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Abstract—The Biased Minimax Probability Machine
(BMPM) constructs a classifier which deals with the
imbalanced learning tasks. It provides a worst-case bound
on the probability of misclassification of future data points
based on reliable estimates of means and covariance matrices
of the classes from the training data samples, and achieves
promising performance. In this paper, we apply the biased
classification model to large scale imbalanced classification
problem, and develop a critical extension to train the BMPM
efficiently which is a novel training algorithm based on Second
Order Cone Programming (SOCP). By removing some crucial
assumptions in the original solution to this model, we make
the new method more accurate and efficient. We outline the
theoretical derivatives of the biased classification model, and
reformulate it into a SOCP problem which could be efficiently
solved with global optima guarantee. We evaluate our proposed
SOCP-based BMPM (BMPMSOCP ) scheme in comparison
with traditional solutions on text classification tasks where
negative training documents significantly outnumber the
positive ones. Empirical results have shown that our method is
more effective and robust to handle imbalanced classification
problems than traditional classification approaches.

I. INTRODUCTION
Biased classifiers have many applications [5], [8], [12],

[13]. The goal of constructing a two-category biased classi-
fier is to make the accuracy of the important class, instead of
the overall accuracy, as high as possible, while maintaining
the accuracy of the less important class at an acceptable
level. Recently, a novel biased classification model, Biased
Minimax Probability Machine (BMPM), provides a worst-
case bound on the probability of misclassification of future
data points based on reliable estimates of means and covari-
ance matrices of the classes from the training data points and
achieves promising performance [4], [6].
In this paper, we extend the model of BMPM to the prob-

lem of large scale imbalanced classification, and propose a
new training algorithm to tackle the complexity and accuracy
issues in BMPM learning task. This model is transformed
into a Second Order Cone Programming (SOCP) problem
instead of a Fractional Programming (FP) one. Under this
new proposed framework, the large scale imbalanced classi-
fication problem could be modelled and solved efficiently.
The rest of this paper is organized as follows. Section II

reviews the concept of Biased Minimax Probability Ma-
chine (BMPM) and related work on it. Section III presents
an effective learning algorithm based on Second Order Cone
Programming for BMPM. Section IV presents the results
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of our empirical study on the derived learning scheme.
Conclusion and future work are given in Section V.

II. BIASED MINIMAX PROBABILITY MACHINE

In this section, we present the biased minimax framework,
designed to achieve the goal of the imbalanced classification.
We first introduce the model definition of linear Biased
Minimax Probability Machine (BMPM), and then review the
original method to solve the optimization.

A. Problem Definition

We assume two random vectors x and y represent two
classes of data with mean and covariance matrices as {x,Σx}
and {y,Σy}, respectively in a two-category classification
task, where x, y, x, y ∈ Rn, and Σx, Σy ∈ Rn×n.
For convenience, in the following, we use x and y to
represent the corresponding class of the x data and the y
data respectively.1
Assuming {x,Σx}, {y,Σy} for two classes of data are

reliable, Biased Minimax Probability Machine (BMPM) at-
tempts to determine the hyperplane aT z = b (a "= 0, z ∈ Rn,
b ∈ R) with aT z > b being considered as class x and
aT z < b being judged as class y to separate the important
class of data x with a maximal probability while keeping
the accuracy of less important class of data y acceptable.
We formulate this objective as follows:

max
α,β,b,a"=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β,

β ≥ β0,

(1)

where α and β represent the lower bounds of the accuracy for
future data classification, namely, the worst-case accuracy.
Meanwhile, β0 is a pre-specified positive constant which
represents an acceptable accuracy for the less important class.
This optimization will maximize the accuracy for the

biased class x (the probability α) while maintaining the
class y’s accuracy at an acceptable level by setting a lower
bound β0 as indicated in the third constraint of optimization
problem (1). The hyperplane a∗T z = b∗ given by the
solution of this optimization will favor the classification of
the important class x over the class y, and will be more
suitable in handling biased classification tasks.

1The reader may refer to [9] for a more detailed and complete description.
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Fig. 1. Decision lines comparison: MPM decision line (dotted red line),
BMPM decision line (dotted green line), SVM decision line (dotted blue
line).

B. Solving the Biased Minimax Probability Machine

In order to give a comprehensive comparison between our
proposed strategy and its original solution, we present the
solvability of this optimization problem here. According to
the research effort by Huang [7], [8], we adopt Lemma 1
from [10], and obtain the following transformed optimization
problem by using the lemma:

max
α,β,b,a "=0

α (2)

s.t. −b + aT x ≥ κ(α)
√

aT Σxa , (3)

b− aT y ≥ κ(β)
√

aT Σya , (4)
β ≥ β0 , (5)

where κ(α) =
√

α
1−α , κ(β) =

√
β

1−β .
From constraints (3) and (4), we eliminate b from this

optimization problem. Without considering the influence
of magnitude of a on the optimal solution for the above
problem, we set aT (x − y) = 1. In addition, since κ(α)
increases monotonically with α, maximizing α is equivalent
to maximizing κ(α). Thus the problem can be finally trans-
formed to the Fractional Programming problem

max
a "=0

1− κ(β0)
√

aT Σya√
aT Σxa

(6)

s.t. aT (x− y) = 1 , (7)
κ(β) ≥ κ(β0) , (8)

where the objective function is a linear function with respect
to κ(β), and

√
aT Σya is a positive term.

In the earlier work of this model, Rosen Gradient pro-
jection method [2] is employed to find the solution of this
concave-convex FP problem. Furthermore it is observed the
inequalities in (3, 4) will become equalities at the optimal
point. The optimal b will thus be obtained by

b∗ = a∗T y+κ(β0)
√

a∗T Σya∗ = a∗T x−κ(α∗)
√

a∗T Σxa∗

III. EFFICIENT BMPM TRAINING
In this section, we present our research effort on the

efficient training issue on BMPM model.

A. Motivation
Biased Minimax Probability Machine (BMPM) has been

extensively studied as a state-of-the-art learning techniques
in various areas, such as bioinformatics [7], [8], information
retrieval [12], [13] and statistical learning [5]. Most of recent
studies on BMPM are generally based on the Fractional
Programming problem (we name it BMPMFP ) which could
be solved by Rosen Gradient method. However the problem
reformulation has some crucial assumption which would lead
to failure of the model solution. Another issue is that when
applying the Fractional Programming based BMPMFP into
large real-world classification problems, it would be very
sensitive to data dimension and very time consuming.
Motivated from the serious defects of FP-based BMPM

solution, we formulate the model into a Second Order
Cone Programming (SOCP) problem without any loss of
model information. Based on the efforts, the BMPM could
be efficiently trained and applied into large scale learning
problems.

B. Proposed Strategy
Our main result is stated below.
Theorem 1: If x = y, then the minimax probability de-

cision problem (1) does not have a meaningful solution:
the optimal worst-case misclassification probability that we
obtain is 1 - a∗ =1. Otherwise, an optimal hyperplane
H(a∗, b∗) exists, and can be determined by solving the
convex optimization problem:

min
t,a"=0

t− aT (x− y)

s.t. ‖ Σ
1
2
xa ‖≤ 1,

‖ Σ
1
2
ya ‖≤

√
1−β0

β0
t,

(9)

and setting b to the value

b∗ = a∗T y+κ(β0)
√

a∗T Σya∗ = a∗T x−κ(α∗)
√

a∗T Σxa∗,

where a∗ is the optima of (9), and t ∈ R is a new opti-
mization variable. The optimal worst-case misclassification
probability for class x and y is

Pr(Misclassificationx) = 1− α∗, (10)

Pr(Misclassificationy) = 1− β0, (11)

respectively. Furthermore, if either Σx or Σy is positive
definite, the optimal hyperplane is unique.

Proof: It is observed that the optimization problem
of (1) could be transformed to the following format:

max
α,b,a"=0

α

s.t. inf
x∼(x̄,Σx)

Pr{aTx ≥ b} ≥ α,

inf
y∼(ȳ,Σy)

Pr{aTy ≤ b} ≥ β0.

(12)



By using Lemma 1 in [10], the above optimization be-
comes:
max
α,a"=0

α

s.t.
√

α
1−α

√
aT Σxa +

√
β0

1−β0

√
aT Σya ≤ aT (x− y).

Since
√

α
1−α is a monotonic increasing function of α, we

can change variables and rewrite our problem as

max
α,a"=0

√
α

1−α

s.t.
√

α
1−α

√
aT Σxa +

√
β0

1−β0

√
aT Σya ≤ aT (x− y).

Considering Σx and Σy can be viewed as positive definite
matrices, we formulate the optimization as following:

max
α,a"=0

√
α

1−α

s.t.
√

α
1−α ≤

aT (x−y)−
√

β0
1−β0

√
aT Σya√

aT Σxa
,

which allow us to eliminate
√

α
1−α ,

max
a"=0

aT (x−y)−
√

β0
1−β0

√
aT Σya√

aT Σxa
. (13)

It is observed that optimization problem (13) is equivalent
to bound the denominator to 1, and then maximize its
numerator. Otherwise if the denominator has no bound, we
would have no way to get the optimal solution2. Further-
more maximization of a item is equivalent to minimize its
opponent. Hence, we could obtain the transformed problem
as

min
a"=0

−aT (x− y) +
√

β0
1−β0

√
aT Σya

s.t.
√

aT Σxa ≤ 1.
(14)

And it could be further transformed to
min
t,a"=0

t− aT (x− y)

s.t.
√

aT Σxa ≤ 1,
√

aT Σya ≤
√

1−β0
β0

t.

(15)

It is exactly a Second Order Cone Programming problem
in the form of:

min
t,a"=0

t− aT (x− y)

s.t. ‖ Σ
1
2
xa ‖≤ 1,

‖ Σ
1
2
ya ‖≤

√
1−β0

β0
t.

(16)

The above problem is convex, feasible, and its objective
is linear, therefore there exists an optimal point, a∗. The
linearity of the objective function which is strict convex
implies that the optimal point is unique. This ends our proof
of the theorem.
Lemma 1 The Second Order Cone Programming problem

with linear objective function and norm constraints is a
convex optimization problem and thus is solvable.

2This is a common technique to tackle optimization problems

Proof: This can be directly observed from the properties
of convex optimization.
Many methods or packages can be used to solve this

problem. For example, SeDuMi can solve this problem
efficiently with global optima guarantee [14].

C. Kernelized Biased Minimax Probability Machine and Its
Solution
We use the kernelization technique to map the n-

dimensional data points into a high-dimensional feature space
Rf , in which a linear classifier corresponds to a nonlinear
hyperplane in the original space.
Assuming the training data points are represented by

{xi}Nx
i=1 and {yj}

Ny

j=1 for class x and class y, respectively,
we can formulate the kernel mapping as:

x→ ϕ(x) ∼ (ϕ(x),Σϕ(x)) ,

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)) ,

where ϕ : Rn → Rf is a mapping function. The corre-
sponding linear classifier in Rf is aT ϕ(z) = b, where a,
ϕ(z) ∈ Rf and b ∈ R. Similarly, the transformed SOCP
optimization in BMPM can be written as:

min
t,a"=0

t− aT (ϕ(x)− ϕ(y))

s.t. ‖ Σ
1
2
ϕ(x)a ‖≤ 1,

‖ Σ
1
2
ϕ(y)a ‖≤

√
1−β0

β0
t.

(17)

To make the kernel work, we represent the final deci-
sion hyperplane and the optimization into a kernel form,
K(z1, z2) = ϕ(z1)T ϕ(z2), namely an inner product form
of the mapping data points. Due to the restriction of paper
space, we will not present a detailed kernelization procedure
here. It’s a similar way as described in [9]. Readers interested
in the details can refer to [9].
We give out the kernelized optimization function for

Biased Minimax Probability Machine as follows:

min
t,a"=0

t−wT (k̃x − k̃y)

s.t.
√

1
Nx

wT K̃T
x K̃xw ≤ 1,

√
1

Ny
wT K̃T

y K̃yw ≤
√

1−β0
β0

t,

(18)

which is a Second Order Cone Program (SOCP) that has the
similar form as the SOCP in (9) and can thus be solved in
a similar way.
Remark. We omit the introduction of some notations here

due to the space limitations. Interested readers could refer
to [7].

IV. EXPERIMENTAL RESULTS
In this section we discuss the experimental evaluation of

our proposed biased learning algorithm in comparison to the
state-of-the-art approaches. For a consistent evaluation, we
conduct our empirical comparisons on two standard datasets
for text document classification: Reuters-21578 dataset, and
20-Newsgroup data collection. For both datasets, the same



class number of total samples
earn 3964
acq 2369

money-fx 717
grain 582
crude 578
trade 485
interest 478
wheat 283
ship 286
corn 237

TABLE I
AN OVERVIEW OF REUTERS-21578 DATASET WITH 10 MAJOR CLASSES

data pre-processing procedure is applied: the stopwords and
numerical words are removed from the documents, and all
the words are stemmed and further converted into the lower
cases. In order to remove the uninformative word features for
dimension reduction, feature selection is conducted using the
Information Gain criterion [15].

A. Experimental Testbeds
1) Reuters-21578 Corpus Dataset: It has been broadly

used as a benchmark dataset for evaluating classification
algorithms. In our experiments, the ModApte split of the
Reuters-21578 is used. There are a total of 10,788 text
documents in this collection. Table I shows a list of the 10
most frequent topics contained in the dataset [3]. Due to the
scope coverage of this paper, we only consider the binary text
classification problem, i.e., justifying a text document as rel-
evant or irrelevant to a particular group without consideration
of document be assigned to multiple categories. We conduct
3 groups of evaluations on three predefined classes, i.e., earn,
grain and ship, which are considered as the positive classes
in each group respectively.
2) 20-Newsgroup Data Collection: The 20-Newsgroup

dataset is a collection of approximately 20,000 news-
group documents, partitioned nearly evenly across 20 dif-
ferent newsgroups. Among these different groups, each
one corresponding to a different topic. Some of the
newsgroups are very closely related to each other, e.g.,
comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware, while
others are highly unrelated, e.g., talk.politics.guns vs.
comp.graphics. Considering this fact, we select 3 out of
20 newsgroups with related topics and define them as the
interested class in our study, which is talk.politics.misc,
talk.politics.guns and talk.politics.mideast. Apart from that,
the others are regarded as uninterested.

B. Experimental Settings
Applying BMPM-based technique in text classification is

a very straightforward task, where we just need to assume
the interested documents to be the more important class (x)
in the biased classification framework while assuming the
uninterested ones to be the less important class (y).
For performance measurement, the Receiver Operating

Characteristic (ROC) curve analysis is employed as our eval-

uation metric. The ROC curve plots a series of sensitivities
against the corresponding one minus specificities, or the
true positive rates versus the false positive rates for short.
Moreover, if the ROC curves are generated with good shapes
evenly distributed along their length, they can be used to
evaluate biased learning algorithms by using the area under
the curve. The larger the area under the curves, the higher
the sensitivity for a given specificity, and hence the better
the method’s performance [7].
Two other measurements are used to demonstrate the

efficiencies of our proposed model and strategy. They are
training time performance and Test-Set Accuracy which
consists of three measurements, i.e., Test-Set Accuracy on
Class x (TSAx), Test-Set Accuracy on Class y (TSAy) and
the overall Test-Set Accuracy on both classes (TSA).
To examine the effectiveness and efficiency of the learning

model and proposed solving strategy, three reference models
are used in our experiments. The first reference model is
the Support Vector Machine (SVM)3 which is a state-of-the-
art text classification technique. The second reference model
is based on kNN4 which is a traditional classification tool.
We also include Minimax Probability Machine (MPM)5 for
performance comparison intention. Finally, BMPM has been
conducted based on both FP and SOCP frameworks. By
comparing with these three models, we are able to determine
the BMPM model is more reliable to handle the imbalanced
text classification model, and the advantages of our proposed
training strategy.
To implement the SOCP-based BMPM algorithm, we

adopt the standard optimization package, i.e., SeDuMe [14]
and YALMIP [11], to solve the Second Order Cone Pro-
gramming problem in our algorithm. The FP-based BMPM
framework is based on the Rosen Gradient Projection method
described in [7].

C. Performance Evaluation
1) Test-Set Accuracy Comparison: Table II shows the ex-

perimental results of Test-Set Accuracy (TSA) performance
averaging over 3 groups of evaluation, each of which is
associated with a predefined positive class in Reuters-21578
dataset.
First, as listed in the first and the second colummns of Ta-

ble II, we observe that the performance of the two classifiers,
BMPMSOCP and BMPMFP , outperform the other three
models. Take the parameter α for example, BMPMSOCP

and BMPMFP achieves noticeably better performance than
MPM , which makes the worst-case (maximum) misclassifi-
cation probability much lower with the value 1−α reduced.
Second, we compare the performance of the two BMPM
classifiers with the traditional classifiers, i.e., SV M and
kNN . The results are listed in the fourth and fifth columns of
Table II. We find that the average TSA performance, which
is indicated as TSA in the table, of these two learning

3http://svmlight.joachims.org/
4http://people.revoledu.com/kardi/tutorial/KNN/resources.html
5http://cosmal.ucsd.edu/∼gert/publications.html



BMPMSOCP BMPMFP MPM SV M kNN

α 81.42 ± 0.22 ↑ 80.35 ± 0.13 ↑ 76.30 ± 0.28 - -
β 70.00 ± 0.00 70.00 ± 0.00 76.30 ± 0.34 - -

TSAx 83.10 ± 0.60 ↑ 81.07 ± 0.63 ↑ 74.91 ± 0.61 73.23 ± 1.59 71.60 ± 0.38
TSAy 72.61 ± 0.84 74.48 ± 0.69 75.20 ± 0.62 74.60 ± 0.47 69.40 ± 0.60
TSA 77.85 ± 0.04 77.70 ± 0.21 75.05 ± 0.37 73.90 ± 0.44 70.50 ± 0.55

TABLE II
LOWER BOUND α AND TEST-SET ACCURACY ON THE REUTER-21578 DATASET (%)

BMPMSOCP BMPMFP MPM SV M kNN

α 78.41 ± 0.46 ↑ 78.20 ± 0.55 ↑ 74.62 ± 0.33 - -
β 70.00 ± 0.00 70.00 ± 0.00 74.60 ± 0.39 - -

TSAx 76.20 ± 0.72 ↑ 75.40 ± 0.79 ↑ 73.40 ± 1.02 54.20 ± 0.49 53.90 ± 0.37
TSAy 71.40 ± 1.59 70.50 ± 1.37 75.81 ± 0.36 79.60 ± 1.13 78.41 ± 0.33
TSA 73.80 ± 1.35 72.95 ± 1.26 74.60 ± 0.37 66.92 ± 0.64 66.15 ± 0.17

TABLE III
LOWER BOUND α AND TEST-SET ACCURACY ON THE 20-NEWSGROUP DATASET (%)

methods becomes closer than the BMPM models. But for
the TSA of the more important class indicated as TSAx is
much lower than BMPM models. For example, the TSAx of
BMPMSOCP is much better than kNN though it shows the
shortage in the TSA measurement. Finally, we compare the
performance of the proposed Second Order Cone Program-
ming based algorithm, i.e., BMPMSOCP , to the Fractional
Programming based methodology BMPMFP . It is evident
that the proposed learning algorithm outperforms its original
approach.
In order to evaluate the performance substantially, the clas-

sification results of the 20-Newsgroup dataset is listed in Ta-
ble III. From the experimental results, we can see that our two
BMPM models achieve better performances than the other
algorithms in most of the cases while the BMPMSOCP

generally outperforms the BMPMFP method.
2) ROC Curve Analysis: Note that we do not involve

MPM and SVM for comparison here, since it cannot easily
generate the ROC curves for SVM and MPM due to their
model settings.
It is observed that the BMPMSOCP and BMPMFP

perform better than the kNN classifier for the two data
collections, since the BMPM curves are above of the kNN
method at most cases. In addition, usually not all the portions
of the ROC curve are of great interest. In general, those
with a small false positive rate and a high true positive rate
are most important. In light of this, we show the critical
portions of Fig. 3 in Fig. 4 detailedly when the false positive
rate is in the range of 0.0 to 0.5 and the true positive rate
is in the range of 0.5 to 1.0 respectively. In this critical
region, most parts of the ROC curve of BMPMs are above
the corresponding curve of kNN model in both datasets
along with the BMPMSOCP curve is above the one of
BMPMFP , which again demonstrated the superiority of the
BMPM models and our proposed BMPMSOCP algorithm.
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Fig. 2. Training time performance of different models based on Matlab
for Three-Phase Reuters-21578 dataset (sec.*GHz)

3) Training Time Comparison: We record the runtime
when conducting experiments on the Reuters-21578 data
collection. We divided the whole dataset into three roughly
equivalent portions. We run the experiments three phases
stage by stage: first we examine the runtime on one third
of the whole dataset; following that we add another one
third and record the time consumption; finally we conduct
the evaluation on the whole dataset. All these steps are
deployed three times given by three predefined positive
classes respectively, and we get the averaged performance.
Fig. 2 compares the CPU-time of two BMPMs and

MPM on these tasks described above. It could be observed
that BMPMSOCP is substantially faster than the other two
models on all problems. From the experimental results, we
can see that our proposed strategy outperforms its original
solution and MPM in training time comparison while MPM
is generally faster than BMPMFP . We also found that the
improvement of our algorithm is more evident comparing
with the other two approaches when the size of training
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Fig. 4. Crucial part of the ROC curves on two datasets

instances is larger. This is because the larger the size of
the problem, the better the performance we could expect.
When more examples are conducted, the gap for future
improvement begins to increase. As a result, the difference
between the two algorithms for BMPM starts to become
obvious. It is a crucial point for large scale imbalanced text
classification problems. This makes the BMPM conducted
on large scale classification problems practical.

V. CONCLUSION AND FUTURE WORK

The computational complexity of our method for Biased
Minimax Probability Machine (BMPM) is comparable to the
quadratic program that one has to solve for the support vector
machine (SVM) and Minimax Probability Machine (MPM).
While we have viewed this model from the viewpoint of a
convex optimization problem, we believe that there is much
to gain from exploiting analogies to the SVM and developing
specialized optimization procedures for our model. Another
direction that we are currently investigating is the extension
of our model to multiway classification.
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