Direct Zero-norm Optimization for Feature Selection

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

 Department of Engineering Mathematics University of Bristol
 Department of Computer Science & Engineering The Chinese University of Hong Kong

> December 16, 2008 ICDM 2008, Pisa, Italy

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Direct Zero-norm Optimization for Feature Selection

・ロット 御 とう ほどう きょう

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$||\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

 $\begin{aligned} \min_{\mathbf{w},b} \|\mathbf{w}\|_0^0 + C\sum_{i=1}^{I} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, I) \text{ : training samples} \\ y_i \in \{-1, +1\} \text{ : category label of } \mathbf{x}_i \end{aligned}$

• Challenges

- Zero-norm is non-convex and discontinuous
- Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]

• Previous Solution: Optimizing a surrogate term

- $\|\mathbf{w}\|_0^0 \approx \sum_i 1 \exp\{-\alpha |w_i|\}$ [Bradley et al. 1998]
- $||\mathbf{w}||_0^0 \approx \sum_i \ln(\epsilon + |w_i|)$ [Weston et al. 2003]

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$||\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\begin{split} \min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, l) : \text{training samples} \\ y_i \in \{-1, +1\} : \text{category label of } \mathbf{x}_i \end{split}$$

Challenges

- Zero-norm is non-convex and discontinuous
- Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]

Previous Solution: Optimizing a surrogate term

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$|\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\begin{split} \min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, l) : \text{training samples} \\ y_i \in \{-1, +1\} : \text{category label of } \mathbf{x}_i \end{split}$$

• Challenges

• Zero-norm is non-convex and discontinuous

- Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]
- Previous Solution: Optimizing a surrogate term

Direct Zero-norm Optimization for Feature Selection

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$|\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\begin{split} \min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, l) : \text{training samples} \\ y_i \in \{-1, +1\} : \text{category label of } \mathbf{x}_i \end{split}$$

- Challenges
 - Zero-norm is non-convex and discontinuous
 - Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]

Previous Solution: Optimizing a surrogate term

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$|\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i$$
s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i,$
 $\mathbf{x}_i(i = 1, \dots, l)$: training samples
 $y_i \in \{-1, +1\}$: category label of \mathbf{x}_i

- Challenges
 - Zero-norm is non-convex and discontinuous
 - Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]
- Previous Solution: Optimizing a surrogate term

• $||\mathbf{w}||_0^0 \approx \sum_i 1 - \exp\{-\alpha |w_i|\}$ [Bradley et al. 1998] • $||\mathbf{w}||_0^0 \approx \sum_i \ln(\epsilon + |w_i|)$ [Weston et al. 2003]

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$|\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\begin{array}{l} \min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, l) : \text{training samples} \\ y_i \in \{-1, +1\} : \text{category label of } \mathbf{x}_i \end{array}$$

- Challenges
 - Zero-norm is non-convex and discontinuous
 - Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]
- Previous Solution: Optimizing a surrogate term
 - $||\mathbf{w}||_0^0 \approx \sum_i 1 \exp\{-\alpha |w_i|\}$ [Bradley et al. 1998]
 - $||\mathbf{w}||_0^0 \approx \sum_i \ln(\epsilon + |w_i|) \text{ [Weston et al. 2003]}$

Asymptotically True Zero-norm Experiments Conclusion Rererence

zero-norm is useful but difficult to use

Problem

Zero-norm Definition

Zero-norm $||\mathbf{w}||_0^0$: Number of non-zero elements in a vector \mathbf{w}

$$|\mathbf{w}||_0^0 = card\{w_i|w_i \neq 0\}$$

Problem Definition

Zero-norm Feature Selection

$$\begin{array}{l} \min_{\mathbf{w},b} ||\mathbf{w}||_0^0 + C \sum_{i=1}^{l} \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \\ \mathbf{x}_i(i = 1, \dots, l) : \text{training samples} \\ y_i \in \{-1, +1\} : \text{category label of } \mathbf{x}_i \end{array}$$

- Challenges
 - Zero-norm is non-convex and discontinuous
 - Minimizing zero-norm is combinatorially very difficult problem [Amaldi & Kann 1998]
- Previous Solution: Optimizing a surrogate term
 - $||\mathbf{w}||_0^0 \approx \sum_i 1 \exp\{-\alpha |w_i|\}$ [Bradley et al. 1998]
 - $||\mathbf{w}||_0^0 \approx \sum_i \ln(\epsilon + |w_i|)$ [Weston et al. 2003]

zero-norm is useful but difficult to use

Contributions

• A direct zero-norm optimization is achieved for feature selection

- A Bayesian interpretation or justification
- More accurate and faster than surrogate approaches
- A variation of our proposed method is strictly equivalent to [Weston et al. 2003] (not elaborated in the talk)

zero-norm is useful but difficult to use

Contributions

- A direct zero-norm optimization is achieved for feature selection
- A Bayesian interpretation or justification
- More accurate and faster than surrogate approaches
- A variation of our proposed method is strictly equivalent to [Weston et al. 2003] (not elaborated in the talk)

zero-norm is useful but difficult to use

Contributions

- A direct zero-norm optimization is achieved for feature selection
- A Bayesian interpretation or justification
- More accurate and faster than surrogate approaches
- A variation of our proposed method is strictly equivalent to [Weston et al. 2003] (not elaborated in the talk)

zero-norm is useful but difficult to use

Contributions

- A direct zero-norm optimization is achieved for feature selection
- A Bayesian interpretation or justification
- More accurate and faster than surrogate approaches
- A variation of our proposed method is strictly equivalent to [Weston et al. 2003] (not elaborated in the talk)

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (I)

• The output z of classifiers $\{\mathbf{w}, b\}$ is corrupted by a zero-mean and unit-variance Gaussian distribution o.

$$z(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{h}(\mathbf{x}) + o$$

b is incorporated into w;

$$\mathbf{h}(\mathbf{x}) = \begin{cases} \text{Linear case:} & [1, \mathbf{x}]' \\ \text{Kernel case:} & [1, k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_l)]' \end{cases}$$

- Given a prior probability of **w**, EM can be used to find the optimal **w** (in the sense of MAP).
- Jeffery priors: S_1 : $p(w_i|\tau_i) = \mathcal{N}(w_i|0,\tau_i)$. S_2 : $p(\tau_i) \propto 1/\tau_i$ will motivate the zero-norm implementation.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (I)

• The output z of classifiers $\{\mathbf{w}, b\}$ is corrupted by a zero-mean and unit-variance Gaussian distribution o.

$$z(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{h}(\mathbf{x}) + o$$

b is incorporated into w;

$$\mathbf{h}(\mathbf{x}) = \begin{cases} \text{Linear case:} & [1, \mathbf{x}]' \\ \text{Kernel case:} & [1, k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_l)]' \end{cases}$$

- Given a prior probability of **w**, EM can be used to find the optimal **w** (in the sense of MAP).
- Jeffery priors: S_1 : $p(w_i|\tau_i) = \mathcal{N}(w_i|0,\tau_i)$. S_2 : $p(\tau_i) \propto 1/\tau_i$ will motivate the zero-norm implementation.

Direct Zero-norm Optimization for Feature Selection

・ロト ・回ト ・ヨト ・ヨト

3

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (I)

• The output z of classifiers $\{\mathbf{w}, b\}$ is corrupted by a zero-mean and unit-variance Gaussian distribution o.

$$z(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{h}(\mathbf{x}) + o$$

b is incorporated into w;

$$\mathbf{h}(\mathbf{x}) = \begin{cases} \text{Linear case:} & [1, \mathbf{x}]' \\ \text{Kernel case:} & [1, k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_l)]' \end{cases}$$

- Given a prior probability of **w**, EM can be used to find the optimal **w** (in the sense of MAP).
- Jeffery priors: S_1 : $p(w_i|\tau_i) = \mathcal{N}(w_i|0,\tau_i)$. S_2 : $p(\tau_i) \propto 1/\tau_i$ will motivate the zero-norm implementation.

3

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (II)(Jeffery priors)

• M-step (Maximize the following w.r.t. w)

 $\log p(\mathbf{w}|\mathbf{y}, \mathbf{z}) \propto \log p(\mathbf{z}|\mathbf{w}) + \log p(\mathbf{w}) \propto -||\mathbf{H}\mathbf{w} - \mathbf{z}||^2 - \mathbf{w}^T \mathbf{\Lambda}\mathbf{w},$ where $\mathbf{\Lambda} = \operatorname{diag}(1/\tau_1, \dots, 1/\tau_l).$

• E-step (Calculate the Expectation of missing variables z_i and $1/\tau_i$)

$$\mathsf{E}[z_i|\widehat{w}_{(t)},\mathbf{y}] = \begin{cases} \mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i) + \frac{\mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i)|0,1)}{1-\mathcal{S}(-\mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = 1\\ \mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i) - \frac{\mathcal{N}(\mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i)|0,1)}{\mathcal{S}(-\mathbf{w}^{\mathsf{T}}\mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = -1 \end{cases}$$

 $H_{\alpha}^{(n)}(\alpha) = \frac{\int_{0}^{\infty} \frac{1}{2} e(\alpha | \hat{\alpha}_{\alpha}, x) d\alpha}{\int_{0}^{\infty} \frac{1}{2} e(\alpha | \hat{\alpha}_{\alpha}, x) d\alpha} = \frac{\int_{0}^{\infty} \frac{1}{2} e(\alpha | \hat{\alpha}_{\alpha}, x) d\alpha}{\int_{0}^{\infty} \frac{1}{2} e(\alpha | \hat{\alpha}_{\alpha}, x) d\alpha}$

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (II)(Jeffery priors)

• M-step (Maximize the following w.r.t. w)

log $p(\mathbf{w}|\mathbf{y}, \mathbf{z}) \propto \log p(\mathbf{z}|\mathbf{w}) + \log p(\mathbf{w}) \propto -||\mathbf{H}\mathbf{w} - \mathbf{z}||^2 - \mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$, where $\mathbf{\Lambda} = \operatorname{diag}(1/\tau_1, \dots, 1/\tau_l)$.

• E-step (Calculate the Expectation of missing variables z_i and $1/\tau_i$)

$$\mathsf{E}[z_i|\widehat{w}_{(t)},\mathbf{y}] = \begin{cases} \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) + \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{1-\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = 1\\ \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) - \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = -1 \end{cases}$$

 $\mathsf{E}[\tau_i^{-1}|\widehat{\mathbf{w}}_{(t)},\mathbf{y}] = \frac{\int_0^{+\infty} \frac{1}{\tau_i} \rho(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i}{\int_0^{+\infty} \rho(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i} = \frac{\int_0^{+\infty} \frac{1}{\tau_i} \rho(\tau_i) \rho(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}{\int_0^{+\infty} \rho(\tau_i) \rho(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}$ $= |\widehat{w}_{i,(t)}|^{-2} .$

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (II)(Jeffery priors)

• M-step (Maximize the following w.r.t. w)

log $p(\mathbf{w}|\mathbf{y}, \mathbf{z}) \propto \log p(\mathbf{z}|\mathbf{w}) + \log p(\mathbf{w}) \propto -||\mathbf{H}\mathbf{w} - \mathbf{z}||^2 - \mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$, where $\mathbf{\Lambda} = \operatorname{diag}(1/\tau_1, \dots, 1/\tau_l)$.

• E-step (Calculate the Expectation of missing variables z_i and $1/\tau_i$)

$$\mathsf{E}[z_i|\widehat{w}_{(t)},\mathbf{y}] = \begin{cases} \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) + \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{1-\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = 1\\ \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) - \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = -1 \end{cases}$$

 $\mathsf{E}[\tau_i^{-1}|\widehat{\mathbf{w}}_{(t)},\mathbf{y}] = \frac{\int_0^{+\infty} \frac{1}{\tau_i} \rho(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i}{\int_0^{+\infty} \rho(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i} = \frac{\int_0^{+\infty} \frac{1}{\tau_i} \rho(\tau_i) \rho(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}{\int_0^{+\infty} \rho(\tau_i) \rho(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}$ $= |\widehat{w}_{i,(t)}|^{-2} .$

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Bayesian Viewpoint on Classifiers (II)(Jeffery priors)

• M-step (Maximize the following w.r.t. w)

 $\log p(\mathbf{w}|\mathbf{y}, \mathbf{z}) \propto \log p(\mathbf{z}|\mathbf{w}) + \log p(\mathbf{w}) \propto -||\mathbf{H}\mathbf{w} - \mathbf{z}||^2 - \mathbf{w}^T \mathbf{\Lambda}\mathbf{w},$ where $\mathbf{\Lambda} = \operatorname{diag}(1/\tau_1, \dots, 1/\tau_l).$

• E-step (Calculate the Expectation of missing variables z_i and $1/\tau_i$)

$$\mathsf{E}[z_i|\widehat{w}_{(t)},\mathbf{y}] = \begin{cases} \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) + \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{1-\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = 1\\ \mathbf{w}^T \mathbf{h}(\mathbf{x}_i) - \frac{\mathcal{N}(\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)}{\mathcal{S}(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i)|0,1)} & \text{if } y_i = -1 \end{cases}$$

$$\mathsf{E}[\tau_i^{-1}|\widehat{\mathbf{w}}_{(t)},\mathbf{y}] = \frac{\int_0^{+\infty} \frac{1}{\tau_i} p(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i}{\int_0^{+\infty} p(\tau_i|\widehat{\mathbf{w}}_{(t)},\mathbf{y}) d\tau_i} = \frac{\int_0^{+\infty} \frac{1}{\tau_i} p(\tau_i) p(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}{\int_0^{+\infty} p(\tau_i) p(\widehat{\mathbf{w}}_{(t)}|\tau_i) d\tau_i}$$

$$= |\widehat{w}_{i,(t)}|^{-2} .$$

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Main Results & Bayesian Interpretation

Equivalence between a hierarchy model & $||\mathbf{w}||_0^0$

Proposition 1. The 2-level hierarchical-Bayes model $p(w_i|\tau_i) = N(w_i|0, \tau_i)$, $p(\tau_i) = 1/\tau_i$, $\tau_i > 0$ over w_i is equivalent to the zero-norm regularized classifier asymptotically.

Proof Sketch: In the M-step, we maximize

$$-||\underbrace{\mathsf{H}\mathbf{w}-\mathsf{z}}_{\mathsf{Error}}||^2 \qquad -\underbrace{\mathbf{w}^{\mathsf{T}}\mathsf{A}\mathbf{w}}_{||w||_0^0, \text{ if } t \to \infty}$$
$$\therefore \mathbf{\Lambda}_{ii} = |\widehat{w}_{i,(t)}|^{-2}$$
(obtained in the E-step)

||w||° % w ′ **∧**w

Proposition 2. The prior assumed in zero-norm is only related to the term $\mathbf{w}^T \mathbf{A} \mathbf{w}$ as defined in the EM process, where $\mathbf{A} = \text{diag}(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_l$ ($i = 1, \ldots, l$) can be iteratively updated by $|\widehat{w}_{i,(t)}|^{-2}$ for the zero-norm regularization.

 $\equiv \mathbf{b}$

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Main Results & Bayesian Interpretation

Equivalence between a hierarchy model & $||\mathbf{w}||_0^0$

Proposition 1. The 2-level hierarchical-Bayes model $p(w_i|\tau_i) = N(w_i|0, \tau_i)$, $p(\tau_i) = 1/\tau_i$, $\tau_i > 0$ over w_i is equivalent to the zero-norm regularized classifier asymptotically.

Proof Sketch: In the M-step, we maximize

$$-||\underbrace{\mathsf{H}\mathsf{w}-\mathsf{z}}_{\mathsf{Error}}||^2 \qquad -\underbrace{\mathsf{w}^{\mathsf{T}}\mathsf{\Lambda}\mathsf{w}}_{||w||_0^0, \, \text{if } t \to \infty}$$
$$\because \mathbf{\Lambda}_{ii} = |\widehat{w}_{i,(t)}|^{-2}$$
(obtained in the E-step)

$||\mathbf{w}||_0^0 \& \mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$

Proposition 2. The prior assumed in zero-norm is only related to the term $\mathbf{w}^T \mathbf{A} \mathbf{w}$ as defined in the EM process, where $\mathbf{A} = \text{diag}(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ $(i = 1, \ldots, l)$ can be iteratively updated by $|\widehat{w}_{i,(t)}|^{-2}$ for the zero-norm regularization.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Achieving zero-norm adaptively

Asymptotically True Zero-norm for feature selection

$$\{\mathbf{w}^{(t)}, b^{(t)}\} = \arg\min_{w,b} C \sum_{i=1}^{m} \xi_i + \mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, \dots, l$
 $\Lambda^{(t)} = diag(1/|w_1^{(t-1)}|^2, \dots, 1/|w_n^{(t-1)}|^2).$

- The process is very similar to the EM process–It converges rapidly.
- w^TΛ^(t-1)w iteratively achieves zero-norm
- It is a standard Quadratic Programming problem at each iteration—The whole optimization can be solved in polynomial time.

=

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Achieving zero-norm adaptively

Asymptotically True Zero-norm for feature selection

$$\{\mathbf{w}^{(t)}, b^{(t)}\} = \arg\min_{w,b} C \sum_{i=1}^{m} \xi_i + \mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, \dots, l$
 $\Lambda^{(t)} = diag(1/|w_1^{(t-1)}|^2, \dots, 1/|w_n^{(t-1)}|^2).$

- The process is very similar to the EM process–It converges rapidly.
- $\mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$ iteratively achieves zero-norm
- It is a standard Quadratic Programming problem at each iteration—The whole optimization can be solved in polynomial time.

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Achieving zero-norm adaptively

Asymptotically True Zero-norm for feature selection

$$\{\mathbf{w}^{(t)}, b^{(t)}\} = \arg\min_{w,b} C \sum_{i=1}^{m} \xi_i + \mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, \dots, l$
 $\Lambda^{(t)} = diag(1/|w_1^{(t-1)}|^2, \dots, 1/|w_n^{(t-1)}|^2).$

- The process is very similar to the EM process–It converges rapidly.
- $\mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$ iteratively achieves zero-norm
- It is a standard Quadratic Programming problem at each iteration—The whole optimization can be solved in polynomial time.

Direct Zero-norm Optimization for Feature Selection

・ロト ・回ト ・ヨト ・ヨト

3

Major Results Model Definition Achieving zero-norm in Dual space

Reduce Support Vectors in the dual space

Primal space

$$\min_{\mathbf{w},b} C \sum_{i=1}^{m} \xi_i + \mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i,$

Target: Feature selection by minimizing $||w||_0^0$ Decision Function: $f(\mathbf{w}, b) = \mathbf{w} \cdot \mathbf{x} + b$

SV reduction in Dual space

$$\min_{\alpha,b} C \sum_{i=1}^{l} \xi_i + \alpha^T \Lambda^{(t-1)} \alpha, \\ \text{s.t.} \quad y_i(\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1 - \xi_i,$$

Target: SV selection by minimizing $||\alpha||_0^0$ Decision function: $f(\alpha, b) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i, \mathbf{x}) + b$ Reduce the number of SVs by 10 times while maintaining the accuracy

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Reduce Support Vectors in the dual space

Primal space

$$\min_{\mathbf{w},b} C \sum_{i=1}^{m} \xi_i + \mathbf{w}^T \Lambda^{(t-1)} \mathbf{w}$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i,$

Target: Feature selection by minimizing $||w||_0^0$ Decision Function: $f(\mathbf{w}, b) = \mathbf{w} \cdot \mathbf{x} + b$ SV reduction in Dual space

$$\min_{\alpha,b} C \sum_{i=1}^{l} \xi_i + \alpha^T \Lambda^{(t-1)} \alpha,$$

s.t. $y_i (\mathbf{w} \cdot \Phi(\mathbf{x}_i) + b) \ge 1 - \xi_i,$

Target: SV selection by minimizing $||\alpha||_0^0$ Decision function: $f(\alpha, b) = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i, \mathbf{x}) + b$ Reduce the number of SVs by 10 times while maintaining the accuracy

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Extensions to arbitrary-norm

$||\mathbf{w}||_p^p$

Proposition 3. The priors assumed in $||\mathbf{w}||_p^p$ ($0 \le p \le 2$ or $p = \infty$) are only related to the term $\mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$ as defined in the EM process, where $\mathbf{\Lambda} = diag(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ ($i = 1, \ldots, l$) can be iteratively updated by $\gamma |\hat{w}_{i,(t)}|^{-(2-p)}$ respectively.

Arbitrary Norm can be achieved without knowing the priors!
 ∞-norm defined as ||w||_∞ = max_i |w_i| can be even achieved:

Details can be seen in our Neural Computation 08 paper.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Direct Zero-norm Optimization for Feature Selection

Major Results Model Definition Achieving zero-norm in Dual space

Extensions to arbitrary-norm

$||\mathbf{w}||_p^p$

Proposition 3. The priors assumed in $||\mathbf{w}||_p^p$ ($0 \le p \le 2$ or $p = \infty$) are only related to the term $\mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$ as defined in the EM process, where $\mathbf{\Lambda} = diag(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ ($i = 1, \ldots, l$) can be iteratively updated by $\gamma |\hat{w}_{i,(t)}|^{-(2-p)}$ respectively.

- Arbitrary Norm can be achieved without knowing the priors!
- **2** ∞ -norm defined as $||\mathbf{w}||_{\infty} = \max_{i} |w_{i}|$ can be even achieved: $\Lambda = \operatorname{diag}(0, \ldots, 0, 1/w_{i_{max},(t)}, 0, \ldots, 0)$ with $w_{i_{max},(t)} = \max_{i} w_{i,(t)}$

Details can be seen in our Neural Computation 08 paper.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Extensions to arbitrary-norm

$||\mathbf{w}||_p^p$

Proposition 3. The priors assumed in $||\mathbf{w}||_p^p$ ($0 \le p \le 2$ or $p = \infty$) are only related to the term $\mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$ as defined in the EM process, where $\mathbf{\Lambda} = diag(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ ($i = 1, \ldots, l$) can be iteratively updated by $\gamma |\hat{w}_{i,(t)}|^{-(2-p)}$ respectively.

- Arbitrary Norm can be achieved without knowing the priors!
- **2** ∞ -norm defined as $||\mathbf{w}||_{\infty} = \max_{i} |w_{i}|$ can be even achieved: $\Lambda = \operatorname{diag}(0, \ldots, 0, 1/w_{i_{max},(t)}, 0, \ldots, 0)$ with $w_{i_{max},(t)} = \max_{i} w_{i,(t)}$

Details can be seen in our Neural Computation 08 paper.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Extensions to arbitrary-norm

$||\mathbf{w}||_p^p$

Proposition 3. The priors assumed in $||\mathbf{w}||_p^p$ ($0 \le p \le 2$ or $p = \infty$) are only related to the term $\mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$ as defined in the EM process, where $\mathbf{\Lambda} = diag(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ ($i = 1, \ldots, l$) can be iteratively updated by $\gamma |\hat{w}_{i,(t)}|^{-(2-p)}$ respectively.

- Arbitrary Norm can be achieved without knowing the priors!
- ② ∞ -norm defined as $||\mathbf{w}||_{\infty} = \max_{i} |w_{i}|$ can be even achieved: $\mathbf{\Lambda} = \operatorname{diag}(0, \ldots, 0, 1/w_{i_{max},(t)}, 0, \ldots, 0)$ with $w_{i_{max},(t)} = \max_{i} w_{i,(t)}$

Details can be seen in our Neural Computation 08 paper.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Major Results Model Definition Achieving zero-norm in Dual space

Extensions to arbitrary-norm

$||\mathbf{w}||_p^p$

Proposition 3. The priors assumed in $||\mathbf{w}||_p^p$ ($0 \le p \le 2$ or $p = \infty$) are only related to the term $\mathbf{w}^T \mathbf{\Lambda} \mathbf{w}$ as defined in the EM process, where $\mathbf{\Lambda} = diag(1/\tau_1, \ldots, 1/\tau_l), 1/\tau_i$ ($i = 1, \ldots, l$) can be iteratively updated by $\gamma |\hat{w}_{i,(t)}|^{-(2-p)}$ respectively.

• Arbitrary Norm can be achieved without knowing the priors!

② ∞ -norm defined as $||\mathbf{w}||_{\infty} = \max_{i} |w_{i}|$ can be even achieved: $\mathbf{\Lambda} = \operatorname{diag}(0, \ldots, 0, 1/w_{i_{max},(t)}, 0, \ldots, 0)$ with $w_{i_{max},(t)} = \max_{i} w_{i,(t)}$

Details can be seen in our Neural Computation 08 paper.

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Experiments

Experimental Setup

- Comparison Algorithms
 - FSV [Bradley et al. 1998]
 - AROM [Weston et al. 2003]
 - SVM

W

- Data Set
 - Two UCI data
 - Two microarray Gene data
- Data set descriptions

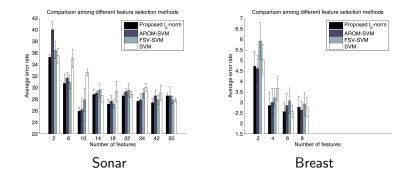
Data set	Dimension	# Sample	
Sonar	60	208	
Breast	9	683	
Colon	2000	62	
Lymphoma	4026	96	

Kaizhu Huang¹, Irwin King², Michael R. Lyu²

Direct Zero-norm Optimization for Feature Selection

Experiments

Accuracy (I)

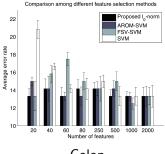


Kaizhu Huang¹, Irwin King², Michael R. Lyu²

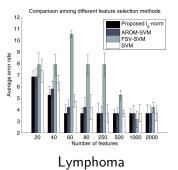
Direct Zero-norm Optimization for Feature Selection

Experiments

Accuracy (II)



Colon



Direct Zero-norm Optimization for Feature Selection

Experiments

Computational Time

Data Set	Proposed Algorithm	AROM SVM	FSV SVM	SVM
Sonar	0.8061 ± 0.02	6.1431 ± 1.05	2.2888 ± 0.41	0.0146 ± 0.00
Breast	0.3203 ± 0.01	0.6247 ± 0.06	290.4822 ± 13.27	0.0461 ± 0.00
Colon	0.0223 ± 0.00	1.3558 ± 0.29	2.6941 ± 0.25	0.0018 ± 0.00
Lymphoma	0.1766 ± 0.01	2.3809 ± 0.21	23.640 ± 3.16	0.0057 ± 0.00

SVM is fastest because it chooses features naively.

- 2 The proposed algorithm cost much less time than the other two methods.
- SFSV is especially slow in Colon and Lymphoma because it scales against the number of features, while the other three scales against number of samples.

イロト イヨト イヨト イヨト

=

Experiments

Computational Time

Data Set	Proposed Algorithm	AROM SVM	FSV SVM	SVM
Sonar	0.8061 ± 0.02	6.1431 ± 1.05	2.2888 ± 0.41	0.0146 ± 0.00
Breast	0.3203 ± 0.01	0.6247 ± 0.06	290.4822 ± 13.27	0.0461 ± 0.00
Colon	0.0223 ± 0.00	1.3558 ± 0.29	2.6941 ± 0.25	0.0018 ± 0.00
Lymphoma	0.1766 ± 0.01	2.3809 ± 0.21	23.640 ± 3.16	0.0057 ± 0.00

SVM is fastest because it chooses features naively.

- The proposed algorithm cost much less time than the other two methods.
- SFSV is especially slow in Colon and Lymphoma because it scales against the number of features, while the other three scales against number of samples.

イロト イヨト イヨト イヨト

3

Experiments

Computational Time

Data Set	Proposed Algorithm	AROM SVM	FSV SVM	SVM
Sonar	0.8061 ± 0.02	6.1431 ± 1.05	2.2888 ± 0.41	0.0146 ± 0.00
Breast	0.3203 ± 0.01	0.6247 ± 0.06	290.4822 ± 13.27	0.0461 ± 0.00
Colon	0.0223 ± 0.00	1.3558 ± 0.29	2.6941 ± 0.25	0.0018 ± 0.00
Lymphoma	0.1766 ± 0.01	2.3809 ± 0.21	23.640 ± 3.16	0.0057 ± 0.00

- SVM is fastest because it chooses features naively.
- O The proposed algorithm cost much less time than the other two methods.
- FSV is especially slow in Colon and Lymphoma because it scales against the number of features, while the other three scales against number of samples.

イロト イヨト イヨト イヨト

=

Experiments

Performance in Dual Space

Data set	Proposed Algorithm		SVM		RVM	
	TSA	#SVs	TSA	#SVs	TSA	#SVs
Twonorm	97.81	16.60	97.70	537.40	97.47	39.20
Titanic	78.82	256.70	78.86	1981.00	77.81	1768.92

Notes:

- TSA: Test Set Accuracy
- RVM: Relevance Vector Machine, a state-of-the-art sparse classifier

Direct Zero-norm Optimization for Feature Selection

Conclusion and Future Work

- Overcome the combinatorially difficult problem & Achieve the direct zero-norm optimization asymptotically
- Computationally efficient
 - can be solved in polynomial time
 - much faster than the approximating methods
- Can be used in dual space for reducing SVs.

Conclusion and Future Work

- Overcome the combinatorially difficult problem & Achieve the direct zero-norm optimization asymptotically
- Computationally efficient
 - can be solved in polynomial time
 - much faster than the approximating methods
- Can be used in dual space for reducing SVs.

Conclusion and Future Work

- Overcome the combinatorially difficult problem & Achieve the direct zero-norm optimization asymptotically
- Computationally efficient
 - can be solved in polynomial time
 - much faster than the approximating methods
- Can be used in dual space for reducing SVs.

Conclusion and Future Work

- Overcome the combinatorially difficult problem & Achieve the direct zero-norm optimization asymptotically
- Computationally efficient
 - can be solved in polynomial time
 - much faster than the approximating methods
- Can be used in dual space for reducing SVs.

Conclusion and Future Work

- Overcome the combinatorially difficult problem & Achieve the direct zero-norm optimization asymptotically
- Computationally efficient
 - can be solved in polynomial time
 - much faster than the approximating methods
- Can be used in dual space for reducing SVs.

