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zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm ||w||00: Number of
non-zero elements in a vector
w

||w||00 = card{wi |wi 6= 0}

Problem Definition

Zero-norm Feature Selection

minw,b ||w||00 + C
∑l

i=1 ξi

s.t. yi (w · xi + b) ≥ 1− ξi ,
xi (i = 1, . . . , l) : training samples

yi ∈ {−1,+1} : category label of xi

Challenges

Zero-norm is non-convex and discontinuous
Minimizing zero-norm is combinatorially very difficult problem
[Amaldi & Kann 1998]

Previous Solution: Optimizing a surrogate term

||w||00 ≈
∑

i 1− exp{−α|wi |} [Bradley et al. 1998]
||w||00 ≈

∑
i ln(ε + |wi |) [Weston et al. 2003]
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zero-norm is useful but difficult to use

Contributions

A direct zero-norm optimization is achieved for feature
selection

A Bayesian interpretation or justification

More accurate and faster than surrogate approaches

A variation of our proposed method is strictly equivalent to
[Weston et al. 2003] (not elaborated in the talk)
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Major Results
Model Definition
Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (I)

The output z of classifiers {w, b} is corrupted by a zero-mean
and unit-variance Gaussian distribution o.

z(x,w) = wTh(x) + o

b is incorporated into w;

h(x) =

{
Linear case: [1, x]′

Kernel case: [1, k(x, x1), . . . , k(x, xl)]
′

Given a prior probability of w, EM can be used to find the
optimal w (in the sense of MAP).

Jeffery priors: S1: p(wi |τi ) = N (wi |0, τi ). S2: p(τi ) ∝ 1/τi

will motivate the zero-norm implementation.
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Bayesian Viewpoint on Classifiers (II)(Jeffery priors)

M-step (Maximize the following w.r.t. w)

log p(w|y, z) ∝ log p(z|w) + log p(w) ∝ −||Hw − z||2 −wTΛw,

where Λ = diag(1/τ1, . . . , 1/τl).
E-step (Calculate the Expectation of missing variables zi and
1/τi )

E[zi |ŵ(t), y] =

 wTh(xi ) + N (wT h(xi )|0,1)
1−S(−wT h(xi )|0,1)

if yi = 1

wTh(xi )− N (wT h(xi )|0,1)
S(−wT h(xi )|0,1)

if yi = −1

E[τ−1
i |ŵ(t), y] =

∫ +∞
0

1
τi

p(τi |ŵ(t), y)dτi∫ +∞
0

p(τi |ŵ(t), y)dτi

=

∫ +∞
0

1
τi

p(τi )p(ŵ(t)|τi )dτi∫ +∞
0

p(τi )p(ŵ(t)|τi )dτi

= |ŵi,(t)|−2 .
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E[zi |ŵ(t), y] =

 wTh(xi ) + N (wT h(xi )|0,1)
1−S(−wT h(xi )|0,1)

if yi = 1

wTh(xi )− N (wT h(xi )|0,1)
S(−wT h(xi )|0,1)

if yi = −1

E[τ−1
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Main Results & Bayesian Interpretation

Equivalence between a hierarchy model & ||w||00
Proposition 1. The 2-level hierarchical-Bayes model p(wi |τi ) = N(wi |0, τi ),
p(τi ) = 1/τi , τi > 0 over wi is equivalent to the zero-norm regularized
classifier asymptotically.

Proof Sketch: In the M-step, we maximize

−||Hw − z||2︸ ︷︷ ︸ −wTΛw︸ ︷︷ ︸
Error ||w ||00, if t →∞

∵ Λii = |ŵi,(t)|−2

(obtained in the E-step)

||w||00 & wTΛw

Proposition 2.The prior assumed in zero-norm is only related to the term
wTΛw as defined in the EM process, where Λ = diag(1/τ1, . . . , 1/τl), 1/τi

(i = 1, . . . , l ) can be iteratively updated by |ŵi,(t)|−2 for the zero-norm
regularization.
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Achieving zero-norm adaptively

Asymptotically True Zero-norm for feature selection

{w(t), b(t)} = arg minw ,b C
∑m

i=1 ξi + wTΛ(t−1)w
s.t. yi (w · xi + b) ≥ 1− ξi , i = 1, . . . , l

Λ(t) = diag(1/|w (t−1)
1 |2, . . . , 1/|w (t−1)

n |2).

The process is very similar to the EM process–It converges
rapidly.

wTΛ(t−1)w iteratively achieves zero-norm

It is a standard Quadratic Programming problem at each
iteration–The whole optimization can be solved in polynomial
time.
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Reduce Support Vectors in the dual space

Primal space

minw,b C
∑m

i=1 ξi + wTΛ(t−1)w
s.t. yi (w · xi + b) ≥ 1− ξi ,

Target: Feature selection by
minimizing ||w ||00
Decision Function:
f (w, b) = w · x + b

SV reduction in Dual space

minα,b C
∑l

i=1 ξi + αTΛ(t−1)α,
s.t. yi (w · Φ(xi ) + b) ≥ 1− ξi ,

Target: SV selection by minimizing ||α||00
Decision function:
f (α, b) =

∑l
i=1 αik(xi , x) + b

Reduce the number of SVs by 10 times
while maintaining the accuracy
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Extensions to arbitrary-norm

||w||pp
Proposition 3.The priors assumed in ||w||pp (0 ≤ p ≤ 2 or p = ∞)
are only related to the term wTΛw as defined in the EM process,
where Λ = diag(1/τ1, . . . , 1/τl), 1/τi (i = 1, . . . , l ) can be
iteratively updated by γ|ŵi ,(t)|−(2−p) respectively.

1 Arbitrary Norm can be achieved without knowing the priors!

2 ∞-norm defined as ||w||∞ = maxi |wi | can be even achieved:
Λ = diag(0, . . . , 0, 1/wimax ,(t), 0, . . . , 0) with
wimax ,(t) = maxi wi ,(t)

Details can be seen in our Neural Computation 08 paper.
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are only related to the term wTΛw as defined in the EM process,
where Λ = diag(1/τ1, . . . , 1/τl), 1/τi (i = 1, . . . , l ) can be
iteratively updated by γ|ŵi ,(t)|−(2−p) respectively.

1 Arbitrary Norm can be achieved without knowing the priors!

2 ∞-norm defined as ||w||∞ = maxi |wi | can be even achieved:
Λ = diag(0, . . . , 0, 1/wimax ,(t), 0, . . . , 0) with
wimax ,(t) = maxi wi ,(t)

Details can be seen in our Neural Computation 08 paper.
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Experiments

Experimental Setup

Comparison Algorithms
FSV [Bradley et al. 1998]
AROM [Weston et al. 2003]
SVM

W

Data Set
Two UCI data
Two microarray Gene data

Data set descriptions
Data set Dimension # Sample

Sonar 60 208
Breast 9 683
Colon 2000 62

Lymphoma 4026 96
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Accuracy (I)

Sonar Breast
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Accuracy (II)

Colon Lymphoma
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Computational Time

Data Set Proposed Algorithm AROM SVM FSV SVM SVM

Sonar 0.8061± 0.02 6.1431± 1.05 2.2888± 0.41 0.0146± 0.00
Breast 0.3203± 0.01 0.6247± 0.06 290.4822± 13.27 0.0461± 0.00
Colon 0.0223± 0.00 1.3558± 0.29 2.6941± 0.25 0.0018± 0.00

Lymphoma 0.1766± 0.01 2.3809± 0.21 23.640± 3.16 0.0057± 0.00

1 SVM is fastest because it chooses features naively.

2 The proposed algorithm cost much less time than the other two
methods.

3 FSV is especially slow in Colon and Lymphoma because it scales
against the number of features, while the other three scales against
number of samples.
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Performance in Dual Space

Data set Proposed Algorithm SVM RVM

TSA #SVs TSA #SVs TSA #SVs
Twonorm 97.81 16.60 97.70 537.40 97.47 39.20
Titanic 78.82 256.70 78.86 1981.00 77.81 1768.92

Notes:

TSA: Test Set Accuracy
RVM: Relevance Vector Machine,a state-of-the-art sparse
classifier
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Conclusion and Future Work

Overcome the combinatorially difficult problem & Achieve the
direct zero-norm optimization asymptotically

Computationally efficient

can be solved in polynomial time
much faster than the approximating methods

Can be used in dual space for reducing SVs.
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