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Abstract
We develop a novel online learning algorithm for
the group lasso in order to efficiently find the im-
portant explanatory factors in a grouped manner.
Different from traditional batch-mode group lasso
algorithms, which suffer from the inefficiency and
poor scalability, our proposed algorithm performs
in an online mode and scales well: at each iter-
ation one can update the weight vector accord-
ing to a closed-form solution based on the aver-
age of previous subgradients. Therefore, the pro-
posed online algorithm can be very efficient and
scalable. This is guaranteed by its low worst-case
time complexity and memory cost both in the or-
der of O(d), where d is the number of dimen-
sions. Moreover, in order to achieve more sparsity
in both the group level and the individual feature
level, we successively extend our online system
to efficiently solve a number of variants of sparse
group lasso models. We also show that the online
system is applicable to other group lasso models,
such as the group lasso with overlap and graph
lasso. Finally, we demonstrate the merits of our
algorithm by experimenting with both synthetic
and real-world datasets.

1. Introduction
Group lasso (Yuan & Lin, 2006), a technique of selecting
key explanatory factors in a grouped manner, is an im-
portant extension of lasso (Tibshirani, 1996). It has been
successfully employed in a number of applications, such
as birthweight prediction and gene finding (Yuan & Lin,
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2006; Meier et al., 2008). In these applications, data may
either be dominated by k-th order polynomial expansions
of some inputs or contain categorical features which are
usually represented as groups of dummy variables (Meier
et al., 2008; Roth & Fischer, 2008; Jacob et al., 2009). Due
to its advantages, group lasso has been intensively studied
in statistics and machine learning (Yuan & Lin, 2006; Bach,
2008). Extensions include the group lasso for logistic re-
gression (Meier et al., 2008), the group lasso for general-
ized linear models (Roth & Fischer, 2008), the group lasso
with overlap between groups (Jacob et al., 2009), etc.

Despite its success in the above applications, the original
group lasso model and most of its extensions have several
limitations which need to be addressed: (i) the models are
learned by a batch-mode training. In the training process,
data are given in advance, and then they are fed into a con-
vex optimization problem which minimizes the empirical
loss with a regularization that introduces the group sparsity.
However, in real-world applications, the training data may
appear sequentially. (ii) Existing group lasso algorithms
can only handle data up to several thousands of instances
or features (Yuan & Lin, 2006; Meier et al., 2008; Roth
& Fischer, 2008). While in real-world applications, data
can be in large volume, over millions in both of the sample
size and the feature space. Previous group lasso algorithms
will fail in this situation due to their inefficiency or poor
scalability. (iii) The original group lasso can only yield so-
lutions with sparsity in the group level. It usually lacks
the ability in further finding the key factors in an important
group. This is a non-trivial drawback for some real-world
applications, where data may be explained by the key fea-
tures within the important groups. Only seeking sparsity
in the group level may lose some useful information that is
important to accurately interpret the data.

To address the above problems caused by the batch-mode
training and poor data scalability, we develop a novel and
very efficient online learning algorithm for the group lasso,
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which updates the learning weight vector at each iteration
by a closed-form solution based on the average of the pre-
vious subgradients. To the best of our knowledge, our al-
gorithm is the first online algorithm for the group lasso.
Our algorithm enjoys several good properties in terms of
efficiency and effectiveness. First, the efficiency of the al-
gorithm can be guaranteed by its low complexity in both
memory space and time cost: at each iteration, the pro-
posed algorithm only needs O(d) memory to store the re-
quired information and the updating process has a worst-
case time complexity of O(d) in computation, where d is
the number of features. Hence, our proposed algorithm has
the potential to solve large-scale problems. Second, as the
accuracy guarantee, we provide the convergence rate for
both the regret bound and the bound of the learning weight
vector for the proposed algorithm.

In order to seek the group lasso with more sparsity in both
the group level and the individual feature level, we success-
fully extend the algorithm to solve the sparse group lasso
problem (Friedman et al., 2010) and propose the enhanced
sparse group lasso model. We further derive closed-form
solutions to update the weight vectors in both models. Our
algorithm framework can also be easily extended to solve
the group lasso with overlap and the graph lasso prob-
lems (Jacob et al., 2009). Therefore, this suggests the
good applicability of our proposed algorithm in that it can
be employed to solve a large family of group lasso algo-
rithms. Finally, experiments on both synthetic and real-
world datasets demonstrate the advantages of the proposed
online algorithm.

2. Related Work
In the following, we mainly review the related work on on-
line learning algorithms.

Online learning has been extensively studied in machine
learning area in recent years (Zinkevich, 2003; Bottou &
LeCun, 2003; Shalev-Shwartz & Singer, 2006; Fink et al.,
2006; Amit et al., 2006; Crammer et al., 2006; Bottou
& Bousquet, 2007; Dredze et al., 2008; Hu et al., 2009;
Zhao et al., 2009). These methods can be cast into differ-
ent categories. One family of online learning algorithms
is based on the criterion of maximum margin (Shalev-
Shwartz & Singer, 2006; Dredze et al., 2008), which re-
peatedly chooses the hyperplane that correctly classifies
the training samples with the maximum margin or updates
the decision boundary when a new sample is misclassified
or when its classification score does not exceed some pre-
defined margin. Another family of online learning algo-
rithms is solved by the stochastic gradient method (Zinke-
vich, 2003; Bottou & LeCun, 2003), where the weight vec-
tor is updated based on the subgradient of the coming sam-
ple and projected back to the constraint space if needed. An

attractiveness of stochastic gradient decent methods is that
their runtime may not depend at all on the number of exam-
ples (Bottou & Bousquet, 2007; Shalev-Shwartz & Srebro,
2008). Although various online learning algorithms have
been proposed, there is no online learning algorithm devel-
oped for the group lasso yet.

More recently, online learning algorithms on minimizing
the summation of data fitting and L1-regularization have
been proposed to yield sparse solutions (Balakrishnan &
Madigan, 2008; Langford et al., 2009; Duchi & Singer,
2009; Xiao, 2009a). These algorithms are very promis-
ing in real-world applications, especially for training large-
scale datasets. In (Langford et al., 2009), a truncated gra-
dient method is proposed to truncate the elements of the
learning weight vector to 0 when they cross 0 after the
stochastic gradient step. Experiments on data with over 107

samples and 109 features using about 1011 bytes are eval-
uated for that method (Langford et al., 2009). In (Duchi &
Singer, 2009), a forward-backward splitting method (FO-
BOS) is studied for solving the regularized convex opti-
mization problem, especially the lasso problem. The al-
gorithm of FOBOS consists of two steps: performing an
unconstrained gradient descent step first and then minimiz-
ing a regularization term while keeping the solution close
to the result of the first phase. In (Xiao, 2009a), the regular-
ized dual averaging method is proposed to solve the lasso
problem, where the learning weight is updated based on the
average of all calculated subgradients of the loss functions.
The efficiency of the above methods motivates us to pro-
pose an online learning algorithm for the group lasso.

3. Group Lasso
Given a training dataset consisting of N independent and
identically distributed observations, {zi = (xi, yi)}Ni=1,
where xi ∈ Rd is a d-dimensional vector and yi ∈ {−1, 1}
for the binary classification problem or yi ∈ R for the re-
gression problem. Suppose that these d features are divided
into G groups with dg , the number in g-th group. Hence,
we can rewrite xi = (x1>

i , . . . ,xG>i )> with the group of
variables xgi ∈ Rdg , g = 1, . . . , G. When dg = 1 for all
groups, the data do not form a group in the feature space.

The lasso algorithm (Tibshirani, 1996) is a linear regres-
sion model that selects the variables individually and it can-
not find the key factors in the grouped mode. Correspond-
ingly, the group lasso algorithm (Yuan & Lin, 2006) is pro-
posed to select a subset of important factors for producing
accurate prediction. Concretely, it is to seek the weight w
and the bias b in f(x) =

∑G
g=1 w

g>xg + b, by solving the
following optimization problem

min
w

N∑
i=1

l(w, zi) + Ωλ(w), (1)
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where w = (w1>, . . . ,wG>)>. In (1), since the bias usu-
ally can be absorbed by the weight without penalty, we only
consider the optimization on the weight vector w.

Various loss functions, e.g., the squared loss, the logit loss,
have been adopted for l(·) (Yuan & Lin, 2006; Meier et al.,
2008). The loss functions are usually assumed convex.

In (1), Ωλ(·) defines the regularization on the weight. In
the group lasso, the “groupwise” L2-norm is adopted as
the regularizer, i.e.,

Ωλ(w) = λ

G∑
g=1

√
dg‖wg‖2, (2)

where the trade-off constant λ ≥ 0 is to balance between
the loss and the regularization term. The value

√
dg ac-

counts for the varying group sizes and ‖·‖2 is the Euclidean
norm.
Remark 1. The regularizer in (2) makes the model act as
the lasso at the group level: a large λ may make a whole
group of predictors drop out of the model. As dg = 1 for
all the groups, the group lasso is equivalent to the lasso.
Remark 2. To introduce group sparsity, it is also possible
to impose other joint regularization on the weight, e.g., the
L1,∞-norm (Quattoni et al., 2009).
Remark 3. The group lasso regularizer has also been ex-
tended to use in Multiple Kernel Learning (MKL) (Bach,
2008). The consistency analysis on the connection be-
tween the group lasso and MKL can be referred to the pa-
per (Bach, 2008).

Here, we can further introduce sparse group lasso as that
in (Friedman et al., 2010)

Ωλ,r(w) = λ

G∑
g=1

(√
dg‖wg‖2 + rg‖wg‖1

)
, (3)

where rg > 0, for g = 1, . . . , G, is a constant balancing the
L2-norm against the L1-norm in each group. By imposing
L1-norm in each group, the sparse group lasso can further
yield sparse solutions in the selected group.

To solve the optimization with the group lasso, various
methods, e.g., Group LARs (Yuan & Lin, 2006), block
co-ordinate descent (Meier et al., 2008), active set algo-
rithm (Roth & Fischer, 2008), have been proposed. Some
batch-mode training methods for group lasso penalties also
have been proposed, e.g., (Liu et al., 2009; Kowalski et al.,
2009). Interested readers can read the above papers and
references therein.

4. Online Learning for Group Lasso
Inspired by recently developed first-order methods for op-
timizing composite functions (Nesterov, 2009) and the ef-

Algorithm 1 Online learning algorithm for group lasso
Input:
• w0 ∈ Rd, and a strongly convex function h(w) with

modulus 1 such that

w0 = arg min
w

h(w) ∈ arg min
w

Ω(w) . (4)

• Given const λ > 0 for the regularizer.
• Given const γ > 0 for the function h(w).

Initialization: w1 = w0, ū0 = 0.
for t = 1, 2, 3, . . . do

1. Given the function lt, compute the subgradient on
wt, ut ∈ ∂ lt.

2. Update the average subgradient ūt:

ūt =
t− 1

t
ūt−1 +

1

t
ut.

3. Calculate the next iteration wt+1:

wt+1 = arg min
w

Υ(w), (5)

where Υ(w) =
{
ū>t w+Ωλ(w)+ γ√

t
h(w)

}
.

end for

ficiency of the dual averaging method for minimizing the
L1-regularization in (Xiao, 2009a), we propose an online
learning algorithm by adopting the dual averaging method
to solve the group lasso, namely DA-GL. The algorithm
is outlined in Algorithm 1. In this case, data come in se-
quence. At each time, we have to make the decision of wT

based on the coming data. By defining the objective up to
the T -th step as

ST (wT ) :=
1

T

T∑
t=1

(Ωλ(wT ) + lt(wT )), (6)

the objective of online learning for group lasso is to find
wT in the T -th step such that the objective up to the T -th
step, ST (wT ), is not much larger than minw,b ST (w), the
smallest objective of any fixed decision w from hindsight.
Note that in (6), we have used lt(·) to simplify the expres-
sion of the loss induced by the t-th coming instance.

The difference between the objective value up to the T -
th step and the smallest objective value from hindsight is
the regret of the online algorithm for group lasso. We can
define the average regret as

R̄T (w) :=
1

T

T∑
t=1

(Ωλ(wt) + lt(wt))− ST (w). (7)

Analysis of the regret bound and convergence rate is a key
problem to guarantee the online learning algorithms. We
will delay the analysis until Section 5.
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Remark 4. The above proposed online learning for the
group lasso is derived from the regularized dual averag-
ing method in (Xiao, 2009a). We can also use the FO-
BOS (Duchi & Singer, 2009) to solve the online learning
for the group lasso. In this case, at each iteration, the FO-
BOS method is to solve the following minimization prob-
lem:

wt+1 =arg min
w

{
1

2
‖w−(wt−ηtut)‖2+ηtΩ(w)

}
, (8)

where Ω(w) is defined as (2) for the group lasso or as (3)
for the sparse group lasso. ηt is a constant term can be set to
O(1/

√
t). It is easy to see the difference between FOBOS

for the group lasso and our DA-GL algorithm: the FOBOS
method scale the regularization term by a diminishing step-
size ηt while our method keep it the same.

Remark 5. In the standard group lasso, the features are as-
sumed belonging to one and only one group, i.e., the groups
are non-overlapped. If data contain overlapped groups, we
can simply replicate the overlapped features as that in (Ja-
cob et al., 2009) to obtain an enlarged dataset, then feed the
data into Algorithm 1 to get the solution of the group lasso
with overlap. The procedure can be performed similarly as
that for the graph lasso.

The key to make Algorithm 1 efficiently solve the group
lasso is that the update of the weight in (5) should be sim-
ple. Here, we first consider the calculation of the bias. In
the batch-mode learning for the group lasso, data are given
in advance. One can center the data to make the bias vanish.
However, for online learning algorithms, the data are not
preprocessed. Hence we have to calculate the bias. Here,
since the bias is not regularized, it can be calculated by

bt+1 = arg min
b

{
b̄tb+

γ

2
√
t
b2
}

= −
√
t

γ
b̄t . (9)

Next, let [v]+ denote max{0, v}. We can calculate the op-
timal solution of wt+1 in (5) in a closed-form for the fol-
lowing three group lasso models:

Theorem 1. Given ūt at each iteration, the optimal solu-
tion of (5) is updated correspondingly as follows:

a) Group lasso: Ωλ(w) is defined in (2) for some λ > 0,
and h(w) = 1

2‖w‖
2. Then, for g = 1, . . . , G, we have

wg
t+1 = −

√
t

γ

[
1−

λ
√
dg

‖ūgt ‖2

]
+

· ūgt . (10)

b) Sparse group lasso: Ωλ,r(w) is defined in (3) for some
λ > 0 and r ≥ 0, and h(w) = 1

2‖w‖
2. Then we have

wg
t+1 = −

√
t

γ

[
1−

λ
√
dg

‖cgt ‖2

]
+

· cgt , (11)

where the j-th element of cgt is calculating by

cg,jt =
[
|ūg,jt | − λrg

]
+
· sign (ūg,jt ), j = 1, . . . , dg. (12)

c) Enhanced sparse group lasso: Ωλ,r(w) is defined in (3)
for some λ > 0 and r ≥ 0, and h(w) = 1

2‖w‖
2 + ρ‖w‖1

with ρ ≥ 0 being a sparsity-enhancing parameter. Then

wg
t+1 = −

√
t

γ

[
1−

λ
√
dg

‖c̃gt ‖2

]
+

· c̃gt , (13)

where the j-th element of c̃gt is calculating by

c̃g,jt =

[
|ūg,jt | − λrg −

γρ√
t

]
+

· sign (ūg,jt ), j = 1, . . . , dg.

(14)

Remark 6. Equation (10) indicates that the solution for
the group lasso achieves sparsity in the group level. Equa-
tion (11) implies that the solution for the sparse group lasso
achieves sparsity in both the group level and the individual
feature level. Since ‖cgt ‖2 ≤ ‖ū

g
t ‖2, the solution for the

sparse group lasso can achieve more sparsity in the group
level than that in the group lasso. Similarly, the solution of
the enhanced sparse group lasso achieves more sparsity in
both the group and the individual feature level due to the
introduced sparsity-enhancing parameter.

Remark 7. Theorem 1 indicates the simplicity of updating
the weight in (5). It is noted that the algorithm only needs
O(d) space to store the average subgradient, the weight at
each iteration. In addition, it is possible to adopt the ef-
ficient implementation of lazy update in (Duchi & Singer,
2009) to avoid updating the whole weight at each time for
high dimensional data.

5. Convergence and Regret Analysis
We have the following theorem providing the bound of the
average regret and the weight:

Theorem 2. Suppose there exists an optimal solution w?
T

for the problem of (1) which satisfies h(w?) ≤ D2 for some
D > 0, and there exists a constant L such that ‖ūT ‖2∗ ≤
L2 for all T ≥ 1. Then we have the following properties
for Algorithm 1:

a) For each T ≥ 1, the average regret is bounded by

R̄T ≤

(
γ
√
TD2 +

L2

2γ

T∑
t=1

1√
t

)
/T (15)

b) The sequence of primal variables are bounded by

1

2
‖wT+1 −w?‖2 ≤ D2 +

L2

γ2
−
√
T

γ
R̄T (16)
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Table 1. Evaluation on the synthetic dataset when varying the number of training data. The best results are highlighted (achieved by
paired t-test with 95% confidence level).

Ntr
Accuracy (%) Average F1 (%)

Lasso GL L1-RDA DA-GL DA-SGL Lasso GL L1-RDA DA-GL DA-SGL
25 54.2 ± 14.1 54.2± 11.4 56.6± 9.9 57.0± 11.6 57.6± 11.0 23.6± 8.5 37.3± 13.6 35.6± 6.3 37.2± 3.0 37.9± 4.5
50 58.2 ± 7.7 60.0± 6.3 59.5± 6.9 60.9± 6.2 60.9± 6.0 35.0± 9.3 49.8± 6.0 39.7± 6.5 49.7± 3.0 49.8± 4.9
100 62.7 ± 5.5 64.0± 5.1 61.7± 4.8 64.5± 4.1 64.6± 4.5 47.0± 7.2 57.4± 2.4 46.5± 9.7 57.1± 2.7 57.4± 5.9
500 75.6 ± 2.4 75.7± 2.3 66.2± 3.0 74.8± 2.3 75.9± 2.2 65.0± 2.5 65.5± 2.1 63.6± 9.7 65.2± 6.8 81.9± 5.3

1000 77.7 ± 1.5 77.8± 1.5 65.9± 2.0 76.3± 1.4 77.9± 1.6 70.1± 2.4 67.2± 2.1 64.9± 8.7 67.2± 4.7 87.3± 4.3
5000 79.4 ± 0.4 79.4± 0.3 67.8± 1.5 78.2± 0.6 79.4± 0.8 88.2± 2.4 68.2± 2.0 66.8± 8.0 68.3± 2.9 93.7± 2.5
104 80.0 ± 0.2 80.0± 0.1 68.0± 1.3 79.8± 0.3 80.0± 0.1 94.1± 2.3 69.1± 1.8 67.4± 5.5 68.4± 2.5 94.2± 2.1
105 80.1 ± 0.1 80.1± 0.1 69.7± 1.2 79.9± 0.1 80.1± 0.1 97.3± 2.2 69.5± 1.7 68.1± 5.1 68.7± 2.3 97.3± 2.1

The proof of Theorem 2 can follow the framework devel-
oped in (Nesterov, 2009). A detailed proof can be found
in (Xiao, 2009b). The bound in (15) can further be simpli-
fied as

Bound of (15) ≤
γ
√
TD2 + L2

2γ 2
√
T

T
=
γD2 + L2

γ√
T

.

This also indicates that the best γ for the above bound is
attained when γ? = L/D and this leads to the average
regret bound as R̄T ≤ 2LD/

√
T .

Hence, Algorithm 1 can achieve the optimal converge rate
O(1/

√
T ). It would be interesting to investigate that

by introducing additional assumption, whether the aver-
age regret bound can be improve to O(log(T )/T ) as that
in (Hazan et al., 2007).

The second result of Theorem 2 gives a bound for the dif-
ference between the learned weight and the optimal weight.
If R̄T > 0, then the bound can be tighter. However, the
term of R̄T in the bound cannot be simply discarded since
the average regret R̄T may be negative although this is un-
likely for practical situation.

6. Experiments
In the following, we present experimental results to demon-
strate the advantages of the online learning algorithms for
the group lasso models on both synthetic and real-world
datasets.

We compare the following five algorithms: the batch-mode
learning algorithms for the lasso and the group lasso (GL);
the online learning algorithm by the dual averaging method
on the L1 regularization (L1-RDA) in (Xiao, 2009a); the
online learning algorithm by the dual averaging method for
the group lasso (DA-GL) in (10) and for the sparse group
lasso (DA-SGL) in (11). We use the implementation of the
R-package, grplasso (Meier et al., 2008) for the batch-
mode learning algorithms. The online learning algorithms

are implemented in Matlab. All algorithms run on a PC
with 2.13 GHz dual-core CPU.

6.1. Synthetic data

We test the algorithms on various synthetic data similar to
those generated in (Yuan & Lin, 2006; Meier et al., 2008;
Friedman et al., 2010), including data with sparsity in the
group level and the individual feature level. Our proposed
online learning algorithms for the group lasso models con-
sistently reveal merits. Due to space limitations, we only
report the results on the data with sparsity both in group
level and individual feature level. The goal of this experi-
ment is to test the efficiency and effectiveness of the pro-
posed algorithms.
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Figure 1. Log-log plot of computation time on training the syn-
thetic dataset. The batch-model algorithms suffer from much time
cost in loading large-scale datasets.

Before generating the data, we first generate a true model.
A weight vector is in 100 dimension consisting of ten
blocks of ten, i.e., w ∈ R100, and dg = 10, for g =
1, . . . , 10. The numbers of non-zero weights in the first
six blocks of 10 are 10, 8, 6, 4, 2, 1, respectively, with
wi = ±1, the sign chosen at random. The weights for the
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rest forty features are all zero. The bias is set to 0.

We then generate Ntr data points by letting xi = Lvi,
i = 1, . . . , Ntr, where vi ∼ N (0, Id) and L is the
Cholesky decomposition of the correlation matrix, Σ. The
(i, j)-th entry in the g-th group of the correlation matrix
is Σgi,j = 0.2|i−j| and zero for entries within different
groups. The target value is set by yi = sign (w>xi +
ε), where ε is a Gaussian noise with standard devia-
tion 4.0. We randomly generate data with the size in
{25, 50, 100, 500, 1000, 5000, 104, 105}. The model is
evaluated on an additional test set of size Ntr. We repeat
the experiments 50 times and average the results.

For the group lasso models, the regularization parameter λ
is tested from λmax ∗ {0.5, 0.2, 0.1, 0.05}, where λmax is
the maximum λ that make the weight in the group lasso
vanish. For the online learning algorithms, since we know
the true model, we can obtain the correspondingL andD as
defined in Theorem 2 and set γ = L/D. For the DA-SGL
model, rg is set to 1 for all groups.

Table 1 reports the average results on the synthetic data
in term of accuracy and the average F1 score on the true
weight. The average F1 score is to verify whether the
learned weight has the same sign of the true model. We
calculate the F1 scores of the weight on the tasks of +1 vs.
{−1, 0}, −1 vs. {+1, 0}, and 0 vs. {−1,+1} and average
these three F1 scores. The larger the F1 score, the more
accurate in predicting the sign of the weight.

Several observations can be drawn from the results. First,
the accuracy values of all algorithms increase with the
number of training instrances. Among them, the DA-SGL
achieves the best accuracy, especially when the number is
small. The DA-GL achieves slightly worse results than the
DA-SGL and slightly worse results than the GL when the
number is large. The two batch-mode algorithms achieve
nearly the same accuracy when the number of training in-
stances is large. Second, results about the average F1 score
clearly show that the DA-SGL outperforms all the other
four algorithms. With respect to F1-scores, the DA-SGL
behaves similarly as the GL when the number of training
instances is small and as the lasso when the number is large.
The DA-SGL combines both the advantages of the lasso
and the GL and is more accurate in predicting the sign of
the weight. The average F1 scores on the GL and on the
DA-GL are similar. Both models cannot achieve sparsity
in the individual feature level and therefore, the scores are
lower than the DA-SGL.

To see the efficiency of the online learning algorithms, we
show the running time in Figure 1. Since the online learn-
ing algorithms and the batch-mode algorithms run in dif-
ferent programming platforms, the time comparison is not
fair and a little bias to the R-package. However, the time

cost by the online learning algorithms is clearly less than
that cost by the batch-mode algorithms. These three online
algorithms cost nearly the same time and the L1-RDA costs
less since the DA-GL and the DA-SGL need some calcu-
lation within each group. The batch-train algorithms cost
much time in loading the data into memory when the size
of the data is large.

6.2. Splice Site Detection

In order to evaluate performance of the online learning al-
gorithms on real-world applications, we apply our algo-
rithms in the task of splice site detection, which plays an
important role in gene finding. Splice sites are the regions
between coding (exons) and non-coding (introns) DNA
segments. The 5’ splice site (5’ss) end of an intron is called
a donor splice site and the 3’ss end an acceptor splice site.

We adopt the MEMset Donar dataset for the evaluation,
which is available from http://genes.mit.edu/
burgelab/maxent/ssdata/. This dataset is widely
used to demonstrate the advantages of the group lasso mod-
els (Meier et al., 2008; Roth & Fischer, 2008). It con-
tains a training set of 8,415 true and 179,438 false human
donor sites. An additional test set consists of 4,208 true
and 89,717 false donor site. A sequence of a real splice
site is modeled within a window over positions [−3, 5] that
consists of the last three bases of the exon and the first six
bases of the intron. False splice sites are sequences on the
DNA which match the consensus sequence at positions 0
and 1. Removing the consensus “GT” results in a sequence
length of 7 with 4 level {A,C,G, T}; see (Yeo & Burge,
2004) for detailed description.

We follow the experimental setup in (Meier et al., 2008)
and measure the performance by the maximum correla-
tion coefficient (Yeo & Burge, 2004). The original training
dataset is used to construct a balanced training dataset with
5,610 true and 5,610 false donar sites and an unbalanced
validation set with 2,805 true and 59,804 false donor sites,
which exhibits the same true/false ratio as the test set. All
sites are chosen randomly without replacement such that
the two sets are disjoint. The test set remains unchanged to
evaluate the performance. The group lasso on the data with
up to 2nd order interactions and up to 4 order interactions
has been analyzed in (Meier et al., 2008) and (Roth & Fis-
cher, 2008), respectively. As reported in (Roth & Fischer,
2008), there is no much improvement using higher order
interaction. Hence we construct a model consisting of all
three-way and lower order interactions, which involves 64
terms or d = 2604-dimensional feature space.

In the algorithms, the parameter λ is varied from [0.01, 10]
to produce different levels of sparsity. The parameter γ for
the online learning algorithms is tuned on the validation
set. The element level sparsity parameter of the DA-SGL

http://genes.mit.edu/burgelab/maxent/ssdata/
http://genes.mit.edu/burgelab/maxent/ssdata/


Online Learning for Group Lasso

Table 2. Maximum correlation coefficients vs. sparsity on the
MEMset Donar dataset.

% Non-zero L1-RDA DA-GL DA-SGL
10 0.5632 0.5656 0.5656
40 0.6056 0.6071 0.6082
60 0.6481 0.6496 0.6501
80 0.6494 0.6520 0.6520

is set to
√
dg for simplicity. Table 2 shows the results of

the online learning algorithms in terms of correlation coef-
ficient vs. the sparsity. We can see that the online learning
algorithms attain satisfactory results and they are compet-
itive with the results in (Yeo & Burge, 2004; Meier et al.,
2008). It is noted that the DA-SGL can achieve better per-
formance in all given levels of structural sparsity. In terms
of computation time, the online learning algorithms cost
about 103 seconds for each epoch and the DA-GL costs the
lest time, while the batch-train group lasso algorithm costs
about quadruple of the online learning algorithms.

7. Conclusion
In this paper, we propose a novel online learning algorithm
framework for the group lasso. We apply this framework
for different group lasso extensions, including the sparse
group lasso and our proposed enhanced sparse group lasso.
We provide closed-form solutions for all the group lasso
models and give the convergence rate of the average regret.
We also conduct empirical evaluation on the proposed algo-
rithms in comparison to a recently proposed online learn-
ing algorithm for L1-regularization minimization and the
batch-mode learning algorithms for the lasso and the group
lasso. The results clearly demonstrate the advantages of the
proposed algorithms in both efficiency and effectiveness.

There are still some remaining work: 1) to further evaluate
on the FOBOS method for the group lasso in (8); 2) to fur-
ther study the lazy update scheme in the FOBOS method
for handling high-dimensional data; 3) to derive a faster
convergence rate for the online learning algorithm by in-
cluding additional assumptions, e.g., the strongly convexity
assumption; and 4) to extend the online learning algorithm
to solve other problems in the group lasso style.
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Appendix. Proof of Theorem 1
Proof. Since the objective of (5) is component-wise, we
can focus on the solution in one group, say g. In the fol-
lowing, we first sketch the proof of a) in Theorem 1.

The optimal wg
t+1 in (5) should be wg

t+1 = κgū
g
t with

κg ≤ 0. Otherwise, we can assume for the sake of contra-
diction that wg

t+1 = κgū
g
t + vg , where κg ∈ R and vg is

in the null space of ūgt . It is easy to verify that vg should
be a zero vector.

Next, κg > 0 is not the optimal solution. If κg > 0, it can
be easily verified that by setting κg = −κg we can obtain a
lower objective function value. Hence, the objective of (5)
becomes

min
κg≤0

κg‖ūgt ‖22 − λ
√
dgκg‖ūgt ‖2 +

γ

2
√
t
κ2g‖ū

g
t ‖22 (17)

By constructing the Lagrangian, L(κg, ν), of the above op-
timization problem, we have ν ≥ 0 and

L = κg‖ūgt ‖22 − λ
√
dgκg‖ūgt ‖2 +

γ

2
√
t
κ2g‖ū

g
t ‖22 + νκg.

The Karush-Kuhn-Tucker (KKT) condition indicates the
optimal solution must satisfy

∂L
∂κg

= ‖ūgt ‖22 − λ
√
dg‖ūgt ‖2 +

γ√
t
κg‖ūgt ‖22 + ν = 0,

νκg = 0.

Hence, the value of κg < 0 iff λ
√
dg < ‖ūgt ‖2. If λ

√
dg >

‖ūgt ‖2, then ν must be positive and κg should be zero. The
above analysis concludes the closed form of wg

t+1 in (10).

The sparse group lasso and the enhanced sparse group lasso
have an additional L1-norm on the weight only with differ-
ent coefficients. Hence, the proof of b) and c) is similar.

Here, we just sketch the proof of b). Since the objective
of (5) for the sparse group lasso is also element-wise, we
can consider one entry, say j, in the g-th group. The objec-
tive of (5) on wg,jt+1 is

Υ(wg,jt+1) = ūg,jt wg,jt+1 + λrg|wg,jt+1|+ ξ((wg,jt+1)2), (18)

where ξ((wg,jt+1)2) is a non-negative function on (wg,jt+1)2

and ξ(wg,jt+1)2) = 0 iff wg,jt+1 = 0 for all j ∈ [1, dg].

If ūg,jt = 0, obviously, the optimal solution for (18) is
wg,jt+1 = 0. When ūg,jt 6= 0, to simplify the analysis, we
first assume ūg,jt > 0, then wg,jt+1 should be non-positive.
Otherwise, if wg,jt+1 > 0, we have Υ(−wg,jt+1) < Υ(wg,jt+1).
It means that we can set wg,jt+1 to its negative and obtain a
lower objective function value.

Next, if ūg,jt+1 ≤ λrg , then wg,jt+1 = 0 is the optimal so-
lution. Otherwise, we have wg,jt+1 < 0 and Υ(wg,jt+1) =
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(ūg,jt − λrg)w
g,j
t+1 + ξ((wg,jt+1)2) > Υ(0). This implies that

by setting wg,jt+1 = 0 we can obtain a lower objective func-
tion value.

Third, ūg,j > λrg for all j ∈ [1, dg]. The objective of (5)
for the g-th group, Υ(wg

t+1), becomes

(ūgt − λrg1dg )>wg
t+1 + λ

√
dg‖wg

t+1‖2 +
γ

2
√
t
‖wg

t+1‖22
(19)

This objective function has the same structure to that of the
group lasso in (5). The only difference is a slight change
in the vector ūt. Hence, following the result of a), we can
define cg,j as that in (12) and obtain a closed form solution
in (11) for (19).

The analysis for ūg,jt < 0 is similar. Hence, we conclude
the proof of b).
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