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Abstract

Finding relevant experts in a specific field is often cru-
cial for consulting, both in industry and in academia. The
aim of this paper is to address the expert-finding task in
a real world academic field. We present three models for
expert finding based on the large-scale DBLP bibliogra-
phy and Google Scholar for data supplementation. The
first, a novel weighted language model, models an expert
candidate based on the relevance and importance of asso-
ciated documents by introducing a document prior proba-
bility, and achieves much better results than the basic lan-
guage model. The second, a topic-based model, represents
each candidate as a weighted sum of multiple topics, whilst
the third, a hybrid model, combines the language model
and the topic-based model. We evaluate our system using a
benchmark dataset based on human relevance judgments of
how well the expertise of proposed experts matches a query
topic. Evaluation results show that our hybrid model out-
performs other models in nearly all metrics.

1. Introduction

Expert finding has received increased interest in recent
years since the advent of the expert search task in the TREC
Enterprise track [22]. The task of expert finding is to come
up with a ranked list of experts with relevant expertise in a
given topic. The current developments in expert search are
concentrated in the Enterprise corpora known as TREC2005
[8, 9] and TREC2006 [21]. They have provided a common
platform for researchers to empirically assess methods and
techniques devised for expert finding. However, little work
has been done on methods of finding experts in any spe-
cific academic field, which is an important practical prob-
lem. Identification of the persons that have expertise on a
specific academic topic could be of great value in many ap-
plications, for example, determining important experts for
consultation by researchers embarking on a new research

field, recommending panels of reviewers for state research
grant applications [11], and assigning papers to reviewers
automatically in a Peer-Review Process [17, 20].

As our approach is to deal with the expert-finding task in
a real-world academic field, a key component is therefore
the acquisition of a dataset replete with publications from
which expertise can be accessed. The DBLP bibliography1

is a good starting point for extracting the data needed for
this application, as it contains more than 955,000 articles
with over 574,000 authors from conferences and journals
in the Computer Science field. In scientific research, the
publications of a researcher could be assumed to be repre-
sentative of his/her expertise [20]. One limitation of DBLP
data is that each paper record only contains the title, which
is too limited to calculate the relevance of papers to queries.
To address this problem, Google Scholar [2] is utilized as a
data supplement.
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Figure 1. A query example with documents
and authors.

Previous approaches in the TREC Enterprise Track [8,
9, 21] treat expert finding as an information retrieval task.
One of the state-of-the-art approaches is based on a statis-
tical language model to rank experts. The basic language
model measures the relevance between a query and docu-
ments, then models the knowledge of an expert from the
associated documents [3, 4]. An illustration of a query ex-

1http://www.informatik.uni-trier.de/l̃ey/db/
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Figure 2. The models for expert finding.

ample is sketched in Figure 1. Here we suppose a query q
has the same relevance probability (=0.1) to two documents
d1 and d2; documents (d1 and d2) are associated with au-
thors (a1 and a2) respectively (=0.2). In addition, d1 is cited
by 200 documents, while d2 is cited by 10 documents. Ac-
cording to the basic language model and the above infor-
mation, the author a1 has the same expertise as the author
a2 given the query q. However, when considering the cita-
tion number, the document d1, which has the higher citation
number, would be more important than d2. Therefore, intu-
itively, it is more reasonable that a1 (the author of d1) has a
higher probability of being an expert than a2 (the author of
d2) given the query q.

To address this problem, we introduce a novel weighted
model to interpret the importance of the document d by in-
troducing a prior probability p(d), i.e., the prior probabil-
ity of a document written by an expert, as shown in Fig-
ure 2 (a). Let D be the set of related documents, and ca
be an expert candidate. In most existing work [3, 21], such
as document-based model, this probability is ignored or as-
sumed to be uniform. However, as shown in Section 6.2,
a reasonable prior can help improve the retrieval accuracy.
In this paper, we assume such a prior probability is related
to the importance of the document. Specifically, we con-
struct a weighted language model to take into consideration
not only the relevance between a query and documents but
also the impact of the documents. Then the expertise of the
authors could be deduced based on the overall aggregation
of the relevance and the document priors. Our evaluation
results indicate that it is very important to consider the prior
probability.

Moreover, motivated by the observation that researchers
usually describe their expertise as a combination of several
topics, we investigate a topic-based model to associate the
query with the expert candidates. As shown in Figure 2 (b),
each expert candidate is represented in terms of mixing pro-
portions of multiple topics (denoted as T ). So, the exper-
tise given a query could be derived based on the proportion-
ate aggregation of associated topics. Furthermore, we pro-

pose a hybrid model to combine the language model with
the topic-based model. Experimental results show that a
weighted language model can improve the performance sig-
nificantly compared to the baseline language model, while
the topic-based model achieves competitive results with lan-
guage model. Finally, the evaluation results of the hybrid
model show that it outperforms the language model and the
topic-based model.

The main contribution of this paper is to propose an ef-
fective weighted language model, which introduces a docu-
ment prior probability p(d) to model the importance of the
document written by an expert. Another contribution of this
paper is that we investigate a topic-based model to inter-
pret the expert finding task, and then integrate the language
model with the topic-based model.

The rest of this paper is organized as follows. We briefly
summarize related work on expertise and the topic model in
Section 2. In Section 3 we provide detailed descriptions of
the expertise modeling based on the language model. Ad-
vanced models including the topic-based model and the hy-
brid model for expertise retrieval are presented in Section 4.
Next, in Section 5, we define the experimental setup of our
methods. Experimental results are presented in Section 6.
We conclude and discuss future work in Section 7.

2. Related Work

The inclusion of expert finding in the TREC Enterprise
Track has resulted in a great deal of work in this area. There
are two principal approaches to expert modeling: query-
dependent and query-independent. In both cases the expert-
finding system has to discover documents related to a per-
son and estimate the probability of that person being an
expert from the text [18]. A query-independent method
[5, 15, 10] directly models the profile (builds a “virtual doc-
ument”) of a candidate based on all documents associated
with the candidate and estimates the ranking score accord-
ing to the profile in response to a user query. On the other
hand, a query-dependent approach [3, 10] first ranks docu-
ments in the corpus given a query topic, and then find the as-
sociated candidates from the subset of retrieved documents.

Both methods have advantages and disadvantages [18].
In terms of data management, query-independent profiles
can be significantly smaller in size than the original corpus.
However, the contribution of each document in a profile
cannot be measured individually, and as a result, this ap-
proach is less effective than other subsequent approaches.
On the other hand, a query-dependent approach allows the
application of advanced text modeling techniques in rank-
ing individual documents.

Balog et al. [3] propose two language models in expert
search and extensively compare the two methods. Their first
model directly models the knowledge of an expert from as-
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sociated documents, while their second model first locates
documents on the query topic and then finds the associated
experts. Their experimental results show that the second
model outperforms the first model. Petkova and Croft [18]
propose a hierarchical approach, based on a combination
of the above first model and second model. In contrast,
the probabilistic approach proposed by Cao et al. [8] uses
a two-stage language model of combining relevance model
and co-occurrence model. In [15], Macdonald and Ounis
present yet another approach based on a voting model for
expert search. Later, they apply query expansion in [16] to
enhance the expert search. Nearly all of the work has been
evaluated on the W3C collection [23]. Balog et al. [4] fo-
cus on expertise retrieval in an intranet that differs from the
W3C setting.

The use of a topic model for information retrieval tasks is
described in Wei and Croft [24]. The authors find that inter-
polations between Dirichlet smoothed language models and
topic models show improvements in retrieval performance
above language models by themselves. Probabilistic latent
semantic indexing (pLSI) is a widely used document model
[12, 6]. Furthermore, Mimno and McCallum [17] propose
the Author-Persona-Topic model to model the expertise of
a person. However, computational complexity is often a big
concern for topic models. Our proposed topic-based model
can be simplified using a predefined topic set.

Despite all this work in expert finding, little work has
been done in a specific academic domain, in terms of re-
trieving experts given the topic. Recently, Li et al. [14]
build an academic expertise oriented search service, includ-
ing expert finding based on the DBLP bibliography. They
propose a relevancy propagation-based algorithm using the
co-authorship network for expert finding. In this paper we
focus on expert finding in a real world academic field based
on the DBLP bibliography.

3. Statistical Language Model

In this section we detail the expert finding models and in-
troduce a set of baseline approaches based on statistical lan-
guage modeling; later, in Section 4, we turn our attention to
advanced modeling approaches, including the topic-based
model and the hybrid model.

3.1 Basic Language Model

Using language models for information retrieval has
been studied extensively in recent years [13, 19, 25, 26].
The basic idea of these approaches is to estimate a language
model for each document, and then rank documents by the
likelihood of their matching the query according to the es-
timated language model. Several different methods have

been applied to compute the query likelihood, i.e., the prob-
ability of generating a query given the observation of a doc-
ument.

In [3], Balog et al. formulate the problem of identify-
ing experts for a given topic using a generative probabilistic
model: what is the probability of a candidate ca being an ex-
pert given the query topic q? Thus, the task is to determine
p(ca|q), and rank candidates ca according to this probabil-
ity. There are no restrictions on the form of the query topic
q, which could consist of any terms or concepts; for in-
stance, “data mining” is a query to search experts who have
expertise on the query topic “data mining”. Using Bayes’
theorem, the probability can be formulated as follows:

p(ca|q) =
p(ca, q)

p(q)
, (1)

where p(ca, q) is the joint probability of a candidate and
a query, p(q) is the probability of a query. Since p(q) is a
constant, it can be ignored for ranking purposes. The proba-
bility p(ca|q) can be reformulated to estimate the joint prob-
ability p(ca, q). The basic language model used to estimate
the probability pl(ca, q) can be defined as follows:

pl(ca, q) =
∑
d∈D

p(d)p(ca, q|d)

=
∑
d∈D

p(d)p(q|d)p(ca|d, q), (2)

where p(d) is the prior probability of a document, and the
supporting documents D act as a “bridge” to connect q and
ca. Under this model, the process of finding an expert is
as follows: given a collection of documents ranked accord-
ing to the query, we examine each document relevant to the
query, and then we note the authors associated with that
document. Here, the process is taken to the extreme where
we consider all documents in the collection.

To determine the probability of a query given a docu-
ment, we infer a document language model θd for each doc-
ument,

p(q|θd) =
∏
t∈q

p(t|θd)n(t,q), (3)

where p(t|θd) is the maximum likelihood estimate of the
term in a document d, and n(t, q) is the number of times
that term t occurs in query q. This model is drawn from
Balog et al. [3]. The likelihood of a query q consisting of
some number of terms t for a document d under a language
model with Jelinek-Mercer smoothing [26] is

p(t|θd) = (1 − λ)p(t|d) + λp(t). (4)

We follow Balog et al. in setting λ = 0.5.
Suppose that we make the assumption that the candidate

ca is conditionally independent of the query q given a doc-
ument d; that is

p(ca|d, q) = p(ca|d). (5)
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In our setting it is reasonable to assume that candidate ca
has knowledge about the topic described in the document d
if candidate ca is an author of document d. Now, in the case
of a multi-author paper, one author with many co-authors
may have less association p(ca|d) on average than a sole
author. To account for this effect, we weight the association
inversely according to the number of co-authors as follows.
Suppose a document has n authors in total, we assume that
each author has the same knowledge about the topics de-
scribed in the document,

p(ca|d) =
{

1
nd

, (ca is the author of d)
0, (otherwise)

(6)

where nd is the number of authors, and p(ca|d) is used to
measure the document-candidate association.

The document priors p(d) are generally assumed to be
uniform and thus will not influence the ranking. The final
estimation of the baseline language model is obtained by
substituting p(q|θd) for p(q|d) into Eq. 2,

pl(ca, q) rank=
∑
d∈D

{∏
t∈q

(p(t|θd))
n(t,q)

}
p(ca|d), (7)

where
rank= means “equivalence for ranking the candidates”.

We refer to this method as a baseline language model for
expert finding.

3.2 Weighted Language Model

The language model described above calculates the rel-
evance between a query and a document, but it ignores the
prior of the document. As shown in Figure 1, suppose there
are only two documents d1 and d2, d1 with one author a1

and d2 with one author a2; both documents have similar
contents, i.e., the query likelihoods are almost the same
(p(q|d1) = p(q|d2)), but the two documents have differ-
ent importance, I(d1) > I(d2). Which document is more
reasonable to rank to the top? Which author has the higher
probability of being an expert given the query topic? Obvi-
ously, we would prefer to rank the more important one (d1)
at the top, and author a1 would have the higher probabil-
ity of being an expert than author a2 on topic q based on
the assumption that the more important document has more
weight. To the best of our knowledge, the language mod-
els currently do not take this factor into account. We in-
troduce a weight factor wd to denote the importance of the
document, which, theoretically, can be interpreted as being
proportional to the document prior p(d),

p(d) =
wd

C
∝ wd, (8)

where C (=
∑

d∈D wd) is a constant normalization factor.

For our model, the weight factor is estimated using the
citation number, and transformed using two logarithm func-
tions: the common logarithm (B2), and the natural loga-
rithm (B3). We can see that this is exactly the method of the
basic language model when the uniform weight wd is set to
1 (B1). Three different methods to measure the weight are
defined as follows,

wd =

⎧⎨
⎩

1, (B1)
log(10 + cd), (B2)
ln(e + cd), (B3)

(9)

where cd (cd ≥ 0) is the citation number of the document d,
and the constants 10 and e are used to guarantee the weight
factor not to be less than 1. The citation numbers are ob-
tained from Google Scholar [2].

The final estimation of the weighted language model is

pl(q, ca) rank=
∑
d∈D

wd

{∏
t∈q

(p(t|θd))n(t,q)

}
p(ca|d).

(10)
In Section 6.2, we compare the performance of weighted
language models with different weighting methods, namely
B1, B2 and B3.

4. Advanced Models

Now that our language modeling techniques have been
developed for expertise retrieval, we proceed to introduce
our topic-based model. Also, in this section, a hybrid model
is presented which combines the language model with the
topic-based model.

4.1 Topic-based Model

4.1.1 Model Form

In this approach, as illustrated by the model in Figure 2 (b),
each candidate is represented as a weighted sum of multiple
topics, and there is an implicit relation between the query
and the topic z in terms of the probability p(q|z).

In our topic-based model, a candidate ca and a query q
are conditionally independent given a latent topic z:

pt(q, ca) =
∑
z∈Z

p(q|z, ca)p(ca|z)p(z),

=
∑
z∈Z

p(q|z)p(z, ca), (11)

where p(z, ca) is the joint probability of the topic z and
the candidate ca, and p(q|z) represents the probability of a
query q generated by the topic z. Computational complexity
is often a big concern for topic models, especially when the
dataset is large-scale and a great number of latent variables
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are used. Our topic-based model can therefore be simplified
if a well-defined topic set is available, and it can be viewed
as query expansion.

If such a well-defined topic set is available, the proba-
bility p(z, ca) could be estimated using the method as de-
scribed in Section 3. In addition, we need to associate the
well-defined topic z with the query topic q. Therefore,
given a well-defined topic, we can interpret this topic by
collecting a number of most relevant papers as the support-
ing representation of the topic z. We denote this as θz , then
substitute θz for z into Eq. 11. Meanwhile, the probabil-
ity p(q|θz) could be measured using Eq. 3, which indicates
the correlation between the query q and the topic z, and
the higher probability corresponds to the stronger connec-
tion. Thus, the probability can also be regarded as the sim-
ilarity between each other. Now the remaining problem is
transformed to find the most relevant or similar topics to the
original query.

4.1.2 Topic Selection Algorithm

The challenge now is to consider what similar topics the
candidate would satisfy, and then use the entire subset of
topics similar to the original query to measure the joint
probability of a query and a candidate. We advocate three
methods for selecting the similar topics (the subset of top-
ics) and estimating this probability.

The first method is conceptually simpler, and assumes
that those topics are independent. Let Z = {z1, z2, ..., zn}
be the set of all predefined topics. Then, one natural way to
select topics similar to the query is to calculate the similarity
score p(q|θz) between the query and topics as the ranking
function, and use the top K ranked topics as the similar
topics. We denote this method as T1.

By definition of Eq. 11, the topic model builds on a
kind of independent relevance assumption: there is no spill-
over of expertise across predefined topics. This assump-
tion rarely holds in reality. Intuitively, it is desirable for the
selected similar topics to include topics from many differ-
ent subtopics and undesirable that they include many top-
ics that redundantly cover the same subtopics. However,
the first method T1 may select a subset of topics with high
redundancy, which may induce expertise topic drift in the
topic-based model. To take into account of the topic de-
pendence, we consider another method of selecting the sub-
set of topics, which approximately satisfies the independent
relevance assumption, from all the predefined topics.

To obtain such similar topics, a greedy algorithm is de-
signed to select topics one by one according to the given
query. Suppose we have selected several topics z1, ..., zi−1,
the next topic zi should cover many subtopics not covered
by the previous topics, and few of the subtopics covered by
the previous topics. It can be formulated using a conditional

probability function value(q|zi; z1, ..., zi−1), i.e., to quan-
tify the novelty and penalize the redundancy of a topic zi

for rank i. The detailed algorithm is shown in Algorithm 1.
In each round, the algorithm tries to exhaustively search for
the topic with the maximum value function. In the course of
K rounds, we get K similar topics. Note that the algorithm
will stop when the value function is less than or equal to 0.

Since it is difficult to represent the value function explic-
itly, some kind of approximation is necessary in practice.
An approach for approximating the value function is de-
fined as follows:

value(q|zi; z1, ..., zi−1) ≈ p(q|zi) − max
j<i

p(zi|zj), (12)

where maxj<i p(zi|zj) is the maximum similarity between
zi and the previously selected similar topics. We denote
this method as T2. Another way to approximate the value
function is formulated as follows:

value(q|zi; z1, ..., zi−1) ≈ p(q|zi) −
∑
j<i

p(q|zj)p(zj |zi).

(13)
We denote the method using Eq. 13 as T3. Once we obtain
the subset of topics, then we use Eq. 11 to calculate the joint
probability pt(q, ca).

Algorithm 1 Greedy Selection Algorithm
Inputs: Predefined topic set Z, select topic size K

1: for i = 1 . . . K do
2: Select a well-defined topic zi from unselected topic

set Z to maximize the value of

zi = arg max
zi∈Z

(value(q|zi; z1, ..., zi−1)).

3: Prerequisite: value(q|zi; z1, ..., zi−1) > 0, other-
wise exit the loop.

4: Update the topic set:

Z = Z − {zi}.

5: end for
Return the topics {z1, z2, ..., zK}.

4.2 Hybrid Model

To improve the performance, a hybrid model is utilized
to aggregate the advantage of the language model and the
topic-based model. Consider the probability of a candidate
ca being an expert given the query topic q: this can be mod-
eled by interpolating between the language model pl(q, ca)
and the topic-based model pt(q, ca), as follows:

ph(q, ca) = μpl(q, ca) + (1 − μ)pt(q, ca). (14)
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In Section 6.4 we compare the performance of the hybrid
model with the pure language model and the topic-based
model, and demonstrate that the hybrid model can provide
more accurate results than the pure approaches.

5. Experimental Setup

In the following experiments we compare the three dif-
ferent expert finding models through an empirical evalua-
tion. In this section we define the experimental setup, while
the evaluation results are presented in Section 6.

We have defined the following task: given a query and
a set of expert candidates, the system has to retrieve a list
of experts that have expertise in the given area. In the rest
of this section, we introduce the DBLP and topic collection,
the assessments and evaluation metrics.

5.1 DBLP and Topic Collection

A key aspect of finding experts from bibliographic data
is therefore the acquisition of a dataset replete with publi-
cations from which expertise can be derived. As of Novem-
ber 2007, DBLP XML records contain over 955,000 arti-
cles related to Computer Science, originally published in
conferences, journals, books etc., adding up to 414.5MB.
In total we gather more than 574,000 author names from
DBLP XML records, each of whom can be an expert candi-
date. Although DBLP is a good starting point for obtaining
expert candidates and publications, several challenges ex-
ist due to its limitations. One limitation is that each DBLP
record provides the paper title without the abstract and in-
dex terms. The information provided by the title is too lim-
ited to represent the paper; some more expanded informa-
tion is required. Generally, the abstract and index terms are
useful to represent the paper for estimating the probability
of a query or topic given the paper.

To obtain the abstract and index terms for each DBLP
record, one natural way is to fetch them automatically from
digital libraries such as ACM, IEEE, Springer, etc. We note,
however, that it is very hard to obtain the complete meta-
data (the abstracts and index terms of publications) for all
the DBLP records. Thus Google Scholar is utilized for data
supplementation as shown in Figure 3: for a document d,
we use the title as the query to search in Google Scholar
and select the top 10 returned records which are most rel-
evant to the query title; next, these records combined with
the publication title are viewed as the representation of the
publication d. The metadata (HTML pages) crawled from
Google Scholar is up to 20GB. This process is done auto-
matically by a crawler and a parser, and the citation number
of the publication d in Google Scholar is obtained at the
same time. The total number of valid papers after this pro-
cess is 953,774, and the number of valid authors is 574,369.

Title 

(DBLP)

rep
d

Google 

Scholar

sup

Figure 3. The representation of a document.

For the topic-based model, an important task is to collect
the predefined topics related to Computer Science. From
eventseer.net [1], an interesting website that tracks upcom-
ing Computer Science research events, one can obtain an
updated repository of 2,498 well-defined topics. Table 1
shows a snippet of topics from eventseer.net. Working with
this list of topics, we also use the method based on Google
Scholar to crawl the top 100 returned records as the sup-
porting representation of each topic. The statistics of DBLP
and the topic collection are shown in Table 2.

Table 1. Example topics from eventseer.net.

Example topics
Machine architecture Magnetic field
Machine learning Magnetic resonance
Machine learning algorithms Magnetic resonance images
Machine learning and data mining Main memory
Machine learning applications Maintenance and evolution
Machine scheduling Maintenance of competence

Machine translation Maintenance of data warehouses

Machine vision Maintenance of semantic mappings

Mac layer Maintenance, reuse and evolution

Mac protocol Management framework

Table 2. Statistics of DBLP and the topic col-
lection.

Property #of entities
DBLP:no of pub 953,774
DBLP:no of author 574,369
Topic:no of topic 2,498

5.2 Assessments

It is difficult to evaluate the quality of query/expert rele-
vance rankings due to the scarcity of data that can be exam-
ined publicly. The ground truth is manually created through
the method of pooled relevance judgments together with
human judgments. For each query, the top authors from
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Table 3. Benchmark dataset of 7 topics.

Topic #Expert
Information Extraction 20
Intelligent Agents 29
Machine Learning 42
Natural Language Processing 43
Planning 34
Semantic Web 45
Support Vector Machine 31

the computer science bibliography search engines (such as
CiteSeer2, Libra3, and Rexa4) and the committees of the top
conferences in the topic were taken to construct the pool.
Some researchers were then asked to assess each of the rec-
ommended candidates in context of the query. To help them
in their task, those researchers were presented with publica-
tions and a description relating to each author. They could
access and find additional content directly on a search en-
gine when needed.

Such a benchmark dataset with expert lists (for expert
finding) has been collected in Tsinghua university [27].
Their assessments were carried out mainly in terms of how
many publications an expert candidate has published, how
many publications are related to the given query, how many
top conference papers he/she has published, and what dis-
tinguished awards he/she has been awarded. Four grade
scores (3, 2, 1, and 0) were assigned respectively represent-
ing top expert, expert, marginal expert, and not expert. Fi-
nally, the judgment scores (at levels 3 and 2) were averaged
to construct the final ground truth. The data set contains 7
query topics and creates 7 expert lists. Table 3 shows the
details of the dataset.

5.3 Evaluation Metrics

For the evaluation of the task, we adopted three metrics
that capture different aspects of the performance of our pro-
posed models.

Precision at rank n (P@n) Precision at rank n measures
the relevance of the top n results of the retrieved list
with respect to a given query topic. R-precision (R-
prec) is defined as the precision at rank R where R is
the number of relevant candidates for the given query
topic. We report the precision P@10, P@20, P@30,
and R-prec.

P@n =
# relevant candidates in top n results

n
(15)

2http://citeseer.ist.psu.edu/
3http://libra.msra.cn/
4http://rexa.info/

Mean Average Precision (MAP) For a single query, aver-
age precision (AP) is defined as the average of the P@n
values for all relevant documents:

AP =
∑N

n=1(P@n ∗ rel(n))
R

(16)

where n is the rank, N the number retrieved, and
rel(n) is a binary function indicating the relevance of
a given rank. MAP is the mean value of the average
precisions computed for several queries.

Bpref Bpref [7] is the score function of the number of non-
relevant candidates:

bpref =
1
R

N∑
r=1

(1 − #n ranked higher than r

R
) (17)

where r is a relevant candidate and n is a member of
the first R candidates judged nonrelevant as retrieved
by the system.

6. Evaluation Results

The presentation of the evaluation results is organized
in the following five subsections. First we evaluate the ef-
fectiveness of the representation of each publication using
Google Scholar. Then we report the results for the language
models and compare the three weighting methods in Sec-
tion 6.2. In Section 6.3, we examine the performance of the
different topic-based models. Section 6.4 discusses the re-
sults for the hybrid models, in comparison to the pure lan-
guage models and topic models. Finally, we compare our
models with other methods. The evaluation results shown
in this section are the average results.

6.1 Preliminary Experiments

As described in Section 5.1, the DBLP records only con-
tain the publication titles. We present a new and effective
representation for a publication based on Google Scholar.
In order to compare the performance of the two represen-
tations, we set up two corpora for evaluation. One corpus
(Title) is collected only using the publication title, while
the other corpus (GS) is built based on the supplemental
representation using Google Scholar. Preliminary experi-
ments are performed on these two corpora using the basic
language model (B1). The comparison results are reported
in Table 4. It is clear that the results of “GS” are much better
than those of “Title”, which indicates that it is more effec-
tive to represent publications using Google Scholar as a data
supplement. Thus the “GS” corpus is used in the following
parts.
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Table 4. Evaluation results on two corpora
(%).

P@10 P@20 P@30 R-prec MAP bpref
Title 57.14 42.86 40.00 38.65 22.92 30.05
GS 61.43 50.71 42.38 43.21 30.38 35.95

Table 5. Evaluation results of language mod-
els using different weighting methods (%).
Best scores are in boldface.

P@10 P@20 P@30 R-prec MAP bpref
B1 61.43 50.71 42.38 43.21 30.38 35.95
B2 65.71 53.57 48.10 44.42 32.03 37.30
B3 68.57 57.86 46.19 44.48 32.39 37.70

6.2 Language Models

In this subsection we evaluate the performance of the
language models and compare the three different weighting
methods. Table 5 shows the results for the different meth-
ods on the test collection, where B1 represents the baseline
method with uniform weight wd = 1, B2 is the method with
the common logarithm weight wd = log(10+nd) and B3 is
the method with natural logarithm weight wd = ln(e+nd).

First, we inspect the absolute performance of the meth-
ods. For the precision P@10, the basic language model
B1 only achieves 61.43%, and the weighted language mod-
els B2 and B3 can enhance the precision significantly to
65.71% and 68.57%. For the mean average precision
(MAP), we measure a precision of 32.39% for B3, and
30.38% for B1, which indicates that B3 improves the MAP
measurement by 6.7%. When looking at the overall per-
formance, we observe that weighted language models B3
and B2 outperform the basic language model B1 on all the
metrics from P@10 to bpref. Comparing the two weighted
language models, method B3 is better than method B2 in
most cases.

According to the experimental results, we can argue that
it is very important to consider the prior probability of
the document; our weighted language model performs very
well and achieves much better performance than the basic
language model. Based on the outcomes of our experi-
ments, we use the weighting method B3 in the following
parts of the section.

6.3 Topic-based Models

We now turn our attention to the performance of our
topic-based models. In this subsection, we evaluate and

Table 6. Evaluation results of topic-based
models using different numbers of similar
topics (%).

P@10 P@20 P@30 R-prec MAP bpref
Model: T1
K=5 62.86 52.14 43.33 40.98 29.02 34.39
K=10 62.86 50.71 43.81 39.56 28.19 33.46
K=20 58.57 48.57 42.38 37.82 26.50 31.87
K=40 57.14 47.14 39.05 37.02 24.83 29.83
K=100 50.00 40.71 36.19 33.32 21.09 26.61
Model: T2
K=5 68.57 55.71 46.19 43.40 31.45 37.00
K=10 70.00 55.71 46.19 43.40 31.51 37.01
K=20=40=100 the same results as K=10
Model: T3
K=5 70.00 56.43 46.19 44.11 31.86 37.39
K=10=20=40=100 the same results as K=5

compare the three topic-based models introduced in Sec-
tion 4.1, varying the number of topics (K) from 5 to 100.
For T1, K denotes the top ranked topics. However, in T2
and T3, K represents the number of selected topics in Algo-
rithm 1, and the algorithm may stop before completing K
rounds. In this event, we denote round i as a cut-off point,
and the result in this point may be close to the best perfor-
mance in a sense. Table 6 shows the detailed results using
different values for K.

A quick scan of Table 6 reveals that T2 and T3 always
outperform T1 for all settings. Figure 4 compares the per-
formance of the three topic-based models with different
numbers of topics, using different metrics. For T1, increas-
ing the number of topics was not of benefit to the perfor-
mance. In fact, the results of T1 are inversely related to the
number of topics, and the best results were achieved when
K was equal to 5. In contrast, for T2, we witness improve-
ments with increasing number of topics in some cases, and
the best results were achieved when K was 10. In terms
of the precision P@10, T2 and T3 achieved higher perfor-
mance than the best language model B3.

Importantly, the number of topics will be cut off auto-
matically when K is larger than 10 in T2. For T3, the cut-
off point is 5. The differences between T1 and T2/T3 are
significant for different numbers of similar topics. As ex-
pected, it may mean that T2 and T3 perform better since it
reduces the redundancy between the selected similar topics.

6.4 Hybrid Models

In this section, we evaluate the hybrid model by tuning
μ from 0 to 1 with increments of 0.1. A hybrid model can
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Table 7. Evaluation results of hybrid models
(%). Best scores are in boldface.

P@10 P@20 P@30 R-prec MAP bpref
Hybrid Model H2: (B3 + T2 with K=10)
B3 68.57 57.86 46.19 44.48 32.39 37.70
T2 70.00 55.71 46.19 43.40 31.51 37.01
H2 71.43 57.86 46.19 44.82 32.60 37.98

Table 8. Example results of the hybrid model
showing the top five experts for several
queries, based on the DBLP dataset.

Q1: Boosting Q2: Data Mining
Robert E. Schapire Jiawei Han
Yoav Freund Mohammed Javeed Zaki
Yoram Singer Rakesh Agrawal
Manfred K. Warmuth Heikki Mannila
Nader H. Bshouty Philip S. Yu

Q3: Information Extraction Q4: Semantic Web
Ellen Riloff Dieter Fensel
Dayne Freitag James A. Hendler
Stephen Soderland Katia P. Sycara
Raymond J. Mooney Amit P. Sheth
Andrew McCallum Ian Horrocks

Q5: Support Vector Machine Q6: Computer Vision
Bernhard Schölkopf Azriel Rosenfeld
Vladimir Vapnik Robert M. Haralick
Alex J. Smola Michael Brady
Ingo Steinwart Dana H. Ballard
Thorsten Joachims Thomas S. Huang

consist of any language models and topic-based models. We
restrict ourselves to the combination of the best perform-
ing language model B3 and the topic-based model T2 with
K equal to 10, namely H2. For all the measure metrics,
H2 returns the highest performance when μ = 0.6. Ta-
ble 7 reports detailed results of the hybrid model H2 with
weight μ = 0.6 compared to B3 and T2. The improvement
of the hybrid model H2 is relatively small, as the perfor-
mances of the model T2 and the model B3 are very similar.
However, for the top 10 precision (P@10), H2 outperforms
both T2 and B3, improving the precision from 68.57% to
71.43%. In general, the evaluation results show that our hy-
brid model outperforms the pure language model and topic-
based model in most of the metrics.

For illustration, we show six examples of the top 5 ex-
perts in Table 8, where the query samples are “Boosting”,
“Data Mining”, “Information Extraction”, “Semantic Web”,
“Support Vector Machine”, and “Computer Vision”.

Table 9. Evaluation results of our language
models and the method TS (%). Best scores
are in boldface.

P@10 P@20 P@30 R-prec MAP bpref
TS 48.00 40.40 36.15 - 11.03 16.11
B1 53.85 43.46 39.74 22.40 11.36 17.16
B2 59.23 50.77 43.33 23.93 13.33 18.94
B3 60.77 51.54 43.85 24.83 13.92 19.67

6.5 Comparison to Other Systems

To compare with the approaches proposed by [14, 27],
we set up the experiments with the same benchmark dataset,
which contains 13 query topics and corresponding expert
lists. We denote their method as TS. Table 9 shows the
evaluation results of our language models and the method
TS reported by Tsinghua. Clearly, our results are much bet-
ter than the method TS for all the metrics. For our language
models, we observe that method B3 outperforms B2, and
B2 outperforms B1. These results are consistent with the
results shown in Section 6.2.

7. Conclusions and Future Work

We presented our three expert-finding models, whose
purpose is to retrieve experts in specific academic domains
based on the DBLP bibliography and Google Scholar for
data supplementation. Our models include the statisti-
cal language model, the topic-based model and the hybrid
model. More specifically, we proposed a weighted language
model and a topic-based model with predefined topics. We
have shown in our evaluation results that, in general, the
weighted language model improves the performance signif-
icantly compared to the baseline language model. In terms
of the topic-based model, we have proposed three methods
to search for experts. As expected, the topic-based models
T2 and T3, which reduce the redundancy within the subset
of topics, perform much better than T1. Finally, the evalu-
ation results of our hybrid model show that it outperforms
the pure language model and the topic-based model.

Our current expert-finding approaches in the DBLP
dataset only consider the publications of the experts. To
further improve the performance of our methods, we plan to
take into account other types of information in future work,
such as profiles of the researchers and social information.
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Figure 4. Comparison of the three topic-based models with different numbers of topics.

istrative Region, China (Project No. CUHK 4125/07E and
Project No. CUHK4150/07E).

References

[1] Eventseer.net. URL:http://eventseer.net/topic/.
[2] Google Scholar. URL:http://scholar.google.com/.
[3] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for

expert finding in enterprise corpora. In SIGIR, pages 43–50,
2006.

[4] K. Balog, T. Bogers, L. Azzopardi, M. de Rijke, and
A. van den Bosch. Broad expertise retrieval in sparse data
environments. In SIGIR, pages 551–558, 2007.

[5] K. Balog and M. de Rijke. Determining expert profiles (with
an application to expert finding). In IJCAI, pages 2657–
2662, 2007.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

[7] C. Buckley and E. M. Voorhees. Retrieval evaluation with
incomplete information. In SIGIR, pages 25–32, 2004.

[8] Y. Cao, J. Liu, S. Bao, and H. Li. Research on expert search
at enterprise track of trec 2005. In Proceedings of TREC
2005, 2005.

[9] N. Craswell, I. Soboroff, and A. de Vries. Overview of the
trec-2005 enterprise track. In Proceedings of TREC 2005.

[10] H. Fang and C. Zhai. Probabilistic models for expert finding.
In ECIR, pages 418–430, 2007.

[11] S. Hettich and M. J. Pazzani. Mining for proposal reviewers:
lessons learned at the national science foundation. In KDD,
pages 862–871, 2006.

[12] T. Hofmann. Probabilistic latent semantic indexing. In SI-
GIR, pages 50–57, 1999.

[13] R. Jin, A. G. Hauptmann, and C. Zhai. Title language model
for information retrieval. In SIGIR, pages 42–48, 2002.

[14] J.-Z. Li, J. Tang, J. Zhang, Q. Luo, Y. Liu, and M. Hong.
Eos: expertise oriented search using social networks. In
WWW, pages 1271–1272, 2007.

[15] C. Macdonald and I. Ounis. Voting for candidates: adapting
data fusion techniques for an expert search task. In CIKM,
pages 387–396, 2006.

[16] C. Macdonald and I. Ounis. Expertise drift and query ex-
pansion in expert search. In CIKM, pages 341–350, 2007.

[17] D. M. Mimno and A. McCallum. Expertise modeling for
matching papers with reviewers. In KDD, pages 500–509,
2007.

[18] D. Petkova and W. B. Croft. Hierarchical language models
for expert finding in enterprise corpora. In ICTAI, pages
599–608, 2006.

[19] J. M. Ponte and W. B. Croft. A language modeling approach
to information retrieval. In SIGIR, pages 275–281, 1998.

[20] M. A. Rodriguez and J. Bollen. An algorithm to determine
peer-reviewers. CoRR, abs/cs/0605112, 2006.

[21] I. Soboroff, A. de Vries, and N. Craswell. Overview of the
trec-2006 enterprise track. In Proceedings of TREC 2006.

[22] TREC. Enterprise track, 2005. URL: http://www.
ins.cwi.nl/projects/trec-ent/wiki/.

[23] W3C. The W3C test collection, 2005. URL: http://
research.microsoft.com/users/nickcr/w3c-summary.html.

[24] X. Wei and W. B. Croft. Lda-based document models for
ad-hoc retrieval. In SIGIR, pages 178–185, 2006.

[25] C. Zhai and J. D. Lafferty. Two-stage language models for
information retrieval. In SIGIR, pages 49–56, 2002.

[26] C. Zhai and J. D. Lafferty. A study of smoothing methods
for language models applied to information retrieval. ACM
Trans. Inf. Syst., 22(2):179–214, 2004.

[27] J. Zhang, J. Tang, and J.-Z. Li. Expert finding in a social
network. In DASFAA, pages 1066–1069, 2007.

172172


