regularization framework
for regularization on graphs [1]. In most recent, Zhang
et al. provide a theoretical framework for semi-supervised
learning based on unsupervised kernel design and derive a
generalization error bound [26]. It demonstrates that a kernel
with a fast decay rate is useful for the classification task [25],
[26]. All of the above work build the solid foundation of this
paper.

III. SPECTRAL KERNEL LEARNING

In this section, we first describe the theoretical foundation
of spectral kernel learning, and then present the maximum
margin based spectral kernel learning approach.



A. Theoretical Foundation

We review the theoretical foundation from the perspectives
of unsupervised kernel design rule and the optimization
criteria for a good kernel matrix. Then we summarize the
foundation into a semi-supervised spectral kernel learning
rule.
1) Unsupervised Kernel Design Rule: From the perspec-

tive of standard supervised learning, the objective is to
learn a function f so that the empirical loss is as small
as possible [24]. To avoid overfitting, one needs to restrict
the hypothesis function family size. Thus, we consider the
following regularized linear prediction method on the Repro-
ducing Kernel Hilbert Space (RKHS) H:

f̂ = arg inf
f∈H

1
l

l∑

i=1

L(h(xi), yi) + r||h||2H, (1)

where r is a regularization coefficient. According to the
Representer Theorem [24], the solution of Eq. (1) can be rep-
resented as f̂(x) =

∑l
i=1 α̂iκ(x), where α = (α̂1, . . . , α̂l)

is given by

α = arg min
α∈Rl

1
l
L(

l∑

j=1

αjκ(xi,xj), yj)+r
l∑

j,k=1

αjαkκ(xj ,xk).

(2)
Consider a semi-supervised setting, we try to learn the

real-valued vectors f ∈ Rn, such that

f̂ = arg inf
f∈Rn

1
l

l∑

i=1

L(fi, yi) + rfT K−1f. (3)

It is proven that the solution of the above semi-supervised
learning is equivalent to the solution of supervised learning
in Eq. (1), such that

f̂j = ĥ(xj), j = 1, . . . , n. (4)

Therefor, it provides a way of unsupervised kernel design
by replacing the kernel function κ with κ̄, or replacing the
kernel matrix K with K̄, i.e.,

K̄ =
n∑

i=1

g(λi)φiφ
T
i , (5)

where g(·) is a transformation function of the spectra of a
kernel matrix and λi is sorted in a decreasing order. This is
also consistent with the general principle for creating a semi-
supervised kernel from the graph Laplacian as suggested
in [7], [22]. Depending on different forms of g(·), different
kernel matrices can be learned. We summarize the settings
of g(·) as well as their corresponding kernels in Table I.
Note that for these spectral kernels, parameters σ, ε, q, w are
tuned using cross-validation. µ is the optimization variable in
[29] and [10] to optimize the alignment between the learned
kernel matrix and the target kernel.

2) Optimization Criteria: Kernel methods choose a func-
tion that is linear in the feature space by optimizing some
criterion over the samples. More specifically, the optimiza-
tion criteria include the kernel alignment, the margin between
different classes, and the Fisher discriminant ratio [18], [9],
[14], [20]. We focus our attention on the kernel alignment
and the margin between different classes, because they can
be conveniently used in kernel learning.
Definition 1 Kernel Alignment. The empirical alignment

of a kernel κ1 with a kernel κ2 with respect to the sample
X is the quantity:

ωA(X ,κ1, κ2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2, K2〉F
, (6)

where Ki is the kernel matrix for the sample X us-
ing the kernel function κi and 〈·, ·〉F is the Frobenius
inner product between two matrices, i.e., 〈K1,K2〉F =∑n

i,j=1 κ1(x1,x2)κ2(x1,x2).
This offers a principle to learn a kernel matrix through

assessing the relationship between a given kernel and the
target kernel induced by the given labels. When the vector y
of {±1} is known, we can consider T = yyT as the target
kernel. Let Ktr as the “training-block” of the kernel matrix,
which are composed by data with known labels. Then the
alignment of the training-block of the kernel matrix and the
target kernel matrix can be formulated as follows:

ωA(X ,Ktr, T ) =
〈Ktr,yyT 〉F√

〈Ktr,Ktr〉F 〈yyT ,yyT 〉F
. (7)

Since 〈yyT ,yyT 〉F = l2, the above equation is equivalent
to

ωA(X ,Ktr, T ) =
〈Ktr,yyT 〉F

l
√
〈Ktr,Ktr〉F

. (8)

Definition 2 Soft Margin. Given a labeled sample Xl, the
hyperplane (w∗, b∗) that solves the optimization problem

min
w,b

〈w,w〉+ C
l∑

i=1

ξi (9)

s.t. yi(〈w,Φ(xi) + b〉) ≥ 1− ξi, i = 1, . . . , l,

ξi ≥ 0,

realizes the maximal margin classifier with geometric margin
γ = 1/||w∗||2, assuming it exists.
By formulating Eq. (9) into its corresponding Lagrangian

dual problem, the solution can be derived as below:

ωM (Ktr) = 〈w∗,w∗〉+ C
l∑

i=1

ξi∗ (10)

= max
α

2αT e− αT G(Ktr)α : αT y = 0,

where e is the l-dimensional vector of ones, C ≥ α ≥ 0,
α ∈ Rl, G(Ktr) is defined by Gij(Ktr) = [Ktr]ijyiyj =
κ(xi,xj)yiyj , and α ≥ 0 means αi ≥ 0, i = 1, . . . , l.



TABLE I
SEMI-SUPERVISED KERNELS ACHIEVED BY DIFFERENT SPECTRAL TRANSFORMATION.

g(λ) Parameter(s) Kernels Refernces
g(λ) = exp(−σ2

2 λ) σ the diffusion kernel [13]
g(λ) = 1

λ+ε ε the Gaussian filed kernel [28]
g(λ) = µi, µi ≤ µi+1, i = 1, . . . , n− 1 µ the order-constrained spectral kernel [29]
g(λ) = µi, µi ≥ wµi+1, i = 1, . . . , q − 1 µ,w ≥ 1 the fast-decay spectral kernel [10]

B. Semi-supervised Spectral Kernel Learning Framework
Based on the unsupervised kernel design rule and the opti-

mization criteria, we are able to formulate a semi-supervised
kernel learning framework as follows:

max
g(λ)

ω(K̄) (11)

s.t. K̄ =
n∑

i=1

g(λi)φiφ
T
i ,

where ω(K̄) is either the kernel target alignment or the
soft margin. Theoretically, g(·) can be any function listed
in Table I. In addition, it is convenient to obtain a a global
optimum solution when the optimization problem is a convex
programming. Especially, it is desirable that the learned
kernel matrix has a fast spectral decay rate. Therefore, the
fast-decay spectral kernel is considered in this framework,
this leads to the following optimization problem:

max
µ

ω(K̄) (12)

s.t. K̄ =
q∑

i=1

µiφiφ
T
i ,

trace(K̄) = δ,

µi ≥ 0,

µi ≥ wµi+1, i = 1, . . . , q − 1,

where δ is a constant, w is a pre-defined spectral decay
factor that satisfies w ≥ 1, the eigenvectors are sorted in the
decreasing order of the eigenvalues and only eigenvectors
corresponding to q largest eigenvalues are selected. In the
case of selecting the kernel target alignment ωA as the
optimization criterion, the optimization problem is reduced
to that proposed in [10].
However, the kernel designing process does not consider

the bias of a kernel-based learning algorithm, the deduced
kernel matrix cannot necessarily facilitate a specific learning
algorithm. It is meaningful to incorporate the bias or the prior
of a learning algorithm into the kernel learning process. To
supplement the spectral kernel learning methods, this paper
proposes to employ the margin between two classes of data,
ωM , as the optimization criterion. The resulted approach not
only learns a kernel matrix, but also leads directly to a convex
method for learning the margin parameters in SVMs.

C. Maximum Margin Based Spectral Kernel Learning
By maximizing the margin (Eq. (11)) between two class

of data along with the above semi-supervised learning frame-

work (Eq. (12)), we have the following semi-supervised
learning problem:

max
µ,α

2αT e− αT G(K̄tr)α (13)

s.t. K̄ =
d∑

i=1

µiφiφ
T
i ,

trace(K̄) = δ,

αT y = 0,

0 ≤ αj ≤ C, j = 1, . . . , n,

µi ≥ 0,

µi ≥ wµi+1, i = 1, . . . , q − 1,

where G(K̄tr) = D(y)K̄trD(y), D(y) is the diagonal
matrix of the label vector y.
We note each rank-one kernel matrix K̄i = φiφT

i , then
K̄ =

∑q
i=1 µiK̄i. Following [14], it can be proven that the

above optimization problem is able to further formulated as
below:

max
α,µ

2αT e− δρ (14)

s.t. δ = µT t,

ρ ≥ 1
ti

αT G(K̄tr
i )α, 1 ≤ i ≤ q,

µ ≥ 0,

αT y = 0,

0 ≤ αj ≤ C, j = 1, . . . , n,

µi ≥ wµi+1, i = 1, . . . , q − 1,

where G(K̄tr
i ) = D(y)K̄tr

i D(y), and t = {t1, t2, . . . , tq}
is the trace vector of Ki, i.e., trace(K̄i) = ti. This is
a Quadratically Constrained Quadratic Program (QCQP),
which is regarded as a special form of Second Order Cone
Program (SOCP) [4]. Typically, SOCP problem can be
efficiently solved by interior point method [19], which is
implemented in SeDumi [23].
According to Karush-Kuhn-Tucker conditions [20], [21],

the discriminant function of SVM in the kernel-induced
feature space is represented by the linear span of the support
vectors, i.e., w =

∑n
i=1 αiyiΦ(xi). Thus α is sparse and

only positive for the support vectors. Let the threshold b is
set to 0, and then the discriminant function can be directly
written as:

f(z) =
n∑

i=1

yiαiK(xi, z), (15)



where z is a test data point.
Remark. The above spectral kernel learning method not

only optimizes the margin between different classes, but also
solves the margin parameter α of SVM. To differentiate from
the spectral kernel maximizing the kernel target alignment,
we name the proposed spectral kernel as the fast-decay spec-
tral kernel with maximum margin (abbreviated as “MM”).

IV. EXPERIMENTAL RESULTS
In this section, we report the experimental results on sev-

eral benchmark data sets. For performance comparison, we
also implemented three competitive methods. These methods
include, the standard linear kernel and RBF kernel, the order
constrained spectral kernel (abbreviated as “order”) [29], and
the fast-decay spectral kernel optimizing the kernel alignment
(noted as “KA”) [10].
Experimental Data Sets. To make evaluations compre-

hensive, we have collected both the synthetic data sets and
the UCI data sets [3] as our experimental test beds. Table II
summarizes the information of the benchmark data sets. Two
synthetic data sets described in Section 1 and four benchmark
data sets from the UCI machine learning repository are
employed to evaluate the performance of the proposed kernel
learning algorithm.

TABLE II
DATA INFORMATION

Data set # Samples # Features # Classes
Ionosphere 351 34 2
Banana 400 2 2
Sonar 208 60 2
Solar-flare 666 9 2

Experimental Setup. The parameters of different algo-
rithms are set in the following. SVM is used as the clas-
sifier for evaluating all kernel matrices. To facilitate a fair
comparison, we select the top 20 smallest eigenvalues and
eigenvectors of the graph Laplacian, which is constructed
with 10-NN unweighed graphs. Moreover, both the linear
kernel and the RBF kernel are used to construct the input
kernel matrix for KA and MM. The parameter C of SVM
is fixed to 100 in the experiments. The parameter γ in
RBF kernel is tuned by 10-cross validation for data sets.
For synthetic data sets, the training size is set to 10. For
benchmark data sets, the training size is set from 10 to 30.
For each training set size, we conduct 20 random trials and
each trial is conducted according to a modified 10-fold cross-
validation. In each trial, the training set contains each class of
data, and the remaining data are then used as the unlabeled
(test) data. The spectral decay rate w and the number of
eigenvectors q used in KA and MM, are selected from the
range [8, 20] and [1.1, 2.0], respectively.
Table III reports the prediction accuracy and the standard

error of classifiers for four kernel matrices on two synthetic
data sets. As illustrated in Fig. 1, the spectral kernel learn-
ing method which maximizes the margin between different
classes of data gets the best performance for SVM.

TABLE III
EXPERIMENTAL RESULTS ON TWO SYNTHETIC DATA SETS (%).

Algorithm Relevance Twocircles
RBF 81.52±4.63 78.74±5.02
Order 62.41±3.32 51.14±1.71
KA 91.27±4.57 84.10±4.44
MM 93.15±3.49 94.98±3.13

The prediction accuracy and standard errors on the bench-
mark data sets can be observed from Table IV, where two
standard kernels and five semi-supervised kernels are com-
pared based on SVM classifiers with different sizes of labeled
data. For KA and MM, the words in the parenthesis specify
the input kernel type. From the experimental results, it can be
concluded that the order-constrained kernel performs slightly
worse than standard kernels, though its advantage is no
parameter required to be chosen. We observe that for most of
the data sets, our proposed spectral kernel learning method
performs better than other semi-supervised kernels and the
standard kernels. Especially, for the banana data set, the
improvement is larger than 10% in prediction accuracy.

V. CONCLUSIONS
In this paper, we discuss a semi-supervised spectral kernel

learning framework, where previous methods do not incor-
porate the classifier bias into the spectral kernel learning.
To supplement this framework, we have proposed a novel
approach, which not only learns a kernel matrix by maximiz-
ing the margin between two classes of data, but also leads
directly to a convex optimization method for learning the
margin parameters in support vector machines. Experimental
results on four UCI data sets have demonstrated that our
proposed spectral kernel learning method achieves promising
results against other spectral kernel learning methods.
One of the future work of this paper is to extend the

semi-supervised kernel learning to multiway classification.
Another is to apply the proposed method in large-scale text
categorization and other applications, where the data sets
have a cluster structure.

ACKNOWLEDGMENT
The work described in this paper is fully supported by

two grants from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK4205/04E and Project No. CUHK4235/04E). The au-
thors would like to thank Dr. Steven Hoi for his fruitful
discussion and providing the code of the Unified Kernel
Machines.

REFERENCES
[1] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-

supervised learning on large graphs. In COLT, pages 624–638, 2004.
[2] J. Bi, T. Zhang, and K. P. Bennett. Column-generation boosting

methods for mixture of kernels. In KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 521–526, New York, NY, USA, 2004. ACM Press.

[3] C. L. Blake and C. J. Merz. Repository of machine
learning databases, University of California, Irvine,
http://www.ics.uci.edu/∼mlearn/mlrepository.html, 1998.



TABLE IV
CLASSIFICATION PERFORMANCE OF DIFFERENT KERNELS.

Training Standard Kernels Semi-supervised Kernels
Size Linear RBF Order KA (Linear) KA (RBF) MM (Linear) MM (RBF)

Ionosphere (%)
10 71.51±2.12 66.56±2.04 62.31±3.92 74.36±2.47 70.24±4.99 74.45±2.54 69.56±2.26
20 77.50±1.20 71.37±2.48 63.64±2.71 78.75±1.89 76.62±3.12 78.83±1.74 77.55±3.04
30 80.23±0.90 77.82±2.52 63.52±2.44 81.21±1.17 80.51±2.80 81.47±1.08 82.59±0.96

Banana (%)
10 53.69±1.69 55.63±2.07 50.22±0.94 53.87±1.34 62.68±2.18 53.95±1.54 64.92±2.26
20 55.30±1.86 58.73±2.39 50.44±0.93 54.74±1.63 66.18±2.46 55.14±1.76 69.88±1.87
30 56.07±2.43 60.48±1.57 50.73±0.93 55.72±1.55 69.33±1.96 56.24±2.07 74.87±1.33

Sonar (%)
10 63.89±2.25 57.52±1.70 49.96±1.16 64.30±1.88 60.92±2.22 64.14±1.77 61.95±2.44
20 68.72±1.50 65.73±1.71 49.80±0.62 69.17±1.64 67.91±1.87 68.94±1.49 69.18±1.73
30 71.98±1.20 71.20±1.32 49.73±1.09 72.31±1.86 70.90±1.34 73.22±1.61 71.32±1.60

Solar-flare (%)
10 55.92±1.78 56.58±2.53 51.45±1.83 57.75±2.08 57.88±2.23 58.11±1.92 57.95±1.93
20 59.73±1.97 60.44±2.27 51.14±1.56 60.64±1.84 60.87±1.96 60.60±1.68 61.08±1.77
30 61.77±1.44 61.67±1.53 50.85±2.06 62.19±1.01 62.14±1.42 61.95±1.21 61.75±1.11

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, March 2004.

[5] T. P. Centeno and N. D. Lawrence. Optimising kernel parameters and
regularisation coefficients for non-linear discriminant analysis. Journal
of Machine Learning Research, 7(2):455–491, 2006.

[6] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[7] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-
supervised learning. volume 15 of NIPS, 2002.

[8] F. R. Chung. Spectral graph theory. the American Mathematical
Society, 1997.

[9] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On
kernel-target alignment. In Neural Information Processing Systems
(NIPS 13), pages 367–373, 2001.

[10] S. C. H. Hoi, M. R. Lyu, and E. Y. Chang. Learning the unified kernel
machines for classification. In Proceedings of Twentith International
Conference on Knowledge Discovery and Data Mining (KDD-2006),
pages 187–196, New York, NY, USA, 2006. ACM Press.

[11] K. Huang, H. Yang, I. King, M. R. Lyu, and L. Chan. Minimum error
minimax probability machine. Journal of Machine Learning Research,
5:1253–1286, 2004.

[12] S.-J. Kim, A. Magnani, and S. Boyd. Optimal kernel selection in kernel
Fisher discriminant analysis. In Proceedings of the 23rd international
conference on Machine learning (ICML-2006), pages 465–472, New
York, NY, USA, 2006. ACM Press.

[13] R. Kondor and J. Lafferty. Diffusion kernels on graphs and other
discrete input spaces, 2002.

[14] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I.
Jordan. Learning the kernel matrix with semidefinite programming.
Journal of Machine Learning Research, 5:27–72, 2004.

[15] G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan.
A robust minimax approach to classification. Journal of Machine
Learning Research, 3:555–582, 2002.

[16] C. A. Micchelli and M. Pontil. Learning the kernel function via
regularization. Journal of Machine Learning Research, 6:1099–1125,
2005.

[17] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller. Fisher
discriminant analysis with kernels. In Proceedings of IEEE Neural
Network for Signal Processing Workshop, pages 41–48, 1999.
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