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Abstract. With the rapid growth of the Internet, more and more people interact
with their friends in online social networks like Facebook1. Currently, the pri-
vacy issue of online social networks becomes a hot and dynamic research topic.
Though some privacy protecting strategies are implemented, they are not strin-
gent enough. Recently, Semi-Supervised Learning (SSL), which has the advan-
tage of utilizing the unlabeled data to achieve better performance, attracts much
attention from the web research community. By utilizing a large number of un-
labeled data from websites, SSL can effectively infer hidden or sensitive infor-
mation on the Internet. Furthermore, graph-based SSL is much more suitable
for modeling real-world objects with graph characteristics, like online social net-
works. Thus, we propose a novel Community-based Graph (CG) SSL model that
can be applied to exploit security issues in online social networks, then provide
two consistent algorithms satisfying distinct needs. In order to evaluate the effec-
tiveness of this model, we conduct a series of experiments on a synthetic data and
two real-world data from StudiVZ2 and Facebook. Experimental results demon-
strate that our approach can more accurately and confidently predict sensitive
information of online users, comparing to previous models.

Keywords: privacy issue, social network, graph-based semi-supervised learning,
community consistency.

1 Introduction

Currently, online social networks are becoming increasingly popular. For example,
Facebook currently is utilized by more than 400 million active users and more than
500 billion minutes are spent on it everyday [1]. In these online social networks, people
can form social links with others through making friends or joining groups with similar
contents.

The security issue of online social networks turns into one of the hot topics, because
it affects hundreds of millions users. Online social networks allow people to enable pri-
vacy restriction on their profiles. Nevertheless, the friendship and group membership
are still visible to the public directly or indirectly. In other words, the public friend-
ship or group information, which online social networks claim to be safe, becomes the

1 http://www.facebook.com
2 http://www.studivz.net
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potential threat to users’ privacy. [5,6,10] demonstrate that this information can leak a
large quantity of sensitive information.

Recently, Semi-Supervised Learning (SSL) has become a useful technique to ex-
ploit unknown information. Compared to supervised learning, SSL has the advantage
of avoiding high cost in labeling training data by utilizing large amount of unlabeled
data. Thus, SSL can be applied on predicting or learning knowledge from the websites
which contain massive unlabeled data, e.g., hidden or sensitive information.

As a technique to exploit hidden information, SSL suits well with the scenario that
online social networks contain little public information and a large number of hidden
ones [7]. In SSL learning model, the public information can be considered as labeled
data and that hidden as unlabeled data. According to the statistics, on average 70% users
in Facebook have incomplete profiles. It illustrates that labeled data are far fewer than
the unlabeled data.

Especially, graph-based SSL further fits well the online social networks with graph
structures. First, graph-based SSL is good at modeling objects with graph structures, in
which relationship information is easily expressed by edges and their weights. Second,
the learning procedure of graph-based SSL is spreading known information to unknown
area to predict the result. That is very similar to the cases in the real world, e.g., online
social networks: we expand our networks from existing friends to unacquainted persons
and from familiar groups to strange communities. Hence, graph-based SSL is rather
suitable for exploiting online social networks.

This paper proposes a novel graph-based SSL model with community consistency.
There are several graph-based learning models were proposed before, e.g., basic graph
learning with harmonic function [12], which mainly considers the local consistency,
and Local and Global Consistency (LGC) graph leaning [11]. Now, we propose a novel
graph learning model considering not only local consistency and global consistency but
also community consistency. The relationship between this model and the previous ones
is shown in Fig. 1.

Fig. 1. The Relationship of Three Graph-based SSL Models

This novel SSL exploit model is evaluated on a synthetic dataset ‘TwoMoons’ and
two real-world datasets from StudiVZ and Facebook, comparing with two previous
graph-based SSL models and a Supervised Learning model. The evaluation criterion
contains accuracy and weighted accuracy, which is defined to measure the confidence
of predictions.
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The contributions of this paper include the following:

– A graph-based semi-supervised learning with community consistency is firstly
proposed. With the additional consistency in the objective, this learning model
describes the real world more accurately and achieves better learning results.

– This paper provides two algorithms for the Community-based Graph (CG)
SSL exploit model: a closed form algorithm and an iterative algorithm. The
closed form algorithm has a very simple formula to obtain the prediction result,
while the iterative algorithm could deal with large-scale datasets.

2 CG SSL Exploit Model and Algorithms

2.1 CG SSL Exploit Model

Preparation. Similar to [7], we define a social network as an undirected graph G(V, E).
In G(V, E), every vertex (user) has feature vector Pi = (p1

i , p
2
i , ..., pnf

i ) and every edge
(relationship) has weighted value Wi,j = (wfd

i,j , w
gp
i,j , w

nk
i,j ). nf is the total number of

features; wfd
i,j is a weight for friendship, wgp

i,j for group membership, wnk
i,j for network

relationship and 0 ≤ Pi, Wi,j ≤ 1. In the whole graph, there are l vertices labeled as
Ȳlabel and u vertices needed to predict their labels Ŷunlabel. So our objective is to let
the prediction result agree with the true labels Ȳunlabel.

Definition 1 (Community). We define a community as a group of users Vc ∈ V , who
have strong connection with other users in one or more groups and networks in an
online social network. They may not be friends, even have not similar profiles.

According to the definition, we prepare community data. First, we construct all the
communities according to the network and group information in online social networks
(details in Section 2.3). Then, we can express all communities in a weight matrix. In
a community Ci, i ∈ N+, there are nc

i members strongly connecting with each other,
vj1 , vj2 , ..., vjnc

i
. We could express their relationship in a (l + u) × (l + u) matrix W c

i .
Then, for all communities, C1, C2, ..., Ci, ..., Cnc , we have a separate matrix for each
of them, W c

1 , W c
2 , ..., W c

i , ..., W c
nc

. The community weight matrix is W c =
∑nc

i=1 W c
i ,

where nc is the total number of communities in the data sample.

Model Building Up. In this part, we show the process of building up the new graph-
based SSL exploit model step by step. First we construct the local data W g = (1 −
γ)W p + γW fd, where W p is a similarity matrix of personal information, W fd for
friendship and 0 < γ < 1. Then, let Dg

ii =
∑l+u

j=1 W g(i, j), i ∈ {1, ..., l, l+1, ..., l+u}
and Dg be the (l + u) × (l + u) diagonal matrix by placing Dg

ii on the diagonal.
Now the unnormalized Laplacian matrix Lg is defined as Lg = Dg − W g . Similarly,
Lc for community information is constructed from W c and Dc. Finally, based on the
Local and Global Consistency (LGC) graph-based learning [11], we add the constrain
of communities and formulate the problem as

min
Ŷ ∈Y l+u

label

tr{Ŷ "LgŶ + µ1(Ŷ − Ȳ )"(Ŷ − Ȳ ) + µ2Ŷ
"LcŶ }, (1)
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where the predicted result Ŷ = (Ȳlabel, Ŷunlabel)", real label Ȳ = (Ȳlabel, Ȳunlabel)"
and µ1, µ2 > 0. Ylabel = {0, 1}nlabel , where nlabel is the number of different labels.
With this step, we have built up a complete CG SSL exploit model to solve the problem.

2.2 Algorithms

In this section, we propose two methods to solve the optimization problem we have for-
mulated before. The first one is a closed form algorithm. Utilizing this method, the exact
final result can be obtained directly. The other one is an iterative algorithm, by which
we could compute an approximate result. This would be a time-consuming method, but
it is able to deal with large-scale datasets.

To simplify the problem, we relax it and solve it. By the definition of this model in
Eq. (1), we realize that this is an integer programming problem, which is hard to solve
in the consideration of computational complexity. Thus, we relax the feasible region
from discrete {0, 1}(l+u)×nlabel to continuous {[0, 1]}(l+u)×nlabel .

Closed Form Algorithm. Here we first develop a regularization framework for the
optimization problem formulated before. Rewriting the objective function associated
with F replacing Ŷ in Eq. (1), F ∈ {[0, 1]}(l+u)×nlabel , we have
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1
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where µ1, µ2 are regularization parameters and µ1, µ2 ≥ 0. Here the first term (local
consistency) and the third term (community consistency) is normalized with

√
Dg

ii and√
Dc

ii.
1
2 is for the convenience of differentiation and does not affect the classification

result. By mathematical deriving, the optimal solution is F ∗ = (1 − α− β)(I − αS −
βC)−1Y , where S = Dg−1/2

W gDg−1/2
, C = Dc−1/2

W cDc−1/2
, Y = (Ȳlabel, 0) and

α = 1
1+µ1+µ2

, β = µ2
1+µ1+µ2

.
We need to design a strategy to make a final decision from F ∗. Because we relax

the problem before we solve it, the answer F ∗ is only the probability of unlabeled data
belonging to labels, instead of the final result. F ∗(i, j) means the probability of the
i-th vertex belonging to the j-th label. Thus, we may choose the label with the largest
probability as the final label of a vertex, ŷi = arg max1≤j≤nlabel F ∗(i, j). According
to this strategy, the closed form formular is clearly equivalent to

F ∗ = (I − αS − βC)−1Y, (3)

where 0 < α ≤ 1, 0 ≤ β < 1 and 0 ≤ α+ β ≤ 1.
Thus, we could develop a very simple closed form algorithm to solve the problem

according to the Eq. (3).

Algorithm 1. Closed Form Algorithm for Community-Based Graph SSL
Input: Graph matrix W g and community matrix W c.
1: Construct the matrices S & C.
2: Predict the probability F ∗ of every label by Eq. (3).
3: Decide the final labels ŷi = arg maxj≤nlabel F ∗(i, j).

Output: Predicting labels Ŷ .
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Iterative Algorithm. Because of the need of processing large-scale dataset and the
drawback of the closed form algorithm, we proposed an iterative algorithm.

Algorithm 2. Iterative Algorithm for Community-Based Graph SSL
Input: Graph matrix W g and community matrix W c.
1: Initialize F (0) = Y = (Ȳlabel, 0).
2: Construct the matrices S & C.
3: repeat
4: F (t + 1) = αSF (t) + βCF (t) + (1 − α − β)Y .
5: until |F (t) − F (t − 1)| < ε
6: Decide the final labels ŷi = arg maxj≤nlabel Fi,j(t).

Output: Predicting labels Ŷ .

According to the mathematical deriving, we could obtain the limitation of F (t) is
equal to F ∗ in the Algorithm 1. Moreover, we easily found that the computation in
every iteration only contains multiplication and addition of matrix, which have low
computational complexity comparing to the computation of inverse matrix in the closed
form algorithm.

2.3 Community Generation

In this section, we discuss the details of generating all the possible communities based
on the groups and networks information in online social networks. First, we define the
“distance” d between any two user vi and vj , di,j = e−‖〈wgp

i,j ,wnk
i,j 〉‖. According to this,

we utilize a clustering method K-mean to generate communities C1, C2, ..., Cnc .
In fact, many other methods can be utilized to generate communities, e.g., Gaus-

sian Mixture Model (GMM) and Graph Cut. But no matter what method is applied to
generate communities, the CG SSL exploit model is still in effect.

3 Experiments

In the experiments, we employ both novel SSL exploit model and other three learn-
ing models as comparison, including two graph-based SSL and a supervised learning
model, to predict the labels on a synthetic dataset and exposing which universities users
come from on two real-world datasets. The results are evaluated in terms of accuracy
and weighted accuracy on these three datasets.

3.1 Dataset Description

We describe the details of three datasets in this part. Table 1 gives detail statistics of
these three datasets.

TwoMoons Dataset. ‘TwoMoons’ is a simple dataset only with 2 classes and 200 ver-
tices distributing in 2D space. The distribution of the original data is shown in Table
2. Based on this, friendship information (local similarity) and community information
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Fig. 2. The Synthetic Friendship and Networks Information of TwoMoons Dataset

Table 1. Statistics of TwoMoons, StudiVZ and Facebook Datasets

Dataset Vertices Edges Groups Networks Classes
TwoMoons 200 381 0 4 2

StudiVZ 1, 423 7, 769 406 0 6
Facebook 10, 410 45, 842 61 78 3

Table 2. Statistics of Data Distribution on TwoMoons Dataset

Class Class 1 Class 2
Size of Class 95 105

Table 3. Statistics of Data Distribution on StudiVZ Dataset

University LMU Muenchen Uni Wien Uni Bayreuth
Size of Class 128 79 98
University Uni Frankfurt am Main TU Wien (Others)

Size of Class 74 70 974

(community similarity) are artificially generated. These two kinds of synthetic informa-
tion are shown in Fig. 2.

StudiVZ Dataset. The dataset has sufficient information of users’ profiles and groups.
Based on crawled data, we build a graph which contains 1, 423 vertices and 7, 769
edges. Data distribution is shown in Table 3.

Facebook Dataset. The dataset has sufficient number of vertices and all kinds of rela-
tional information, thus it is similar to the situation of the real world. Comparing with
StudiVZ dataset, Facebook dataset has much more missing values in personal profile
and more group information.

3.2 Data Preprocessing

For two real-world datasets, a series of data preprocessing such as feature selection,
data cleaning and data translation are conducted before running algorithms.

Feature Selection. For users’ profile information, we select top three features for which
most people provide information. For relational information, a number of small groups
and networks are removed. Apart from that, some networks whose names explicitly
reveal universities’ names, such as “LMU Muenchen”, are removed manually.



Exploit of Online Social Networks with Community-Based Graph SSL 675

Table 4. Statistics of Data Distribution on Facebook Dataset

University CUHK HKUST (Others)
Size of Class 68 1, 583 8, 759

Data Translation. We need to translation some data into the proper forms. For exam-
ple, we translate home town to its longitude and latitude values through Google maps
API3 to calculate the similarity. Moreover, missing data are filled with average value
of existed data and noise data are treated as missing ones. Cosine similarity is applied
between any two profile vectors. If both of the users fail to provide at least 50% infor-
mation, we set the cosine similarity with mean value.

3.3 Experiment Process

Labeled Data Selection. Labeled data are selected randomly with two constrains: 1.
each class must have labeled data; 2. the numbers of labeled data in all classes are
similar. The second point suggests an assumption that we do not know the distribution
of all classes when labeling data.

Evaluation Criterion. We mainly utilize the accuracy to measure the results of learn-
ing and a Weighted Accuracy (WA) measurement would assist us to analyst the confi-

dence of the learning results. We define WA as
∑

i∈Vc
F∗(i,ŷi)∑

i∈Vc
F∗(i,ŷi)+

∑
i∈Vinc

F∗(i,ŷi)
, where

Vc is a set containing all the vertices whose predictions are correct and Vinc contains all
incorrect-prediction vertices.

3.4 Experiment Results

Table 5, 6 and 7 give the results of experiments, from which various algorithms’ perfor-
mance can be evaluated. Figure 3(a), 3(b) and 3(c) describe the accuracy of prediction
with TwoMoons, StudiVZ and Facebook datasets respectively. What’s more, the results
of supervised learning are provided for comparison.

TwoMoons. Figure 3(a) shows the predicting results on the synthetic dataset ‘TwoM-
oons’. First, the accuracy of graph-based SSL models is obviously better than that of su-
pervised learning. Second, Consistencies make the learning models stabler. The global
consistency makes the LGC SSL stabler - the learning accuracies would keep enhanc-
ing along with the increasing of the number of labeled data. Moreover, the community
consistency keeps the CG SSL stably better than other graph-based SSL models. Third,
the community information does help in prediction in term of accuracy. In Fig. 2, we
observe that some vertices have strong local similarity (friendship) with each other, but
actually they do not belong to the same class. Without the help from community infor-
mation, basic graph SSL and LGC SSL always incorrectly predict the classes of 6 to 8
vertices (Table 5), even if the percentage of labeled data is pretty high. The experiment
on this synthetic dataset illustrates that the CG SSL could really improve the learning
result in some ideal conditions.

3 http://code.google.com/apis/maps/
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Fig. 3. Accuracy of Prediction on Three Datasets

Table 5. Accuracy & Weighted Accuracy of Learning on TwoMoons Data with 200 Vertices

# of Labeled Labeled Supervised Basic Graph SSL LGC SSL CG SSL
Data % Learning (weighted acc.) (weighted acc.) (weighted acc.)
2 1.00% 49.9% 72.22% (73.77%) 67.71% (98.24%) 74.24% (100.00%)
4 2.00% 52.55% 77.55% (83.34%) 72.96% (98.35%) 100.00% (100.00%)
8 4.00% 56.25% 92.71% (95.18%) 92.19% (98.95%) 100.00% (100.00%)
16 8.00% 61.20% 90.16% (93.05%) 93.99% (99.23%) 100.00% (100.00%)
32 16.00% 69.82% 98.22% (98.80%) 95.27% (99.38%) 100.00% (100.00%)
48 24.00% 76.32% 96.71% (97.78%) 96.71% (99.34%) 100.00% (100.00%)
64 32.00% 78.68% 96.32% (97.50%) 96.32% (99.17%) 100.00% (100.00%)

Table 6. Accuracy & Weighted Accuracy of Learning on StudiVZ Data with 1, 423 Users

# of Labeled Labeled Supervised Basic Graph SSL LGC SSL CG SSL
Data % Learning (weighted acc.) (weighted acc.) (weighted acc.)
6 0.42% 32.89% 68.67% (68.71%) 60.41% (59.89%) 77.66% (70.91%)
12 0.84% 34.73% 68.89% (68.95%) 62.79% (62.76%) 81.40% (84.17%)
72 5.06% 44.86% 74.02% (74.26%) 73.65% (73.88%) 89.23% (92.06%)
138 9.70% 43.66% 77.98% (78.37%) 76.81% (77.36%) 84.35% (83.71%)
210 14.76% 49.63% 80.54% (81.05%) 78.32% (78.98%) 90.15% (91.40%)
282 19.82% 55.30% 82.38% (82.91%) 80.98% (81.67%) 93.30% (98.91%)
354 24.88% 53.60% 84.10% (84.62%) 85.41% (85.94%) 94.06% (95.06%)
426 29.94% 56.27% 87.86% (88.29%) 90.47% (90.83%) 94.00% (91.52%)

StudiVZ. Figure 3(b) gives similar results. First, all graph-baesd SSL models outper-
form supervised learning. Second, the performance of CG SSL with 138 labeled data
is worse than that with only 72 labeled data. We conjecture that it is due to the unsta-
ble of the clustering technique for generating communities. Although we could tend to
the optional predicting result, the randomness of clustering still exists and affects the
stability of the final learning results.

Facebook. Figure 3(c) illustrates various algorithms’ performance on Facebook dataset.
First of all, in most cases the results of SSL methods are still superior to supervised
learning. Second, even if there are only a few labeled data, CG SSL method can still
make good predictions. The last point is that there is little instability in CG SSL model.
The accuracy of learning with 10.00% labeled data is a little worse than that with only
4.99% labeled data. This would be caused by the same reason as in the experiment on
the StudiVZ dataset.

Comparing with StudiVZ dataset, the learning results of CG SSL on Facebook dataset
are less accurate. This is probably due to the existing of many missing values in Face-
book dataset. However, the difference between CG SSL and other two graph-based SSL
models is more obvious on Facebook dataset. We conjecture the reason is that there
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Table 7. Accuracy & Weighted Accuracy of Learning on Facebook Data with 10, 410 Users

# of Labeled Labeled Supervised Basic Graph SSL LGC SSL CG SSL
Data % Learning (weighted acc.) (weighted acc.) (weighted acc.)
51 0.49% 42.86% 65.05% (58.72%) 59.93% (53.29%) 63.71% (62.05%)
102 0.98% 47.69% 65.32% (59.68%) 63.45% (61.53%) 74.44% (74.83%)
507 1.99% 49.43% 66.97% (61.67%) 65.88% (69.43%) 75.49% (76.52%)
519 4.99% 50.45% 67.94% (65.07%) 67.00% (82.27%) 75.17% (72.51%)
1041 10.00% 51.56% 68.09% (66.19%) 68.14% (88.85%) 74.32% (75.69%)
1560 14.99% 51.57% 67.93% (66.35%) 68.47% (91.29%) 74.76% (78.14%)
2082 20.00% 51.69% 67.24% (65.89%) 68.68% (92.43%) 75.84% (79.94%)
2601 24.99% 51.65% 67.58% (65.31%) 68.51% (92.81%) 78.30% (84.96%)
3123 30.00% 51.16% 67.71% (65.31%) 68.05% (92.59%) 79.17% (80.32%)

is more effective community information on Facebook dataset and the distribution of
community information is more relative and helpful to the predicted attribute.

Summary. In terms of both accuracy and confidence (or certainty), CG SSL exploit
model performs better than other two graph-based learning models in most cases and
its advantage is amplified gradually when the number of labeled data increases.

4 Related Work

Since the online social networks began to thrive, there has been a growing interest in
the security of users’ privacy under the current privacy protection. Among the previous
work, the exposures using machine learning with public profile and relation information
attract a large amount of attention and have great significance in the security of online
social networks [7,10]. The exposures employing machine learning methods include
supervised learning and unsupervised learning at the beginning.

Based on the characteristic of semi-supervised learning, it has attracted many re-
searchers to study in the last decades. Semi-supervised learning can be divided into
several typical kinds of models, including generative model [4], co-training method [3],
graph-based methods [12], SVM [8,9], etc.

Graph-based semi-supervised learning methods model objects as weighted undi-
rected graphs. Blum and Chawla [2] pose semi-supervised learning as a graph mincut
problem. Another graph-based semi-supervised learning algorithm proposed in [12] is
the harmonic function that is a function which has the same values as given labels on the
labeled data and satisfied the weighted average property on the unlabeled data. Based
on [12], [11] proposes the Local and Global Consistency graph-based method which
improves harmonic function method.

5 Conclusions

Community-based Graph SSL model describes the real world exactly. With the help of
community consistency, this model illustrates the further relationship among all users
in the real world. Moreover, this paper provides two algorithms to solve the problem. In
contrast with previous graph-based SSL models, CG SSL predicts the sensitive informa-
tion of online social networks with higher accuracy and confidence. Thus, the privacy
exposure problem in online social networks becomes more serious and the security of
users’ information is no longer secure.
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